Report of Mininet Project
Edoardo Coli
July 2023

1 Introduction

The objective of this report is to investigate the multi-connection capa-
bility of a cluster network through the utilization of Mininet, a popular
open-source network emulator. Specifically, I will focus on measuring the
performance and throughput of the network under varying connection sce-
narios using iperf, a widely adopted tool for network performance testing.
Within the report I will also discuss how to use Python to recreate a net-
work topology using the Mininet API. Those API provides a comprehen-
sive set of classes and methods that enable fine-grained control over net-
work topologies and network elements such as hosts, switches, and links.

In the following sections of this report, I will outline the methodology
employed using Mininet emulated setup and the experimental setup for
real-world comparison. In the end I will discuss the results obtained and
provide a comparative analysis.

2 Settings

The experiment concerns: The real testbench that is a physical hardware
cluster; The emulated testbench to replicate the behavior in a software-
based environment. By presenting the real and emulated testbenches side
by side, I aim to show Mininet force points and limitations.

2.1 Features physical cluster (Steffe)

Before start this is a detailed overview of the hardware specifications of
the cluster, Rock4+ nodes and the TP-Link switch, highlighting their key
features and capabilities:

1. Rock4+ Single-Board Computers:
o CPU: Rockchip RK3399 Hexa-core processor (Dual-core Cor-
tex-A72 and Quad-core Cortex-A53)
e GPU: Mali-T860MP4
e RAM: 4GB LPDDR4 dual channel
o Connectivity: Gigabit Ethernet (POE)
e Operating System: Linux-based distribution
2. TP-Link Switch (Model: TL-SG1428PE):
e Ports: 26x 10/100/1000 Mbps RJ45

o PoE Ports: 24x PoE (802.3at/af)
e Power Budget: Up to 350W
The network topology of the cluster has 21 nodes, where one node is des-

ignated as the master (referred to as "steffe0") and the remaining nodes are
connected using a switch, can be described as a star topology. In this to-
pology, the master node acts as the central hub or controller, while the
switch serves as a central point for connecting all the other nodes. In the
setup, the master node “steffe0” is directly connected to the switch, using
an Ethernet cable. The switch acts as a central point of connectivity and
provides multiple ports to accommodate the remaining 20 nodes. Each of
the 20 nodes is connected to the switch using individual Ethernet cables,
with each cable connected to an available port on the switch is provided a
2 Gbps bandwidth, 1 Gbps in UL and the 1 Gbps in DL.

2.2 Features emulated cluster

The overview of the emulated network concerns which components have
been created within Mininet. 21 nodes hosts were created to recreate the
physical network, as well as physical links and switches. The topology con-
figuration has been simplified and placed in a special configuration file
SteffeCluster.conf. The link creation parameters are specified within the
file, in this regard we have links between the switch and the various hosts
with a bandwidth of GitHub repository™*.

3 Data collection

For the data collection, the same test procedure was carried out for both
testbenches. What we want to analyze is the ability of the switch to divide
the bandwidth between multiple requesting nodes, as if to simulate a mas-
sive sending of more data by the network to a centralized controller. The
iperf software was used to perform the measurements. An iperf server is
started, as a process, inside the master node using the command 'iperf -s -
P 20'. The nodes of the network connect as clients to the master through
the command 'iperf -c steffe0' -t 5. The -P flag in iperf parameters means
that the server can handle up to N connections in parallel. This parameter

“ Can’t be configurea in Mininet standard Switch a switch with a bandwidth greater than
1000Mbps.

becomes necessary when we want to try to test the flow of data simultane-
ously from each host of the network, in this case 20.

The type of measurement that performs iperf consists, in the absence of
explicitly defined parameters, to communicate as much data as possible
with the server node. The data we are going to capture will be given by
measurements implemented with a number of nodes increasing starting
from one. Everything has been saved within a file X_tol.test (present in
the dataset.zip file) and is built by appending the output of the individual
clients in it. With the use of Bash ‘awk’ command, it was possible to ana-
lyze the data collected within the output file.

In the following subsections we can find the data tables.

3.1 Physical outcome

The hosts subset, incremental of cardinality, was chosen starting from
the first node and adding the subsequent ones. For each order of cardinal-
ity, 100 measurements were made in a time of 5 seconds using the parame-
ter t in the iperf command. The data that are shown in the table report
for each node the arithmetic mean of the hundred values observed.

