
High-Performance Mathematics
Programming in a distributed setting: MPI
Progetto Speciale per la Didattica ŵųŵŶ/ŵŷ
Fabio Durastante (Lŵ)

April Ŵź, ŵųŵŷ

Ŵ/ŵź

mailto:fabio.durastante@unipi.it

Table of Contents
Ŵ Distributed parallelism in practice

▶ Distributed parallelism in practice

▶ An Introduction to MPI
Preliminary work
Our First MPI Program
The MPI parallel environment
When to travel the MPI route

ŵ/ŵź

How do we realize practically this parallelism?
Ŵ Distributed parallelism in practice

Let us focus on what we have discussed until now:
• We have “machines” with multiple processors and whose main memory is

partitioned into fragmented components,
• We have algorithms that can divide a problem of size N among these processors so

that they can run (almost) independently,
• With a certain degree of approximation, we know how to compute what is the best

improvement we can expect from a parallel program withM processors on a problem
of size N:
Strong scaling: fixed problem size, increasing number of processes, Amdahl’s law;
Weak scaling: fixed problem size per computing process, Gustafson’s law.

Ŷ/ŵź

How do we realize practically this parallelism?
Ŵ Distributed parallelism in practice

What we need to discuss now is then:

“How can we actually implement these algorithms on real machines?”

• We need a way to define a parallel environment in which every processor is
accounted for,

• We need to have data formats that are aware of the fact that we have a distributed
memory,

• We need to exchange data between the various memory fragments.

ŷ/ŵź

How do we realize practically this parallelism?
Ŵ Distributed parallelism in practice

What we need to discuss now is then:

“How can we actually implement these algorithms on real machines?”

• We need a way to define a parallel environment in which every processor is
accounted for,

• We need to have data formats that are aware of the fact that we have a distributed
memory,

• We need to exchange data between the various memory fragments.

ŷ/ŵź

How do we realize practically this parallelism?
Ŵ Distributed parallelism in practice

What we need to discuss now is then:

“How can we actually implement these algorithms on real machines?”

• We need a way to define a parallel environment in which every processor is
accounted for,

• We need to have data formats that are aware of the fact that we have a distributed
memory,

• We need to exchange data between the various memory fragments.

ŷ/ŵź

How do we realize practically this parallelism?
Ŵ Distributed parallelism in practice

What we need to discuss now is then:

“How can we actually implement these algorithms on real machines?”

• We need a way to define a parallel environment in which every processor is
accounted for,

• We need to have data formats that are aware of the fact that we have a distributed
memory,

• We need to exchange data between the various memory fragments.

ŷ/ŵź

Table of Contents
ŵ An Introduction to MPI

▶ Distributed parallelism in practice

▶ An Introduction to MPI
Preliminary work
Our First MPI Program
The MPI parallel environment
When to travel the MPI route

Ÿ/ŵź

Message Passing Interface – www.mpi-forum.org
ŵ An Introduction to MPI

“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, ŴŴ (Ÿ), ųŻŻŸ.

• MPI implementations consist of a specific set of routines directly callable from C,
C++, Fortran;

• MPI uses Language Independent Specifications for calls and language bindings;
• The MPI interface provides an essential virtual topology, synchronization, and

communication functionality inside a set of processes.
• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,

pyMPI, Spectrum MPI, Intel MPI, . . .

Ź/ŵź

https://www.mpi-forum.org/

Message Passing Interface – www.mpi-forum.org
ŵ An Introduction to MPI

“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, ŴŴ (Ÿ), ųŻŻŸ.

• MPI implementations consist of a specific set of routines directly callable from C,
C++, Fortran;

• MPI uses Language Independent Specifications for calls and language bindings;
• The MPI interface provides an essential virtual topology, synchronization, and

communication functionality inside a set of processes.
• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,

pyMPI, Spectrum MPI, Intel MPI, . . .

Ź/ŵź

https://www.mpi-forum.org/

Message Passing Interface – www.mpi-forum.org
ŵ An Introduction to MPI

“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, ŴŴ (Ÿ), ųŻŻŸ.

