
High-Performance Mathematics
Programming in a distributed setting: MPI II
Progetto Speciale per la Didattica ŵųŵŶ/ŵŷ
Fabio Durastante (LŶ)

April ŵŷ, ŵųŵŷ

Ŵ/ŷų

mailto:fabio.durastante@unipi.it

Table of Contents
Ŵ Setup

▶ Setup

▶ Point-to-Point Communications
Deadlock
Nonblocking communications
Sendreceive
Things left out

▶ A first scientific computation

▶ References

ŵ/ŷų

Starting again
Ŵ Setup

To start programming and running our codes again, let’s start again by recovering the
environment.

first we need to connect/use an MPI available machine, fire up a terminal and write
ssh n.cognomeXX@a3-dottY.cs.dm.unipi.it
navigate to the local version of you repository and check that everything is
up-to-date:
cd Documents/my/repository/folder
git pull
use the environment modules to load the compiler and theMPI implementation:
module load gcc/12.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0

Ŷ/ŷų

Starting again
Ŵ Setup

To start programming and running our codes again, let’s start again by recovering the
environment.

first we need to connect/use an MPI available machine, fire up a terminal and write
ssh n.cognomeXX@a3-dottY.cs.dm.unipi.it

navigate to the local version of you repository and check that everything is
up-to-date:
cd Documents/my/repository/folder
git pull
use the environment modules to load the compiler and theMPI implementation:
module load gcc/12.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0

Ŷ/ŷų

Starting again
Ŵ Setup

To start programming and running our codes again, let’s start again by recovering the
environment.

first we need to connect/use an MPI available machine, fire up a terminal and write
ssh n.cognomeXX@a3-dottY.cs.dm.unipi.it
navigate to the local version of you repository and check that everything is
up-to-date:
cd Documents/my/repository/folder
git pull

use the environment modules to load the compiler and theMPI implementation:
module load gcc/12.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0

Ŷ/ŷų

Starting again
Ŵ Setup

To start programming and running our codes again, let’s start again by recovering the
environment.

first we need to connect/use an MPI available machine, fire up a terminal and write
ssh n.cognomeXX@a3-dottY.cs.dm.unipi.it
navigate to the local version of you repository and check that everything is
up-to-date:
cd Documents/my/repository/folder
git pull
use the environment modules to load the compiler and theMPI implementation:
module load gcc/12.2.0 openmpi/5.0.2-cuda-12.3.0-gcc-12.2.0

Ŷ/ŷų

Starting again
Ŵ Setup

We can check if everything works by compiling and executing one of the test
program from last time, e.g.,
mpicc hamlet.c - o hamlet
mpirun -np 6 ./hamlet

ŷ/ŷų

Starting again
Ŵ Setup

We can check if everything works by compiling and executing one of the test
program from last time, e.g.,
mpicc hamlet.c - o hamlet
mpirun -np 6 ./hamlet
If everything went well, we should read something similar to:
Hello world! I'm process 3 of 6
Hello world! I'm process 2 of 6
Hello world! I'm process 0 of 6
Hello world! I'm process 1 of 6
Hello world! I'm process 4 of 6
Hello world! I'm process 5 of 6

ŷ/ŷų

What did we see?
Ŵ Setup

MPI_Init(&argc,&argv); and MPI_Finalize(); to initialize the MPI execution
environment and terminate MPI execution environment,

MPI_Comm_rank(MPI_COMM_WORLD, &rank); to discover our rank, i.e., our
process number,
MPI_Comm_size(MPI_COMM_WORLD, &size); to discover the total number of
processes.
MPI_COMM_WORLD the default communicator.

Communicator
A Communicator object connects a group of processes in one MPI session. There can be
more than one communicator in an MPI session, each of them gives each contained
process an independent identifier and arranges its contained processes in an ordered
topology.

Ÿ/ŷų

What did we see?
Ŵ Setup

MPI_Init(&argc,&argv); and MPI_Finalize(); to initialize the MPI execution
environment and terminate MPI execution environment,
MPI_Comm_rank(MPI_COMM_WORLD, &rank); to discover our rank, i.e., our
process number,

MPI_Comm_size(MPI_COMM_WORLD, &size); to discover the total number of
processes.
MPI_COMM_WORLD the default communicator.