To launch the processes in parallel from the cluster master node, is used
the following Bash+Parallel command:

for i in {1..100}; do
parallel -p 20 --nonall --slf hosts.list 'iperf -c
steffe0 -t 5' >> X tol.test;

done
HOST INVOLVED

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

STEFFE1 938 479 325 249 198 167 141 122 113 207 285 366 419 486 524 588 621 672 701 679
STEFFE2 0 467 322 246 195 164 138 120 109 101 92 85 80 75 68 65 61 58 55 107
STEFFE3 0 0 323 244 198 163 138 119 107 98 90 85 77 72 67 64 61 59 57 54
STEFFE4 0 0 0 241 197 169 140 119 107 97 89 83 76 71 67 64 62 58 55 54
STEFFE5 0 0 0 0 201 169 141 120 107 97 88 82 76 72 67 64 61 58 56 54
STEFFE6 0 0 0 0 0 166 142 119 107 97 89 83 76 71 67 64 62 58 56 55
STEFFE7 0 0 0 0 0 0 141 120 107 97 88 83 77 72 67 65 62 61 57 55
w STEFFE8 0 0 0 0 0 0 0 119 106 97 89 83 76 72 68 65 65 60 57 55
<§(STEFFE9 0 0 0 0 0 0 0 0 108 98 89 83 78 72 70 66 63 61 59 57
E STEFFE10 0 0 0 0 0 0 0 0 0 100 94 92 86 83 75 78 74 75 75 71
8 STEFFE11 0 0 0 0 0 0 0 0 0 0 93 88 82 82 76 77 73 74 68 67
= STEFFE12 0 0 0 0 0 0 0 0 0 0 0 86 80 77 73 73 70 70 68 64
STEFFE13 0 0 0 0 0 0 0 0 0 0 0 0 79 76 71 69 69 68 62 61
STEFFE14 0 0 0 0 0 0 0 0 0 0 0 0 0 74 70 68 65 63 60 62
STEFFE15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68 68 62 61 59 57
STEFFE16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 61 59 57 54
STEFFE17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 62 58 56 53
STEFFE18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 55 52
STEFFE19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 54
STEFFE20 53

3.2 Mininet outcome

The hosts subset, incremental of cardinality, was chosen starting from
the first node and adding the subsequent ones. For each order of cardinal-
ity, 100 measurements were made in a time of 5 seconds using the parame-
ter t in the iperf command. The data that are shown in the table report
for each node the arithmetic mean of the hundred values observed.

To launch the processes in parallel in Mininet via the python interface is
used the following code:

def run command (host, command) :
output = host.cmd (command)
with open('X tol.test', 'a') as file:
file.write (output)

for i in range (0,100):
print (i)
processes = []
for host in hosts:
command = 'iperf -c 10.0.0.1 -t 57
p = multiprocessing.Process (target=run com-
mand, args=(net.getNodeByName (host), command))
p.start ()
processes.append (p)
for p in processes:

HOSTNAME

p.join()
HOST INVOLVED

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
STEFFE1 893 459 352 299 250 185 152 126 115 199 266 320 360 404 448 484 526 528 567 533
STEFFE2 0 438 292 218 171 168 146 128 108 102 90 86 88 90 79 83 76 75 75 127
STEFFE3 0 0 264 190 169 148 132 116 103 98 90 79 80 76 76 70 66 72 58 57
STEFFE4 0 0 0 193 161 140 128 111 99 91 84 82 81 78 65 65 60 60 56 51
STEFFES 0 0 0 0 158 138 121 111 100 86 80 83 73 64 58 60 43 50 49 48
STEFFE6 0 0 0 0 0 136 120 109 102 90 82 73 64 61 58 48 52 47 39 36
STEFFE7 0 0 0 0 0 0 122 113 104 86 79 71 65 60 59 50 46 45 40 35
STEFFE8 0 0 0 0 0 0 0 108 99 92 87 74 63 57 48 46 42 41 41 36
STEFFE9 0 0 0 0 0 0 0 0 98 88 80 74 71 57 58 46 44 36 32 33
STEFFE10 0 0 0 0 0 0 0 0 0 90 83 75 65 57 53 49 41 39 40 32
STEFFE11 0 0 0 0 0 0 0 0 0 0 77 76 68 58 63 61 51 46 41 38
STEFFE12 0 0 0 0 0 0 0 0 0 0 0 71 63 68 61 48 44 42 41 27
STEFFE13 0 0 0 0 0 0 0 0 0 0 0 0 71 64 61 58 63 45 43 40
STEFFE14 0 0 0 0 0 0 0 0 0 0 0 0 0 68 59 59 54 46 45 41
STEFFE15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 58 60 47 48 47
STEFFE16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 61 66 50 51
STEFFE17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57 54 60 64
STEFFE18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 60 51
STEFFE19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 62
STEFFE20 51

4 Data analysis

With the data contained in the tables it is possible to create a graph
that has, as a unit of measurement of x-axis, the number of nodes involved
in the measurement and, as a unit of measurement of y-axis, the amount

of bandwidth expressed in Mbps.