• MPI implementations consist of a specific set of routines directly callable from C,
C++, Fortran;

• MPI uses Language Independent Specifications for calls and language bindings;

• The MPI interface provides an essential virtual topology, synchronization, and
communication functionality inside a set of processes.

• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,
pyMPI, Spectrum MPI, Intel MPI, . . .

Ź/ŵź

https://www.mpi-forum.org/

Message Passing Interface – www.mpi-forum.org
ŵ An Introduction to MPI

“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, ŴŴ (Ÿ), ųŻŻŸ.

• MPI implementations consist of a specific set of routines directly callable from C,
C++, Fortran;

• MPI uses Language Independent Specifications for calls and language bindings;
• The MPI interface provides an essential virtual topology, synchronization, and

communication functionality inside a set of processes.

• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,
pyMPI, Spectrum MPI, Intel MPI, . . .

Ź/ŵź

https://www.mpi-forum.org/

Message Passing Interface – www.mpi-forum.org
ŵ An Introduction to MPI

“MPI (Message Passing Interface) is a specification for a standard library for mes-
sage passing that was defined by theMPI Forum, a broadly based group of paral-
lel computer vendors, library writers, and applications specialists.” –W. Gropp, E.
Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of the
MPI message passing interface standard, Parallel Computing, ŴŴ (Ÿ), ųŻŻŸ.

• MPI implementations consist of a specific set of routines directly callable from C,
C++, Fortran;

• MPI uses Language Independent Specifications for calls and language bindings;
• The MPI interface provides an essential virtual topology, synchronization, and

communication functionality inside a set of processes.
• There existmany implementations of the MPI specification, e.g., MPICH, Open MPI,

pyMPI, Spectrum MPI, Intel MPI, . . .

Ź/ŵź

https://www.mpi-forum.org/

Fallacies of distributed computing
ŵ An Introduction to MPI

ŵ The network is reliable;
Ŵ Latency is zero;
Ÿ Bandwidth is infinite;
ŷ The network is secure;
Ŷ Topology doesn’t change;
Ź There is one administrator;
Ż Transport cost is zero;
ź The network is homogeneous.

Peter Deutsch
All prove to be false in the long run and all
cause big trouble and painful learning
experiences.

ź/ŵź

Preliminary work
ŵ An Introduction to MPI

Let’s start with a preliminary setup and connect to a machine that is capable of producing
the executables we need:
ssh n.cognomeXX@a3-dottY.cs.dm.unipi.it
where

• n.cognomeXX are your “credenziali di ateneo’,
• and Y = 1, 2, . . . is one of the machines of Aula DMŵ.

Already in Aula DMŵ.
If you are already physically connected to one of the machines of Aula DMŵ, you can skip
this passage and just open a terminal.

Ż/ŵź

Putting up a git repository for our code
ŵ An Introduction to MPI

To develop our code and track our progress, we set up a git repository with the results.

Ŵ. Go to: git.phc.dm.unipi.it,
ŵ. Login to the system:

Ŷ. Create a new repository:
We must now select the settings necessary to define the repository:

• The unique (for our account) repository name:

• A .gitignore template, that will simplify the selection of file we wish to preserve
on the repository. We can select c code:

ż/ŵź

https://git.phc.dm.unipi.it/

Putting up a git repository for our code
ŵ An Introduction to MPI

To develop our code and track our progress, we set up a git repository with the results.
Ŵ. Go to: git.phc.dm.unipi.it,

ŵ. Login to the system:

Ŷ. Create a new repository:
We must now select the settings necessary to define the repository:

• The unique (for our account) repository name:

• A .gitignore template, that will simplify the selection of file we wish to preserve
on the repository. We can select c code:

ż/ŵź

https://git.phc.dm.unipi.it/

Putting up a git repository for our code
ŵ An Introduction to MPI

To develop our code and track our progress, we set up a git repository with the results.
Ŵ. Go to: git.phc.dm.unipi.it,
ŵ. Login to the system:

Ŷ. Create a new repository:
We must now select the settings necessary to define the repository:

• The unique (for our account) repository name:

• A .gitignore template, that will simplify the selection of file we wish to preserve
on the repository. We can select c code:

ż/ŵź

https://git.phc.dm.unipi.it/

Putting up a git repository for our code
ŵ An Introduction to MPI

To develop our code and track our progress, we set up a git repository with the results.
Ŵ. Go to: git.phc.dm.unipi.it,
ŵ. Login to the system:

Ŷ. Create a new repository:

We must now select the settings necessary to define the repository:
• The unique (for our account) repository name:

• A .gitignore template, that will simplify the selection of file we wish to preserve
on the repository. We can select c code:

ż/ŵź

https://git.phc.dm.unipi.it/

Putting up a git repository for our code
ŵ An Introduction to MPI

To develop our code and track our progress, we set up a git repository with the results.
Ŵ. Go to: git.phc.dm.unipi.it,
ŵ. Login to the system:

Ŷ. Create a new repository:
We must now select the settings necessary to define the repository:

• The unique (for our account) repository name:

• A .gitignore template, that will simplify the selection of file we wish to preserve
on the repository. We can select c code:

ż/ŵź

https://git.phc.dm.unipi.it/

Putting up a git repository for our code
ŵ An Introduction to MPI

To develop our code and track our progress, we set up a git repository with the results.
Ŵ. Go to: git.phc.dm.unipi.it,
ŵ. Login to the system:

Ŷ. Create a new repository:
We must now select the settings necessary to define the repository:

• The unique (for our account) repository name:

• A .gitignore template, that will simplify the selection of file we wish to preserve
on the repository. We can select c code:

ż/ŵź

https://git.phc.dm.unipi.it/

Putting up a git repository for our code
ŵ An Introduction to MPI

To develop our code and track our progress, we set up a git repository with the results.
Ŵ. Go to: git.phc.dm.unipi.it,
ŵ. Login to the system:

Ŷ. Create a new repository:
We must now select the settings necessary to define the repository:

• The unique (for our account) repository name:

• A .gitignore template, that will simplify the selection of file we wish to preserve
on the repository. We can select c code:

ż/ŵź

https://git.phc.dm.unipi.it/

Putting up a git repository for our code
ŵ An Introduction to MPI

• We now need to select a license for our code:

A good starting point to decide what license we may need is visiting the website:
choosealicense.com another set of useful information is available on Wikipedia.

GPL License MIT License

BSD License

Be sure that this option is on: .

Ŵų/ŵź

https://choosealicense.com/
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

Putting up a git repository for our code
ŵ An Introduction to MPI

• We now need to select a license for our code:

A good starting point to decide what license we may need is visiting the website:
choosealicense.com another set of useful information is available on Wikipedia.

GPL License MIT License

BSD License

Be sure that this option is on: .

Ŵų/ŵź

https://choosealicense.com/
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

Putting up a git repository for our code
ŵ An Introduction to MPI

And then push:
ŴŴ/ŵź

Putting up a git repository for our code
ŵ An Introduction to MPI

Let’s clone the repository we created on the machine:
cd Documents
git clone git@git.phc.dm.unipi.it:fdurastante/hpmcode.git
cd hpmcode

the link should be the one of your repository, not mine!Ŵŵ/ŵź

Hello (parallel) world!
ŵ An Introduction to MPI

In today’s lecture we are going to use the MPI inside C programs, and start writing:

#include"mpi.h"
#include<stdio.h>

int main(int argc,
char **argv){

MPI_Init(&argc, &argv);
printf("Hello, world!\n");
MPI_Finalize();
return 0;

}

• #include "mpi.h" provides basic MPI
definitions and types,

• MPI_Init start MPI, it has to precede any MPI
call!

• MPI_Finalize exits MPI

• All the non–MPI routines are local!

We need to save the code into the Git repository folder.

ŴŶ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

We need now to compile and link the helloworld.c program.
• We need to set-up the environment that will contain a compiler and an

implementation of MPI.

To this end, we use environment module.

Environment Module
The Modules package is a tool that simplifies shell initialization and lets users easily
modify their environment during a session usingmodulefiles.

Modules can be loaded and unloaded dynamically and atomically, in an clean fashion.