Communicator
A Communicator object connects a group of processes in one MPI session. There can be
more than one communicator in an MPI session, each of them gives each contained
process an independent identifier and arranges its contained processes in an ordered
topology.

Ÿ/ŷų

What did we see?
Ŵ Setup

MPI_Init(&argc,&argv); and MPI_Finalize(); to initialize the MPI execution
environment and terminate MPI execution environment,
MPI_Comm_rank(MPI_COMM_WORLD, &rank); to discover our rank, i.e., our
process number,
MPI_Comm_size(MPI_COMM_WORLD, &size); to discover the total number of
processes.

MPI_COMM_WORLD the default communicator.

Communicator
A Communicator object connects a group of processes in one MPI session. There can be
more than one communicator in an MPI session, each of them gives each contained
process an independent identifier and arranges its contained processes in an ordered
topology.

Ÿ/ŷų

What did we see?
Ŵ Setup

MPI_Init(&argc,&argv); and MPI_Finalize(); to initialize the MPI execution
environment and terminate MPI execution environment,
MPI_Comm_rank(MPI_COMM_WORLD, &rank); to discover our rank, i.e., our
process number,
MPI_Comm_size(MPI_COMM_WORLD, &size); to discover the total number of
processes.
MPI_COMM_WORLD the default communicator.

Communicator
A Communicator object connects a group of processes in one MPI session. There can be
more than one communicator in an MPI session, each of them gives each contained
process an independent identifier and arranges its contained processes in an ordered
topology.

Ÿ/ŷų

What did we see?
Ŵ Setup

MPI_Init(&argc,&argv); and MPI_Finalize(); to initialize the MPI execution
environment and terminate MPI execution environment,
MPI_Comm_rank(MPI_COMM_WORLD, &rank); to discover our rank, i.e., our
process number,
MPI_Comm_size(MPI_COMM_WORLD, &size); to discover the total number of
processes.
MPI_COMM_WORLD the default communicator.

Communicator
A Communicator object connects a group of processes in one MPI session. There can be
more than one communicator in an MPI session, each of them gives each contained
process an independent identifier and arranges its contained processes in an ordered
topology.

Ÿ/ŷų

Table of Contents
ŵ Point-to-Point Communications

▶ Setup

▶ Point-to-Point Communications
Deadlock
Nonblocking communications
Sendreceive
Things left out

▶ A first scientific computation

▶ References

Ź/ŷų

Sending and Receiving Messages
ŵ Point-to-Point Communications

We have seen that each process within a communicator is identified by its rank, how can
we exchange data between two processes?

P0 P1

A
B

send
receive

We need to posses several information to have a meaningful message
• Who is sending the data?
• To whom the data is sent?
• What type of data are we sending?
• How does the receiver can identify it?

ź/ŷų

The blocking send and receive
ŵ Point-to-Point Communications

int MPI_Send(void *message, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

void *message points to the message content itself, it can be a simple scalar or a group
of data,

int count specifies the number of data elements of which the message is composed,
MPI_Datatype datatype indicates the data type of the elements that make up the

message,
int dest the rank of the destination process,
int tag the user-defined tag field,

MPI_Comm comm the communicator in which the source and destination processes reside
and for which their respective ranks are defined.

Ż/ŷų

The blocking send and receive
ŵ Point-to-Point Communications

int MPI_Recv (void *message, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)
void *message points to the message content itself, it can be a simple scalar or a group

of data,
int count specifies the number of data elements of which the message is composed,
MPI_Datatype datatype indicates the data type of the elements that make up the

message,
int source the rank of the source process,

int tag the user-defined tag field,
MPI_Comm comm the communicator in which the source and destination processes

reside,
MPI_Status *status is a structure that contains three fields named MPI_SOURCE ,

MPI_TAG, and MPI_ERROR.

