diff --git a/MininetController.py b/MininetController.py deleted file mode 100644 index d0d22c2..0000000 --- a/MininetController.py +++ /dev/null @@ -1,63 +0,0 @@ -from mininet.net import Mininet -from mininet.node import Controller, OVSSwitch -from mininet.cli import CLI -from mininet.log import setLogLevel - -class CustomController( Controller ): - "Open vSwitch controller" - def __init__( self, name, **kwargs ): - kwargs.setdefault( 'command', self.isAvailable() or - 'ovs-controller' ) - Controller.__init__( self, name, **kwargs ) - - -# class CustomController(Controller): -# def _handle_ConnectionUp(self, event): -# # Handle new connection -# dpid_str = dpid_to_str(event.dpid) -# log.info("Switch %s connected", dpid_str) -# self.connection = event.connection -# event.connection.addListeners(self) - -# def _handle_PacketIn(self, event): -# # Handle incoming packet -# packet = event.parsed -# if packet.type == ethernet.IP_TYPE: -# ip_packet = packet.payload -# src_ip = ip_packet.srcip -# dst_ip = ip_packet.dstip -# log.info("Source IP: %s, Destination IP: %s", src_ip, dst_ip) - -# # Call the parent handler to continue processing other events -# super(CustomController, self)._handle_PacketIn(event) - -def create_topology(): - net = Mininet(controller=Controller, switch=OVSSwitch) - - # Create network nodes - h1 = net.addHost('h1') - h2 = net.addHost('h2') - s1 = net.addSwitch('s1', cls=OVSSwitch) - - # Create links - net.addLink(h1, s1) - net.addLink(h2, s1) - - # Start the network - net.start() - - # Create a custom controller instance - controller = net.addController('c1', controller=CustomController) - - # Connect the switch to the controller - s1.start([controller]) - - # Enter command line mode - CLI(net) - - # Stop the network - net.stop() - -if __name__ == '__main__': - setLogLevel('info') - create_topology() diff --git a/MininetRL.py b/MininetRL.py deleted file mode 100644 index 17491f3..0000000 --- a/MininetRL.py +++ /dev/null @@ -1,181 +0,0 @@ -import mininet -import time, socket, random -import numpy as np -from mininet.cli import CLI -from mininet.log import setLogLevel -from mininet.net import Mininet -from mininet.topo import Topo -from mininet.link import TCLink -import matplotlib.pyplot as plt - -# Define custom topology -class MyTopology(Topo): - def build(self): - # Create switches - s1 = self.addSwitch('s1') - s2 = self.addSwitch('s2') - - # Create hosts - h1 = self.addHost('h1') - h2 = self.addHost('h2') - - # Add links - self.addLink(h1, s1, cls=TCLink, delay='10ms', bw=1) - self.addLink(s1, s2, cls=TCLink, delay='50ms', bw=0.5) - self.addLink(s2, h2, cls=TCLink, delay='10ms', bw=1) - -# Define TCP agent -class MyTCPAgent: - def __init__(self): - # Initialize TCP agent - self.transmission_rounds = [] - self.congestion_window_sizes = [] - - - def handle_connection(self): - print("TCP connection establishment") - # Implement TCP connection establishment - - # Example TCP connection establishment using a socket - # self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) - # self.sock.connect(('localhost', 19191)) - - # Example TCP connection establishment simulation - time.sleep(1) # Simulating connection establishment delay - - def handle_data_transfer(self, tunnel, window_size): - print("Performing data transfer with tunnel:", tunnel, "and window size:", window_size) - # Implement TCP data transfer with the given tunnel and window size using socket programming - - # Implement TCP data transfer simulation - - # Placeholder logic: Simulating data transfer - # time.sleep(0.1) # Simulating data transfer delay - - # Simulate congestion control by waiting for a fixed amount of time - time.sleep(0.1) - - # Record transmission round and final congestion window size - self.transmission_rounds.append(len(self.transmission_rounds) + 1) - self.congestion_window_sizes.append(window_size) - -# Define RL agent for tunnel selection -class TunnelSelectionAgent: - def __init__(self, tunnels): - # Initialize your RL agent for tunnel selection - self.rewards = [] - self.selected_tunnels = [] - self.tunnels = tunnels - self.current_tunnel = 0 - - def select_tunnel(self): - # Implement tunnel selection based on RL policy - # Placeholder logic: Select a tunnel randomly or based on some criteria - selected_tunnel = self.tunnels[self.current_tunnel] - self.current_tunnel = (self.current_tunnel + 1) % len(self.tunnels) - return selected_tunnel - - def update_policy(self, reward): - # Implement RL policy update based on rewards - self.rewards.append(reward) - self.selected_tunnels.append(self.select_tunnel()) - -# Define RL agent for window prediction -class WindowPredictionAgent: - def __init__(self): - # Initialize the RL agent for window prediction - self.window_sizes = [1, 2, 4, 8, 16, 32, 64] # Possible window sizes - self.alpha = 0.1 # Learning rate - self.gamma = 0.9 # Discount factor - self.q_table = {} # Q-table to store state-action values - - def predict_window_size(self): - # Get the current state (e.g., network conditions) - state = self.get_state() - - # Check if the state is in the Q-table - if state not in self.q_table: - # Initialize Q-values for all possible actions in the current state - self.q_table[state] = {window_size: 0 for window_size in self.window_sizes} - - # Choose the action (window size) based on epsilon-greedy policy - if random.random() < 0.2: # Exploration (20% of the time) - action = random.choice(self.window_sizes) - else: # Exploitation (80% of the time) - action = self.get_best_action(state) - - return action - - def get_state(self): - # Implement the logic to determine the current state based on network conditions - # For example, you can consider factors such as round-trip time, packet loss rate, or congestion signals - - # Placeholder logic: Return a random state - return random.randint(1, 10) - - def get_best_action(self, state): - # Find the action (window size) with the highest Q-value for the given state - best_action = max(self.q_table[state], key=self.q_table[state].get) - return best_action - - def update_policy(self, reward): - # Update the Q-value based on the reward received after taking an action - # Get the previous state and action - prev_state = self.get_state() # Replace with the actual previous state - prev_action = self.predict_window_size() # Replace with the actual previous action - - # Get the current state - curr_state = self.get_state() - - # Check if the current state is in the Q-table - if curr_state not in self.q_table: - # Initialize Q-values for all possible actions in the current state - self.q_table[curr_state] = {window_size: 0 for window_size in self.window_sizes} - - # Update the Q-value using the Q-learning update rule - max_q_value = max(self.q_table[curr_state].values()) # Get the maximum Q-value for the current state - self.q_table[prev_state][prev_action] += self.alpha * (reward + self.gamma * max_q_value - self.q_table[prev_state][prev_action]) - -# Main function -if __name__ == '__main__': - setLogLevel('info') - - # Create the Mininet network - topo = MyTopology() - net = Mininet(topo=topo) - net.start - - # Instantiate TCP and RL agents - tcp_agent = MyTCPAgent() - tunnels = ['myPrivate1'] - tunnel_agent = TunnelSelectionAgent(tunnels) - window_agent = WindowPredictionAgent() - - # Perform TCP connection establishment - tcp_agent.handle_connection() - - # Perform data transfer with RL-based tunnel selection and window prediction - start_time = time.time() - while True: - if time.time() - start_time > 10: # End packet exchange after seconds - break - tunnel = tunnel_agent.select_tunnel() - window_size = window_agent.predict_window_size() - - # Perform data transfer - tcp_agent.handle_data_transfer(tunnel, window_size) - - # Update RL agents based on rewards - reward = -0.5 # Actual reward value - tunnel_agent.update_policy(reward) - # window_agent.update_policy(reward) - - # Stop the Mininet network - net.stop() - - # Plot Transmission Round and Congestion Window Size - plt.plot(tcp_agent.transmission_rounds, tcp_agent.congestion_window_sizes) - plt.xlabel('Transmission Round') - plt.ylabel('Congestion Window Size') - plt.title('TCP+RL Window Prediction') - plt.show() diff --git a/MininetSDWAN.py b/MininetSDWAN.py deleted file mode 100644 index d2f061f..0000000 --- a/MininetSDWAN.py +++ /dev/null @@ -1,84 +0,0 @@ -from mininet.net import Mininet -from mininet.node import Controller -from mininet.log import setLogLevel -from mininet.cli import CLI -from pox.lib import of -import time -import matplotlib.pyplot as plt - -# Create empty lists to store the timestamp and latency values -timestamps = [] -latencies = [] - -class PacketCopyController(Controller): - def __init__(self, name, target_host, **kwargs): - Controller.