Graph of Physical Cluster

—e—STEFFE1 —#—STEFFE2 —*—STEFFE3 STEFFE4 —e—STEFFE5 -—#—STEFFE6 —#—STEFFE7 —#—STEFFE8 —e—STEFFE9 —e—STEFFE10

—+—STEFFE11 —e—STEFFE12 —e—STEFFEL3 STEFFE14 STEFFELS STEFFE16 —e—STEFFEL7 STEFFE18 —e—STEFFE19 —e—STEFFE20
1000

900
800
700
600

500

200

100

Graph of Mininet Cluster

—e—STEFFE1 —e—STEFFE2 —=—STEFFE3 STEFFE4 -—e—STEFFE5S —e—STEFFEG —e—STEFFE7 —e—STEFFE8 —e—STEFFE9 —e—STEFFE10
—e—STEFFE11 —e—STEFFE12 —s—STEFFE13 STEFFE14 STEFFE15 STEFFE16 —e—STEFFE17 —e—STEFFE18 —e—STEFFE19 —s—STEFFE20

1000 o
9200
800
700
600
500
400
300

200

100

o(1-N)
o(2-N)

o(1-N)
o(2-N)

We can see that unexpected jumps occur at 9 and 19 x-values, but we

see that Mininet emulates exactly this behavior.

Other values of interest that we can extract from the tables are related

to the average value (1) calculated according to the arithmetic mean and

the variance (0), calculated taking into account the nodes from 1 to N and

those from 2 to N. In the values of the average we can see how the

emulated network remains less performing than the physical network.

From the values of the variance instead we see, as well as from the graph,

a considerable discrepancy once the threshold of 9 nodes is exceeded.

All the tests that were performed went to analyze the behavior in UL

towards the master node.

Average for Testbench (Physical Cluster)

938,00

473,00

323,33

245,00

197,80

166,33

140,14

119,75 107,89| 108,90, 107,82

108,25

104,77

103,93

99,87

100,19

97,29

96,17

93,11

90,90

0

8,485281

1,527525

3,366502

2,167948

2,503331

1,573592

1,035098| 2,088327| 34,49783| 58,79935

81,21926

94,46

110,0353

117,3711

130,1626

135,0244

143,8182

147,3077

138,9623

0

0,707107

2,516611

2,5

2,774887

1,67332

0,534522| 0,886405 1,5 2,13177

2,960344

3,058768

4,0128

3,10618

4,700557

4,441753

5,774564

5,562479

12,54978

Average for Mininet (Emulated Cluster)

893,00

448,50

302,67

225,00

181,30

152,50

131,57

115,25 103,11| 102,20 99,82

97,00

93,23

90,14

87,40

84,63

81,53

77,61

75,68

73,00

0

14,84924

44,95924

50,90514

38,50584

19,77625

12,75222

7,667184| 5,441609| 34,38604| 55,28439

70,39241

80,5338

90,84548

100,0598

106,9952

114,9593

112,9467

119,4097

110,2934

0

19,79899

15,37314

6,238322

13,11488

9,887703

6,824326| 3,335416| 5,364492| 4,54117

5,061441

8,15754

10,01665

8,072814

10,64358

10,16202

11,41754

10,44391

21,5911

4.1

Future works

Future work to carry out a more precise analysis may be to make

measurements in the presence of traffic between client nodes. We can

apply a traffic generator between the nodes engaged in communication,

what we expect to see is a load of data relative to the part of DL, client

side that not affect the performances, and a division of the UL channel,

one part to communicate between clients and one to communicate with

the master. An accurate analysis would show the threshold after which the

traffic load between the hosts negatively impacts the reception of the data

from master node. This would happen because the communication
bottleneck would be the master-switch link, but if the ability of the nodes
to send packets is reduced due to internal traffic then the problem will no

longer be related to having only one master-switch link.

However, the split part of UL and DL is not applied to the switch band

within Mininet, so proper configuration is required.

5 Topology builder

Along with the other files and programs of the project is present in my
GitHub repository™® also a program in Python with the aim of facilitating
the creation of a topology without acting directly with Python but using a
properly built configuration file. With the use of this my software called
MininetNetPractice.py I modeled the cluster network to emulate, in the
repository there is also another configuration file that shows how you can
use the configuration file for more complex topologies. This program takes
a file as input by specifying it via the -f flag or within the current
directory uses the default file called MininetTopo.conf.

For more details the topic is better covered on project README.md .

" hittps://github.com /edoardoColi/Communication Sandbox

https://github.com/edoardoColi/Communication_Sandbox/blob/edoardoColi/README.md#building-custom-network-topologies-mininetnetpracticepy