ż/ŷų

Basic MPI Data Types
ŵ Point-to-Point Communications

Of the previous slides inputs the only ones that is specific to MPI is the MPI_Datatype:

MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double

MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int

Ŵų/ŷų

Why “blocking” send and receive?
ŵ Point-to-Point Communications

For the MPI_Send to be locally blocking means that it does not return until the message
data and envelope have been safely stored away so that the sender is free to modify the
send buffer: it is a non local operation.
Note: The message might be copied directly into the matching receive buffer (as in the
first figure), or it might be copied into a temporary system buffer.

P0 P1

A
Buffer B

send
receive

ŴŴ/ŷų

Why “blocking” send and receive?
ŵ Point-to-Point Communications

For the MPI_Send to be locally blocking means that it does not return until the message
data and envelope have been safely stored away so that the sender is free to modify the
send buffer: it is a non local operation.

The MPI_Receive, on the other hand returns only after the receive buffer contains the
newly received message. A receive can’t complete before the matching send has
completed, but, of course, it can complete only after the matching send has started.

ŴŴ/ŷų

A simple send/receive example
ŵ Point-to-Point Communications

#include "mpi.h"
#include <string.h>
#include <stdio.h>
int main(int argc, char **argv){
char message[20]; int myrank; MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0){ /* code for process zero */
strcpy(message,"Hello, there");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);
}
else if (myrank == 1){ /* code for process one */
MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);
}
MPI_Finalize();
return 0; }
Ŵŵ/ŷų

A simple send/receive example
ŵ Point-to-Point Communications

We can compile our code by simply adding to our Makefile

easysendrecv: easysendrecv.c
$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

then, we type make, and we run our program with

mpirun -np 2 easysendrecv

getting as answer

received :Hello, there:

So, what have we done?

ŴŶ/ŷų

A simple send/receive example
ŵ Point-to-Point Communications

MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);
Process 0 sends the content of the char array message[20], whose size is
strlen(message)+1 size of char (MPI_CHAR) to processor 1 with tag 99 on the
communicator MPI_COMM_WORLD.

MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
on the other side process 1, receives into the buffer message[20] an array with size 20
size of MPI_CHAR, from process 0 with tag 99 on the same communicator
MPI_COMM_WORLD.

Ŵŷ/ŷų

A simple send/receive example : programmer smash!
ŵ Point-to-Point Communications

It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?

A: The process stays there hanging waiting for a message with a tag that will never come…

• What happens if we have a mismatch in the ranks of the sending and receiving processes?

A: The process stays there hanging trying to match messages that will never come…

• What happens if we use the wrong message size?

A: If the size of the arriving message is longer than the expected we get an error of
MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrong
sizes for which things still works

• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code is
erroneous, and the behavior is not deterministic.

ŴŸ/ŷų

A simple send/receive example : programmer smash!
ŵ Point-to-Point Communications

It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?

A: The process stays there hanging waiting for a message with a tag that will never come…

• What happens if we have a mismatch in the ranks of the sending and receiving processes?

A: The process stays there hanging trying to match messages that will never come…

• What happens if we use the wrong message size?

A: If the size of the arriving message is longer than the expected we get an error of
MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrong
sizes for which things still works

• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code is
erroneous, and the behavior is not deterministic.

ŴŸ/ŷų

A simple send/receive example : programmer smash!
ŵ Point-to-Point Communications

It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?

A: The process stays there hanging waiting for a message with a tag that will never come…

• What happens if we have a mismatch in the ranks of the sending and receiving processes?

A: The process stays there hanging trying to match messages that will never come…

• What happens if we use the wrong message size?

A: If the size of the arriving message is longer than the expected we get an error of
MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrong
sizes for which things still works

• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code is
erroneous, and the behavior is not deterministic.

ŴŸ/ŷų

A simple send/receive example : programmer smash!
ŵ Point-to-Point Communications

It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?

A: The process stays there hanging waiting for a message with a tag that will never come…

• What happens if we have a mismatch in the ranks of the sending and receiving processes?

A: The process stays there hanging trying to match messages that will never come…

• What happens if we use the wrong message size?

A: If the size of the arriving message is longer than the expected we get an error of
MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrong
sizes for which things still works

• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code is
erroneous, and the behavior is not deterministic.

ŴŸ/ŷų

A simple send/receive example : programmer smash!
ŵ Point-to-Point Communications

It is a good exercise to try and mess things up, so let us see some damaging suggestions:

• What happens if we have a mismatch in the tags?