__init__(self, name, **kwargs) - self.target_host = target_host - - def _handle_PacketIn(self, event): - packet = event.parsed - self.packet_out(event.port, packet) - self.packet_out_to_host(packet) - # Measure latency and store timestamp and latency values - latency = time.time() - event.created - timestamps.append(time.time()) - latencies.append(latency) - - def packet_out(self, out_port, packet): - msg = of.ofp_packet_out() - msg.data = packet.pack() - action = of.ofp_action_output(port=out_port) - msg.actions.append(action) - self.connection.send(msg) - - def packet_out_to_host(self, packet): - host = self.net.get(self.target_host) - if host: - host.sendMsg(packet) - -if __name__ == '__main__': - setLogLevel('info') - - # Creazione della rete Mininet - net = Mininet(controller=PacketCopyController) - - # Creazione degli host e degli switch - h1 = net.addHost('h1') - h2 = net.addHost('h2') - h3 = net.addHost('h3') - s1 = net.addSwitch('s1') - - # Creazione dei collegamenti - net.addLink(h1, s1) - net.addLink(h2, s1) - net.addLink(h3, s1) - - # Create the plot - plt.figure() - plt.xlabel('Time') - plt.ylabel('Latency (seconds)') - plt.title('Network Latency') - - # Avvio della rete e assegnazione del controller - # Add the POX controller - controller = net.addController(name='controller', target_host='h3', controller=PacketCopyController, ip='127.0.0.1', port=6633) - net.start() - controller.start() - # controller = net.controllers[0] - # controller.net = net - - # Start the plot animation - plt.ion() - plt.show() - - try: - while True: - # Update the plot with new latency data - plt.plot(timestamps, latencies, 'b-') - plt.draw() - plt.pause(0.1) - except KeyboardInterrupt: - pass - - CLI(net) - net.stop() diff --git a/MininetTEST.py b/MininetTEST.py deleted file mode 100644 index 71c4e47..0000000 --- a/MininetTEST.py +++ /dev/null @@ -1,71 +0,0 @@ -import configparser -from colorama import Fore, Style -from mininet.net import Mininet -from mininet.topo import Topo -from mininet.node import Node -from mininet.cli import CLI -from mininet.link import TCLink -from mininet.log import setLogLevel - -class MyRouter (Node): - def config(self, **params): - super(MyRouter, self).config(**params) - self.cmd('sysctl net.ipv4.ip_forward=1') #Enable forwarding on the router - def terminate(self): - self.cmd('sysctl net.ipv4.ip_forward=0') #Disable forwarding on the router - super(MyRouter, self).terminate - -def build_topology(config_file): - topo = Topo() - elements = {} # Dictionary to store nodes - - # h1 = topo.addHost('H1', ip='161.46.247.2/25', defaultRoute='via 161.46.247.1') - # h2 = topo.addHost('H2', ip='161.46.247.3/25', defaultRoute='via 161.46.247.1') - - r0 = topo.addNode('R0', cls=MyRouter, ip='163.172.250.12/16') - r1 = topo.addNode('R1', cls=MyRouter, ip='163.172.250.12/28') - r2 = topo.addNode('R2', cls=MyRouter, ip='161.46.247.253/30') - - topo.addLink(r0, r1, intfName2='R12', intfName1='R01', params2={'ip' : '163.172.250.12/28'}, params1={'ip' : '163.172.250.12/16'}) - topo.addLink(r2, r1, intfName2='R13', intfName1='R21', params2={'ip' : '161.46.247.254/30'}, params1={'ip' : '161.46.247.253/30'}) - - # s1 = topo.addSwitch('S1') - - # h4 = topo.addHost('H4', ip='161.46.247.131/26', defaultRoute='via 161.46.247.129') - # h3 = topo.addHost('H3', ip='161.46.247.196/27', defaultRoute='via 161.46.247.195') - - - ### Ordine importante ### - - # topo.addLink(r1, s1, intfName1='R11', params1={'ip' : '161.46.247.1/25'}) - - # topo.addLink(r2, h3, intfName2='H31', intfName1='R22', params1={'ip' : '161.46.247.195/27'}) - # topo.addLink(r2, h4, intfName2='H41', intfName1='R23', params1={'ip' : '161.46.247.129/26'}) - - - # topo.addLink(s1, h1, intfName2='H11') - # topo.addLink(s1, h2 ,intfName2='H21') - - return topo - -def run_topology(config_file): - setLogLevel('info') #Different logging levels are 'info' 'warning' 'error' 'debug' - topo = build_topology(config_file) - net = Mininet(topo=topo, link=TCLink) - net.start() #Starting the network - - (net.getNodeByName('R1')).cmd('ip route add default via 161.172.250.1/26') - (net.getNodeByName('R1')).cmd('ip route add 161.46.247.128/27 via 161.46.247.253') - - # (net.getNodeByName('R1')).cmd('ip route add 161.46.247.192/27 via 161.46.247.254 dev R13') - # (net.getNodeByName('R1')).cmd('ip route add 161.46.247.128/26 via 161.46.247.254 dev R13') - - if net.pingAll(): - print(Fore.RED + "Network has issues" + Style.RESET_ALL) - else: - print(Fore.GREEN + "Network working properly" + Style.RESET_ALL) - CLI(net) - net.stop() #Stopping the network - -if __name__ == '__main__': - run_topology('MininetTopo.conf') \ No newline at end of file diff --git a/README.md b/README.md index 770490c..e6e480f 100755 --- a/README.md +++ b/README.md @@ -7,7 +7,8 @@ 4. [Traffic MAC Analyzer (MACshuffle.sh)](#traffic-mac-analyzer-MACshufflesh) - [Execution](#execution) - [Security in WPA3](#security-in-wpa3) - +5. []() + - []() ## Overview of 5G 5G is the fifth generation of wireless technology that promises to deliver faster data transfer speeds, lower latency, and increased network capacity. It is designed to enable a wide range of new applications and use cases that were previously not possible with 4G technology. 