Modules are useful in managing different versions of applications. Modules can also be
bundled into meta-modules that will load an entire suite of different applications.

Ŵŷ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

We need now to compile and link the helloworld.c program.
• We need to set-up the environment that will contain a compiler and an

implementation of MPI.
To this end, we use environment module.

Environment Module
The Modules package is a tool that simplifies shell initialization and lets users easily
modify their environment during a session usingmodulefiles.

Modules can be loaded and unloaded dynamically and atomically, in an clean fashion.

Modules are useful in managing different versions of applications. Modules can also be
bundled into meta-modules that will load an entire suite of different applications.

Ŵŷ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

We need now to compile and link the helloworld.c program.
• We need to set-up the environment that will contain a compiler and an

implementation of MPI.
To this end, we use environment module.

Environment Module
The Modules package is a tool that simplifies shell initialization and lets users easily
modify their environment during a session usingmodulefiles.

Modules can be loaded and unloaded dynamically and atomically, in an clean fashion.

Modules are useful in managing different versions of applications. Modules can also be
bundled into meta-modules that will load an entire suite of different applications.

Ŵŷ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

To discover what module we have available, we can run the command:
module avail
That will answer us:
--------------- /software/spack/share/spack/modules/linux-ubuntu22.04-zen3 ---------------
amdblis/4.2-aocc-4.2.0 hpctoolkit/2023.08.1-openmpi-5.0.2-gcc-11.4.0
amdfftw/4.2-openmpi-5.0.2-aocc-4.2.0 libflame/5.2.0-aocc-4.2.0
amdlibm/4.2-aocc-4.2.0 openmpi/5.0.2-cuda-11.8.0-aocc-4.2.0
amdscalapack/4.2-openmpi-5.0.2-aocc-4.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-11.4.0
amduprof/4.2.850-aocc-4.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0
aocc/4.2.0 petsc/3.20.4-openmpi-5.0.2-gcc-12.2.0
aocl-sparse/4.2-aocc-4.2.0 py-torch/2.2.1-openmpi-5.0.2-gcc-11.4.0
cuda/11.8.0-aocc-4.2.0 suite-sparse/7.3.1-cuda-12.3.0-gcc-11.4.0
cuda/12.3.0-gcc-11.4.0 suite-sparse/7.3.1-cuda-12.3.0-gcc-12.2.0
cuda/12.3.0-gcc-12.2.0 vtk/9.2.6-openmpi-5.0.2-gcc-12.2.0
gcc/12.2.0

From which we discover that we have different available compilers.

ŴŸ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

Let us load the gcc/12.2.0 compiler together with the
openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0 implementation of MPI:
module load gcc/12.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0
this will make us available the compiler to produce MPI executable:
mpicc helloworld.c -o helloworld

• mpicc is a wrapper for a C compiler provided by the implementation of MPI we are
using.

• the option -o sets the name of the compiled (executable) file.

ŴŹ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

Let us load the gcc/12.2.0 compiler together with the
openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0 implementation of MPI:
module load gcc/12.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0
this will make us available the compiler to produce MPI executable:
mpicc helloworld.c -o helloworld
Let us see what is happening behind the curtains

• you can first try to discover what compiler are you using by executing
mpicc --version, that will give you:
gcc (Spack GCC) 12.2.0
Copyright (C) 2022 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

• or discover what are the library inclusion and linking options by asking for
mpicc --showme:compile and mpicc --showme:link, respectively.

• In general, looking at the output of the man mpicc command is always a good idea.

ŴŹ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

Let us load the gcc/12.2.0 compiler together with the
openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0 implementation of MPI:
module load gcc/12.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0
this will make us available the compiler to produce MPI executable:
mpicc helloworld.c -o helloworld
Let us see what is happening behind the curtains

• you can first try to discover what compiler are you using by executing
mpicc --version,

• or discover what are the library inclusion and linking options by asking for
mpicc --showme:compile and mpicc --showme:link, respectively.

• In general, looking at the output of the man mpicc command is always a good idea.