A: The process stays there hanging waiting for a message with a tag that will never come…

• What happens if we have a mismatch in the ranks of the sending and receiving processes?

A: The process stays there hanging trying to match messages that will never come…

• What happens if we use the wrong message size?

A: If the size of the arriving message is longer than the expected we get an error of
MPI_ERR_TRUNCATE: message truncated, note that there are combinations of wrong
sizes for which things still works

• What happens if we have a mismatch in the type?

A: There are combinations of instances in which things seems to work, but the code is
erroneous, and the behavior is not deterministic.

ŴŸ/ŷų

Checkpointing to
ŵ Point-to-Point Communications

Exercise
It’s a good exercise at this point to try updating your git repository with the new file and
the updated Makefile.

Do you remember?
git status, git add, git commit - m "...", and then git push.

Exercise
A good idea as a home exercise is to try updating the README file as well.
Inside you can useMarkdown to format the text: www.markdownguide.org.

ŴŹ/ŷų

https://www.markdownguide.org/

Checkpointing to
ŵ Point-to-Point Communications

Exercise
It’s a good exercise at this point to try updating your git repository with the new file and
the updated Makefile.

Do you remember?
git status, git add, git commit - m "...", and then git push.

Exercise
A good idea as a home exercise is to try updating the README file as well.
Inside you can useMarkdown to format the text: www.markdownguide.org.

ŴŹ/ŷų

https://www.markdownguide.org/

Dealing with more than one send and receive
ŵ Point-to-Point Communications

We have two processes that exchange data: MPI_Comm_rank(comm, &myrank);
• Solution Ŵ:

if (myrank == 0){
MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);
MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);
}else if(myrank == 1){
MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);
MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);
}

Ŵź/ŷų

Dealing with more than one send and receive
ŵ Point-to-Point Communications

We have two processes that exchange data: MPI_Comm_rank(comm, &myrank);
• Solution Ŵ:

if (myrank == 0){
MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);
MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);
}else if(myrank == 1){
MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);
MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);
}

• Solution ŵ:
if (myrank == 0){
MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);
MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);
}else if(myrank == 1){
MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);
MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);
}
Ŵź/ŷų

Dealing with more than one send and receive
ŵ Point-to-Point Communications

We have two processes that exchange data: MPI_Comm_rank(comm, &myrank);
• Solution ŵ:

if (myrank == 0){
MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);
MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);
}else if(myrank == 1){
MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);
MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);
}

• Solution Ŷ:
if (myrank == 0){
MPI_Send(sendbuf, count, MPI_DOUBLE, 1, tag, comm);
MPI_Recv(recvbuf, count, MPI_DOUBLE, 1, tag, comm, status);
}else if(myrank == 1){
MPI_Recv(recvbuf, count, MPI_DOUBLE, 0, tag, comm, status);
MPI_Send(sendbuf, count, MPI_DOUBLE, 0, tag, comm);
}
Ŵź/ŷų

Dealing with more than one send and receive
ŵ Point-to-Point Communications

In the case of Solution Ŵ:
MPI_Comm_rank(comm, &myrank);
if (myrank == 0){
MPI_Send(...);
MPI_Recv(...);
}else if(myrank == 1){
MPI_Send(...);
MPI_Recv(...);
}

• The call MPI_Send is blocking, therefore the message sent by each
process has to be copied out before the send operation returns and
the receive operation starts.

• For the call to complete successfully, it is then necessary that at least
one of the two messages sent be buffered, otherwise …

• a deadlock situation occurs: both processes are blocked since there
is no buffer space available!ŴŻ/ŷų

Dealing with more than one send and receive
ŵ Point-to-Point Communications

Here what happens to
your program when you
encounter Deadlock

In the case of Solution Ŵ:
MPI_Comm_rank(comm, &myrank);
if (myrank == 0){
MPI_Send(...);
MPI_Recv(...);
}else if(myrank == 1){
MPI_Send(...);
MPI_Recv(...);
}

• The call MPI_Send is blocking, therefore the message sent by each
process has to be copied out before the send operation returns and
the receive operation starts.