5G technology is based on a new radio access technology which uses higher frequency bands (millimeter waves) than previous generations of wireless technology. This allows 5G networks to deliver much faster data transfer speed. In addition offer greater network capacity, which means they can support more devices for the growth of the Internet of Things (IoT) and also promises to reduce latency to under 1 millisecond, which is critical for real-time applications such as gaming, remote surgery, autonomous machines. Overall, 5G is expected to revolutionize the way we use wireless technology and enable new applications that were previously not possible. However, the rollout of 5G networks is still ongoing and faces challenges such as the need for more infrastructure and the use of higher frequency bands that have limited coverage compared to lower frequency bands. @@ -63,11 +64,38 @@ sudo tcpdump -i -U -w .MACprobe.tmp | ./MACshuffle.sh -p ``` ### Security in WPA3 -WPA3 is a security protocol for Wi-Fi networks introduced by the Wi-Fi Alliance. WPA3 is a security technology that is implemented on Wi-Fi networks based on the 802.11 standard. +WPA3 is a security protocol for Wi-Fi networks introduced by the Wi-Fi Alliance. WPA3 is a security technology that is implemented on Wi-Fi networks based on the 802.11i standard. WPA3 (Wi-Fi Protected Access 3) was introduced to improve the security of Wi-Fi networks over the previous version of WPA2 security. Among the main reasons why WPA3 was introduced are: -- Greater resistance to brute-force attacks: +- Greater resistance to offline brute-force(dictionary) attacks: WPA3 uses a more robust authentication system than WPA2, based on the Dragonfly authentication algorithm. This makes it harder for attackers to crack down Wi-Fi network passwords. - Privacy improvements: -WPA3 introduces a new forward secrecy encryption protocol that improves user privacy. This means that even if an attacker manages to decrypt the traffic of a Wi-Fi network session, they will not be able to decrypt the traffic of previous or subsequent sessions. +WPA3 introduces a new forward secrecy (FS) encryption protocol that improves user privacy. This means that even if an attacker manages to decrypt the traffic of a Wi-Fi network session, they will not be able to decrypt the traffic of previous or subsequent sessions. - Security key management vulnerabilities: WPA3 improves security key management over WPA2 by introducing the Simultaneous Authentication of Equals (SAE) key exchange protocol. SAE provides greater protection against dictionary attacks and allows you to set stronger passwords. + +## qualcosa con Mininet +cosa serve, quali altri ci sono. come e' stata utilizzata e i file relativi +descrizione di quello che si vuole andare a fare +### Reinforcement Learning +In a Markov Decision Process(MDP) an AGENT is a decision maker that interact with the ENVIRONMENT that is placed in. These ACTIONS are sequential and every time an ACTION is taken, we get an observation of the STATE of the ENVIRONMENT. Based on the observation is chosen the ACTION to take; now the ENVIRONMENT goes into a new STATE and the AGENT gets a REWARD based on his ACTION. The AGENT not only wants to maximize the current REWARD but the cumulative REWARD over time. + +S stati, R rewards, A azioni +sono legati da questa relazione f(St,At)=Rt+1 +la traiettoria the rappresentail processo sequenziale pio essere rappresentata come S0,A0,R1,A1,R2,S2,A2,R3,... + +foto del diagramma + +Se Stati e Reword sono un insieme finito le variabili Rt e St avranno ben definita una distribuzione di probablita. Questa distribuzione dipende dallo stato precedente e dall'azione al passo t-1. possiamo definire cosi la probabilita, dato s e s' in S e r in R e a in A allora la prbabilita di transito di passare allo stato s' con una ricomoensa r intraprendendo l'azione a +p(s',r|s,a)=Pr{St=s',Rt=r|St-1=s,At-1=a} + +(Q-Learning is a tecnique of Reinforcement Learning) + +### Window Size +cos'e'?... + +possiamo usare iperf per vedere l'impatto che ha cambiare la windows size. +con wireshark possiamo vedere i pacchetti e controllare la windows size(dentro TCP->flags->Window) +se fissiamo la windows size con 'iperf3 -c ip -t 10 -w 1000' ora i tcp datagram non possono essere piu grande di 1000, vedremo diminuire le prestazioni perche' prima di mandare altri dati dovremo aspettare di ricevere un acknowledgement dal ricevente. le performaces non sono determinate alle condizioni della reta ma da quello che stanno facento il client e server. + +### Test TCP e RL in Mininet +test di valutzione e foto dei grafi \ No newline at end of file