ŴŹ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

Let us load the gcc/12.2.0 compiler together with the
openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0 implementation of MPI:
module load gcc/12.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0
this will make us available the compiler to produce MPI executable:
mpicc helloworld.c -o helloworld
Let us see what is happening behind the curtains

• you can first try to discover what compiler are you using by executing
mpicc --version,

• or discover what are the library inclusion and linking options by asking for
mpicc --showme:compile and mpicc --showme:link, respectively.

• In general, looking at the output of the man mpicc command is always a good idea.

ŴŹ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

A piece of advice: if your program is anything more realistic than a classroom exercise use
make, and save yourself from writing painfully long compiling commands, and dealing
with complex dependencies more than once.

“Make gets its knowledge of how to build your program from a file called the
makefile, which lists each of the non-source files and how to compute it from
other files.”

A simple Makefile for our first test would be
MPICC = mpicc #The wrapper for the compiler
CFLAGS += -g #Useful for debug symbols
all: helloworld
helloworld: helloworld.c
$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

clean:
rm -f helloworld

Ŵź/ŵź

https://www.gnu.org/software/make/

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

If you are running on your machine (possibly for doing some debug), you can run your
first parallel program by doing:
mpirun [-np X] [--hostfile <filename>] helloworld
or by using its synonym
mpiexec [-np X] [--hostfile <filename>] helloworld

• mpirun/mpiexec will run X copies of helloworld in your current run-time
environment, scheduling (by default) in a round-robin fashion by CPU slot.

• if running under a supported resource manager, Open MPI’s mpirun will usually
automatically use the corresponding resource manager process starter, as opposed
to, for example, rsh or ssh, which require the use of a hostfile, or will default to
running all X copies on the localhost

• as always, look at the manual, by doing man mpirun.

ŴŻ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

If you are running on your machine (possibly for doing some debug), you can run your
first parallel program by doing:
mpirun [-np X] [--hostfile <filename>] helloworld
or by using its synonym
mpiexec [-np X] [--hostfile <filename>] helloworld

• mpirun/mpiexec will run X copies of helloworld in your current run-time
environment, scheduling (by default) in a round-robin fashion by CPU slot.

• if running under a supported resource manager, Open MPI’s mpirun will usually
automatically use the corresponding resource manager process starter, as opposed
to, for example, rsh or ssh, which require the use of a hostfile, or will default to
running all X copies on the localhost

• as always, look at the manual, by doing man mpirun.

ŴŻ/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

If we now run
mpirun -np 6 helloworld
we get

Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!

Every process executes the line
printf("Hello, world!\n");
that it is a local routine!

local versus non-local procedure
A procedure is local if completion of the procedure depends only on
the local executing process.
A procedure is non-local if completion of the operation may require
the execution of some MPI procedure on another process. Such an
operationmay require communication occurring with another user
process.

Ŵż/ŵź

Hello (parallel) world! – Compile, Link and Run
ŵ An Introduction to MPI

If we now run
mpirun -np 6 helloworld
we get

Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!

Every process executes the line
printf("Hello, world!\n");
that it is a local routine!

local versus non-local procedure
A procedure is local if completion of the procedure depends only on
the local executing process.
A procedure is non-local if completion of the operation may require
the execution of some MPI procedure on another process. Such an
operationmay require communication occurring with another user
process.

Ŵż/ŵź

Add, commit and push our working code to git
ŵ An Introduction to MPI

Now that we have a working version of our first code, it’s time to checkpoint it on the git
repository.
Ŵ. We first run git status obtaining:

On branch main
Your branch is up to date with 'origin/main'.