• For the call to complete successfully, it is then necessary that at least
one of the two messages sent be buffered, otherwise …

• a deadlock situation occurs: both processes are blocked since there
is no buffer space available!ŴŻ/ŷų

Dealing with more than one send and receive
ŵ Point-to-Point Communications

In the case of Solution ŵ:
MPI_Comm_rank(comm, &myrank);
if (myrank == 0){
MPI_Recv(...);
MPI_Send(...);
}else if(myrank == 1){
MPI_Recv(...);
MPI_Send(...);
}

• The receive operation of process 0must complete before its send. It
can complete only if the matching send of processor 1 is executed.

• The receive operation of process 1must complete before its send. It
can complete only if the matching send of processor 0 is executed.

• This program will always deadlock.

ŴŻ/ŷų

Dealing with more than one send and receive
ŵ Point-to-Point Communications

Here what happens to
your program when you
encounter Deadlock

In the case of Solution ŵ:
MPI_Comm_rank(comm, &myrank);
if (myrank == 0){
MPI_Recv(...);
MPI_Send(...);
}else if(myrank == 1){
MPI_Recv(...);
MPI_Send(...);
}

• The receive operation of process 0must complete before its send. It
can complete only if the matching send of processor 1 is executed.

• The receive operation of process 1must complete before its send. It
can complete only if the matching send of processor 0 is executed.

• This program will always deadlock.

ŴŻ/ŷų

Dealing with more than one send and receive
ŵ Point-to-Point Communications

In the case of Solution Ŷ:
MPI_Comm_rank(comm, &myrank);
if (myrank == 0){
MPI_Send(...);
MPI_Recv(...);
}else if(myrank == 1){
MPI_Recv(...);
MPI_Send(...);
}

• This program will succeed even if no buffer space for data is
available.

ŴŻ/ŷų

Dealing with more than one send and receive
ŵ Point-to-Point Communications

This way you can beat
Deadlock!

In the case of Solution Ŷ:
MPI_Comm_rank(comm, &myrank);
if (myrank == 0){
MPI_Send(...);
MPI_Recv(...);
}else if(myrank == 1){
MPI_Recv(...);
MPI_Send(...);
}

• This program will succeed even if no buffer space for data is
available.

ŴŻ/ŷų

Nonblocking communications
ŵ Point-to-Point Communications

As we have seen the use of blocking communications ensures that
• the send and receive buffers used in the MPI_Send and MPI_Recv arguments are

safe to use or reuse after the function call,
• but it also means that unless there is a simultaneously matching send for each

receive, the code will deadlock.

Ŵż/ŷų

Nonblocking communications
ŵ Point-to-Point Communications

There exists a version of the point-to-point communication that returns immediately
from the function call before confirming that the send or the receive has completed,
these are the nonblocking send and receive functions.

• To verify that the data has been copied out of the send buffer a separate call is
needed,

• To verify that the data has been received into the receive buffer a separate call is
needed,

• The sender should not modify any part of the send buffer after a nonblocking send
operation is called, until the send completes.

• The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Ŵż/ŷų

Nonblocking communications
ŵ Point-to-Point Communications

There exists a version of the point-to-point communication that returns immediately
from the function call before confirming that the send or the receive has completed,
these are the nonblocking send and receive functions.

• To verify that the data has been copied out of the send buffer a separate call is
needed,

• To verify that the data has been received into the receive buffer a separate call is
needed,

• The sender should not modify any part of the send buffer after a nonblocking send
operation is called, until the send completes.

• The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Ŵż/ŷų

Nonblocking comms: MPI_Isend and MPI_Irecv
ŵ Point-to-Point Communications

The two nonblocking point-to-point communication call are then
int MPI_Isend(void *message, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *send_request);

int MPI_Irecv(void *message, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *recv_request);

• The MPI_Request variables substitute the MPI_Status and store information about
the status of the pending communication operation.

• The way of saying when this communications must be completed is by using the
int MPI_Wait(MPI_Request *request, MPI_Status *status)
when is called, the nonblocking request originating from MPI_Isend or MPI_Irecv
is provided as an argument.

ŵų/ŷų

Nonblocking communications: an example
ŵ Point-to-Point Communications

int main(int argc, char **argv) {
int a, b, size, rank, tag = 0;
MPI_Status status;
MPI_Request send_request, recv_request;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {
a = 314159;
MPI_Isend(&a, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &send_request);
MPI_Irecv (&b, 1, MPI_INT, 1, tag, MPI_COMM_WORLD, &recv_request);
MPI_Wait(&send_request, &status);
MPI_Wait(&recv_request, &status);
printf ("Process %d received value %d\n", rank, b);
}

Continue on the next slideŵŴ/ŷų

Nonblocking communications: an example
continued

Continued from previous slide

else {
a = 667;
MPI_Isend (&a, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &send_request);
MPI_Irecv (&b, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, &recv_request);
MPI_Wait(&send_request, &status);
MPI_Wait(&recv_request, &status);
printf ("Process %d received value %d\n", rank, b);
}
MPI_Finalize();
return 0;
}

ŵŵ/ŷų

A simple send/receive example
ŵ Point-to-Point Communications

We can compile our code by simply adding to our Makefile

nonblockingsendrecv: nonblockingsendrecv.c
$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

then, we type make, and we run our program with

mpirun -np 2 nonblockingsendrecv

getting as answer

Process 0 received value 667
Process 1 received value 314159

ŵŶ/ŷų

A simple send/receive example
ŵ Point-to-Point Communications

We can compile our code by simply adding to our Makefile

nonblockingsendrecv: nonblockingsendrecv.c
$(MPICC) $(CFLAGS) $(LDFLAGS) $? $(LDLIBS) -o $@

then, we type make, and we run our program with

mpirun -np 2 nonblockingsendrecv

getting as answer

Process 0 received value 667
Process 1 received value 314159

Another useful instruction for the case of nonblocking communication is represented by
int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);
A call to MPI_TEST returns flag = true if the operation identified by request is complete. In
such a case, the status object is set to contain information on the completed operation.

ŵŶ/ŷų

Send-Receive
ŵ Point-to-Point Communications

The send-receive operations combine in one call the sending of a message to one
destination and the receiving of another message, from another process.

• Source and destination are possibly the same,
• Send-receive operation is very useful for executing a shift operation across a chain of

processes,
• A message sent by a send-receive operation can be received by a regular receive

operation
int MPI_Sendrecv(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int source,
int recvtag, MPI_Comm comm, MPI_Status *status);

ŵŷ/ŷų

Send-Receive-Replace
ŵ Point-to-Point Communications

A slight variant of the MPI_Sendrecv operation is represented by the
MPI_Sendrecv_replace operation
int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)
as the name suggests, the same buffer is used both for the send and for the receive, so
that the message sent is replaced by the message received.

Clearly, if you confront its arguments with the one of the MPI_Sendrecv, the arguments
void *recvbuf, int recvcount are absent.

ŵŸ/ŷų

Things left out
ŵ Point-to-Point Communications

We are leaving out some variants of the point-to-point communication:
• Both for blocking and nonblocking communications we

have left out the synchronous and readymode,
• For nonblocking communications we have also the

buffered variants,
• Instead of waiting/testing for a single communication at

the time we could wait for the completion of some, or all
the operations in a list. There are specific routines for
achieving this.

You can read about this on the manual:
[Ŵ] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version ŷ.ų.

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, High Performance Computing
Center Stuttgart (HLRS).

ŵŹ/ŷų

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

Table of Contents
Ŷ A first scientific computation

▶ Setup

▶ Point-to-Point Communications
Deadlock
Nonblocking communications
Sendreceive
Things left out

▶ A first scientific computation

▶ References

ŵź/ŷų

The Ŵst derivative of a function with finite differences
Ŷ A first scientific computation

Given a function f(x) : [a, b] → R we want to approximate f′(x) on a (uniform) grid on the
[a, b] interval by using a finite difference scheme in parallel.