Untracked files:
(use "git add <file>..." to include in what will be committed)

Makefile
helloworld
helloworld.c

nothing added to commit but untracked files present (use "git add" to track)

ŵų/ŵź

Add, commit and push our working code to git
ŵ An Introduction to MPI

Now that we have a working version of our first code, it’s time to checkpoint it on the git
repository.
Ŵ. We first run git status obtaining:

ŵ. We discover that we can add to the repository the files helloworld.c and
Makefile. We can do it with the command:
git add helloworld.c Makefile

Ŷ. Then we can commit it to the repository
git commit -m "My first MPI code"

ŷ. and push it to the repository:
git push

ŵų/ŵź

Add, commit and push our working code to git
ŵ An Introduction to MPI

Now that we have a working version of our first code, it’s time to checkpoint it on the git
repository.
Ŵ. We first run git status obtaining:

ŵ. We discover that we can add to the repository the files helloworld.c and
Makefile. We can do it with the command:
git add helloworld.c Makefile

Ŷ. Then we can commit it to the repository
git commit -m "My first MPI code"

ŷ. and push it to the repository:
git push

ŵų/ŵź

Add, commit and push our working code to git
ŵ An Introduction to MPI

Now that we have a working version of our first code, it’s time to checkpoint it on the git
repository.
Ŵ. We first run git status obtaining:

ŵ. We discover that we can add to the repository the files helloworld.c and
Makefile. We can do it with the command:
git add helloworld.c Makefile

Ŷ. Then we can commit it to the repository
git commit -m "My first MPI code"

ŷ. and push it to the repository:
git push

ŵų/ŵź

Add, commit and push our working code to git
ŵ An Introduction to MPI

After it, we will get:
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 12 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 684 bytes | 342.00 KiB/s, done.
Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
remote: . Processing 1 references
remote: Processed 1 references in total
To git.phc.dm.unipi.it:fdurastante/hpmcode.git
cd58934..c049fb3 main -> main

ŵŴ/ŵź

Add, commit and push our working code to git
ŵ An Introduction to MPI

If we go looking to the website we see that the files are now stored there:

ŵŴ/ŵź

Add, commit and push our working code to git
ŵ An Introduction to MPI

We can see what we have done with the repository with the command: git log.
commit c049fb3ec1865c367521e960259e7b47325ac02b (HEAD -> main, origin/main, origin/HEAD)
Author: Fabio Durastante <a037726@A3-dott7.polo2.sid.unipi.it>
Date: Sun Apr 14 22:19:58 2024 +0200

My first MPI code

commit cd58934e167e6a141a1a7ce228b3a014b4badb15
Author: Fabio Durastante <fabio.durastante@unipi.it>
Date: Sun Apr 14 19:34:17 2024 +0000

Initial commit

ŵŴ/ŵź

The MPI parallel environment
ŵ An Introduction to MPI

Let us modify our helloworld to investigate the MPI parallel environment. Specifically,
we want to answer, from within the program, to the questions:

Ŵ. How many
processes
are there?

ŵ. Who am I?

#include "mpi.h"
#include <stdio.h>
int main(int argc, char **argv){
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("Hello world! I'm process %d of %d\n",rank, size);
MPI_Finalize();
return 0;
}

ŵŵ/ŵź

The MPI parallel environment
ŵ An Introduction to MPI

#include "mpi.h"
#include <stdio.h>
int main(int argc, char **argv){
int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("Hello world! I'm process %d of %d\n",rank, size);
MPI_Finalize();
return 0;
}

• How many is answered by a call to MPI_Comm_size as an int value,
• Who am I? Is answered by a call to MPI_Comm_rank as an int value that is

conventionally called rank and is a number between 0 and size-1.
ŵŶ/ŵź

The MPI parallel environment
ŵ An Introduction to MPI

The last keyword we describe is the MPI_COMM_WORLD, this is the Communicator object.

Communicator
A Communicator object connects a group of processes in one MPI session. There can be
more than one communicator in an MPI session, each of them gives each contained
process an independent identifier and arranges its contained processes in an ordered
topology.

This provides
• a safe communication space, that guarantees that the code can communicate as

they need to, without conflicting with communication extraneous to the present
code, e.g., if other parallel libraries are in use,

• a unified object for conveniently denoting communication context, the group of
communicating processes and to house abstract process naming.

ŵŷ/ŵź

The MPI parallel environment
ŵ An Introduction to MPI

If we have saved our inquiring MPI program in the file hamlet.c, we can then modify our
Makefile by modifying/adding the lines
all: helloworld hamlet
hamlet: hamlet.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@
clean:
rm -f helloworld hamlet

Then, we compile everything by doing make hamlet (or, simply, make).