• Given an integer n ∈ N we can subdivide the interval [a, b] into intervals of length
∆x = (b−a)/n−1 with grid points {xj}nj=0 = {xj = a+ j∆x}n−1

j=0 :

x0 ≡ a
x1

x2
x3

xj = x0 + j∆x

xn−2

xn−1 ≡ b

,
• and consider the values {fj}n−1

j=0 = {f(xj)}n−1
j=0

• We can approximate the values of f′(xj), for j = 1, . . . , n− 2, by using only the values
of f at the knots {fj}n−1

j=0

ŵŻ/ŷų

The Ŵst derivative of a function with finite differences
Ŷ A first scientific computation

• The first derivative of f at x = xj can be expressed by using knots for j′ > j

f′(xj) ≜ lim
∆x→0

fj+1 − fj
∆x

≈
fj+1 − fj
∆x

≜ D+fj,
xj−1 xj xj+1

• or equivalently by using knots for j′ < j

f′(xj) ≜ lim
∆x→0

fj − fj−1

∆x
≈

fj − fj−1

∆x
≜ D−fj,

xj−1 xj xj+1

• at last we can consider the arithmetic mean of previous two:

f′(xj) ≈ D0fj ≜
1

2
(D−fj + D+fj) =

fj+1 − fj−1

2∆x
,

xj−1 xj xj+1

ŵż/ŷų

The Ŵst derivative of a function with finite differences
Ŷ A first scientific computation

• The first derivative of f at x = xj can be expressed by using knots for j′ > j

f′(xj) ≜ lim
∆x→0

fj+1 − fj
∆x

≈
fj+1 − fj
∆x

≜ D+fj,
xj−1 xj xj+1

• or equivalently by using knots for j′ < j

f′(xj) ≜ lim
∆x→0

fj − fj−1

∆x
≈

fj − fj−1

∆x
≜ D−fj,

xj−1 xj xj+1

• at last we can consider the arithmetic mean of previous two:

f′(xj) ≈ D0fj ≜
1

2
(D−fj + D+fj) =

fj+1 − fj−1

2∆x
,

xj−1 xj xj+1

ŵż/ŷų

The Ŵst derivative of a function with finite differences
Ŷ A first scientific computation

• The first derivative of f at x = xj can be expressed by using knots for j′ > j

f′(xj) ≜ lim
∆x→0

fj+1 − fj
∆x

≈
fj+1 − fj
∆x

≜ D+fj,
xj−1 xj xj+1

• or equivalently by using knots for j′ < j

f′(xj) ≜ lim
∆x→0

fj − fj−1

∆x
≈

fj − fj−1

∆x
≜ D−fj,

xj−1 xj xj+1

• at last we can consider the arithmetic mean of previous two:

f′(xj) ≈ D0fj ≜
1

2
(D−fj + D+fj) =

fj+1 − fj−1

2∆x
,

xj−1 xj xj+1

ŵż/ŷų

Writing the sequential algorithm
Ŷ A first scientific computation

The sequential algorithms needs to break the approximation process into three parts
Ŵ. evaluate the derivative f′(xi) for i = 1, . . . , n− 2,
ŵ. evaluate the derivative at the left–hand side f′(x0),
Ŷ. evaluate the derivative at the right–hand side f′(xn−1).

To have the same order of approximation at each point of the grid we need to use a
one–sided formula for the steps ŵ. and Ŷ., specifically

f′(x0) ≈
−3f0 + 4f1 − f2

2∆x
, f′(xn−1) ≈

3fn−1 − 4fn−2 + fn−3

2∆x

Ŷų/ŷų

Writing the sequential algorithm
Ŷ A first scientific computation

void firstderiv1D_vec(int n, double dx, double *f, double *fx){
double scale;
scale = 1.0/(2.0*dx);
for (int i = 1; i < n-1; i++){

fx[i] = (f[i+1] - f[i-1])*scale;
}
fx[0] = (-3.0*f[0] + 4.0*f[1] - f[2])*scale;
fx[n-1] = (3.0*f[n-1] - 4.0*f[n-2] + f[n-3])*scale;
return;

}
The function takes as input

• the number of grid points is n,

• the amplitude of such intervals∆x,

• the array containing the evaluation of f

(intent: input),

• the array that will contain the value of the
derivative (intent: output)

ŶŴ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

To implement the sequential differencing functions in parallel with MPI, we have to
perform several steps
Ŵ. partition our domain [a, b] among the processors,
ŵ. each processor computes the FD for all the points contained on that processor

Ŷŵ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

To implement the sequential differencing functions in parallel with MPI, we have to
perform several steps
Ŵ. partition our domain [a, b] among the processors,
ŵ. each processor computes the FD for all the points contained on that processor

To actually perform the second step, we observe that the end-points on each subdomain
needs information not contained on the processor, but that resides on a different one, we
need to communicate boundary data!