ŵŸ/ŵź

The MPI parallel environment
ŵ An Introduction to MPI

If we have saved our inquiring MPI program in the file hamlet.c, we can then modify our
Makefile by modifying/adding the lines
all: helloworld hamlet
hamlet: hamlet.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@
clean:
rm -f helloworld hamlet

Then, we compile everything by doing make hamlet (or, simply, make).
When we run the code with mpirun -np 6 hamlet we see

Hello world! I'm process 1 of 6
Hello world! I'm process 5 of 6
Hello world! I'm process 0 of 6
Hello world! I'm process 3 of 6
Hello world! I'm process 2 of 6
Hello world! I'm process 4 of 6

• Every processor answers the call,
• But it answers it as soon as he has done doing the

computation! There is no synchronization.

ŵŸ/ŵź

The MPI parallel environment
ŵ An Introduction to MPI

If we have saved our inquiring MPI program in the file hamlet.c, we can then modify our
Makefile by modifying/adding the lines
all: helloworld hamlet
hamlet: hamlet.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@
clean:
rm -f helloworld hamlet

Then, we compile everything by doing make hamlet (or, simply, make).
When we run the code with mpirun -np 6 hamlet we see

Hello world! I'm process 1 of 6
Hello world! I'm process 5 of 6
Hello world! I'm process 0 of 6
Hello world! I'm process 3 of 6
Hello world! I'm process 2 of 6
Hello world! I'm process 4 of 6

• Every processor answers the call,

• But it answers it as soon as he has done doing the
computation! There is no synchronization.

ŵŸ/ŵź

The MPI parallel environment
ŵ An Introduction to MPI

If we have saved our inquiring MPI program in the file hamlet.c, we can then modify our
Makefile by modifying/adding the lines
all: helloworld hamlet
hamlet: hamlet.c

$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@
clean:
rm -f helloworld hamlet

Then, we compile everything by doing make hamlet (or, simply, make).
When we run the code with mpirun -np 6 hamlet we see

Hello world! I'm process 1 of 6
Hello world! I'm process 5 of 6
Hello world! I'm process 0 of 6
Hello world! I'm process 3 of 6
Hello world! I'm process 2 of 6
Hello world! I'm process 4 of 6

• Every processor answers the call,
• But it answers it as soon as he has done doing the

computation! There is no synchronization.

ŵŸ/ŵź

Update the repository
ŵ An Introduction to MPI

Now that we have another piece fo working code, we can update our git repository:
• We can run git status to see what we have changed and added,

• Then we add the new file and the modified Makefile by doing:
git add hamlet.c Makefile

• Now can prepare our commit:
git commit -m "Test of MPI_Comm_rank/size functions"

• Finally we push it to the repository:
git push

ŵŹ/ŵź

Update the repository
ŵ An Introduction to MPI

Now that we have another piece fo working code, we can update our git repository:
• We can run git status to see what we have changed and added,
• Then we add the new file and the modified Makefile by doing:
git add hamlet.c Makefile

• Now can prepare our commit:
git commit -m "Test of MPI_Comm_rank/size functions"

• Finally we push it to the repository:
git push

ŵŹ/ŵź

Update the repository
ŵ An Introduction to MPI

Now that we have another piece fo working code, we can update our git repository:
• We can run git status to see what we have changed and added,
• Then we add the new file and the modified Makefile by doing:
git add hamlet.c Makefile

• Now can prepare our commit:
git commit -m "Test of MPI_Comm_rank/size functions"

• Finally we push it to the repository:
git push

ŵŹ/ŵź

Update the repository
ŵ An Introduction to MPI

Now that we have another piece fo working code, we can update our git repository:
• We can run git status to see what we have changed and added,
• Then we add the new file and the modified Makefile by doing:
git add hamlet.c Makefile

• Now can prepare our commit:
git commit -m "Test of MPI_Comm_rank/size functions"

• Finally we push it to the repository:
git push

ŵŹ/ŵź

A word of advice
ŵ An Introduction to MPI

When should you not write parallel code with MPI?
• The effort of writing optimized and scalable MPI codes is not negligible, therefore a

direct usage of it its usually best suited for developing libraries for scientific
computations.

• If there is a library containing a good (possibly open source) parallel implementation
of the algorithm and the data structure you need: LEARN IT AND USE IT!

When should you write parallel code with MPI?

• When you are learning about parallel computing with distributed memory!
• To really understand what the instructions manuals of such parallel libraries are

telling you,
• Sometimes it happens, you are using a library based on MPI and some function that

you truly need is not included.
• To develop new and better libraries for your scientific challenge!

ŵź/ŵź

A word of advice
ŵ An Introduction to MPI

When should you not write parallel code with MPI?
• The effort of writing optimized and scalable MPI codes is not negligible, therefore a

direct usage of it its usually best suited for developing libraries for scientific
computations.

• If there is a library containing a good (possibly open source) parallel implementation
of the algorithm and the data structure you need: LEARN IT AND USE IT!

When should you write parallel code with MPI?

• When you are learning about parallel computing with distributed memory!
• To really understand what the instructions manuals of such parallel libraries are

telling you,
• Sometimes it happens, you are using a library based on MPI and some function that

you truly need is not included.
• To develop new and better libraries for your scientific challenge!

ŵź/ŵź

A word of advice
ŵ An Introduction to MPI

When should you not write parallel code with MPI?
• The effort of writing optimized and scalable MPI codes is not negligible, therefore a

direct usage of it its usually best suited for developing libraries for scientific
computations.

• If there is a library containing a good (possibly open source) parallel implementation
of the algorithm and the data structure you need: LEARN IT AND USE IT!

When should you write parallel code with MPI?
• When you are learning about parallel computing with distributed memory!

• To really understand what the instructions manuals of such parallel libraries are
telling you,

• Sometimes it happens, you are using a library based on MPI and some function that
you truly need is not included.

• To develop new and better libraries for your scientific challenge!

ŵź/ŵź

A word of advice
ŵ An Introduction to MPI

When should you not write parallel code with MPI?
• The effort of writing optimized and scalable MPI codes is not negligible, therefore a

direct usage of it its usually best suited for developing libraries for scientific
computations.

• If there is a library containing a good (possibly open source) parallel implementation
of the algorithm and the data structure you need: LEARN IT AND USE IT!

When should you write parallel code with MPI?
• When you are learning about parallel computing with distributed memory!
• To really understand what the instructions manuals of such parallel libraries are

telling you,

• Sometimes it happens, you are using a library based on MPI and some function that
you truly need is not included.

• To develop new and better libraries for your scientific challenge!

ŵź/ŵź

A word of advice
ŵ An Introduction to MPI

When should you not write parallel code with MPI?
• The effort of writing optimized and scalable MPI codes is not negligible, therefore a

direct usage of it its usually best suited for developing libraries for scientific
computations.

• If there is a library containing a good (possibly open source) parallel implementation
of the algorithm and the data structure you need: LEARN IT AND USE IT!

When should you write parallel code with MPI?
• When you are learning about parallel computing with distributed memory!
• To really understand what the instructions manuals of such parallel libraries are

telling you,
• Sometimes it happens, you are using a library based on MPI and some function that

you truly need is not included.

• To develop new and better libraries for your scientific challenge!

ŵź/ŵź

A word of advice
ŵ An Introduction to MPI

When should you not write parallel code with MPI?
• The effort of writing optimized and scalable MPI codes is not negligible, therefore a

direct usage of it its usually best suited for developing libraries for scientific
computations.

• If there is a library containing a good (possibly open source) parallel implementation
of the algorithm and the data structure you need: LEARN IT AND USE IT!

When should you write parallel code with MPI?
• When you are learning about parallel computing with distributed memory!
• To really understand what the instructions manuals of such parallel libraries are

telling you,
• Sometimes it happens, you are using a library based on MPI and some function that

you truly need is not included.
• To develop new and better libraries for your scientific challenge!

ŵź/ŵź

	Distributed parallelism in practice
	An Introduction to MPI
	Preliminary work
	Our First MPI Program
	The MPI parallel environment
	When to travel the MPI route