Red dots are halo data, the one we need to communicate, gray dots are owned data.

Ŷŵ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

The prototype of the function we want to write can be, in this case,
void firstderiv1Dp_vec(int n, double dx, double *f, double *fx,
int mynode, int totalnodes)
where

• int n is the number of points per process,
• double dx the amplitude of each interval,
• double *f, double *fx the local portions with the values of f(x) (input) and f′(x)

(output),
• int mynode the rank of the current process,
• int totalnodes the size of the communicator

We declare then the variables
double scale = 1.0/(2.0*dx);
double mpitemp;
MPI_Status status;ŶŶ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

Then we can treat the case in which we are at the beginning or at the end of the global
interval
if(mynode == 0){
fx[0] = (-3.0*f[0] + 4.0*f[1] - f[2])*scale;

}
if(mynode == (totalnodes-1)){
fx[n-1] = (3.0*f[n-1] - 4.0*f[n-2] + f[n-3])*scale;

}
this approximate the derivative at the first and last point of the global interval.

Ŷŷ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

Then we can treat the case in which we are at the beginning or at the end of the global
interval
if(mynode == 0){
fx[0] = (-3.0*f[0] + 4.0*f[1] - f[2])*scale;

}
if(mynode == (totalnodes-1)){
fx[n-1] = (3.0*f[n-1] - 4.0*f[n-2] + f[n-3])*scale;

}
this approximate the derivative at the first and last point of the global interval.
Then, we can compute the inner part (the gray points) of the local interval by doing:
for(int i=1;i<n-1;i++){
fx[i] = (f[i+1]-f[i-1])*scale;

}

Ŷŷ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

The other case we need to treat is again the particular case in which we are in the first, or
in the last interval. In both cases we have only one communication to perform
if(mynode == 0){
mpitemp = f[n-1];
MPI_Send();
MPI_Recv();
fx[n-1] = (mpitemp - f[n-2])*scale;

}
else if(mynode == (totalnodes-1)){
MPI_Recv();
fx[0] = (f[1]-mpitemp)*scale;
mpitemp = f[0];
MPI_Send();

}

ŶŸ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

The other case we need to treat is again the particular case in which we are in the first, or
in the last interval. In both cases we have only one communication to perform
if(mynode == 0){
mpitemp = f[n-1];
MPI_Send(&mpitemp,1,MPI_DOUBLE,1,1,MPI_COMM_WORLD);
MPI_Recv(&mpitemp,1,MPI_DOUBLE,1,1,MPI_COMM_WORLD,&status);
fx[n-1] = (mpitemp - f[n-2])*scale;

}
else if(mynode == (totalnodes-1)){
MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode-1,1,MPI_COMM_WORLD,
&status);
fx[0] = (f[1]-mpitemp)*scale;
mpitemp = f[0];
MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode-1,1,MPI_COMM_WORLD);

}
ŶŸ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

Finally, the only remaining case is the one in which we need to communicate both the
extremes of the interval
else{
MPI_Recv();
fx[0] = (f[1]-mpitemp)*scale;
mpitemp = f[0];
MPI_Send();
mpitemp = f[n-1];
MPI_Send();
MPI_Recv();
fx[n-1] = (mpitemp-f[n-2])*scale;

}

ŶŹ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

Finally, the only remaining case is the one in which we need to communicate both the
extremes of the interval
else{
MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode-1,1,MPI_COMM_WORLD,
&status);
fx[0] = (f[1]-mpitemp)*scale;
mpitemp = f[0];
MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode-1,1,MPI_COMM_WORLD);
mpitemp = f[n-1];
MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode+1,1,MPI_COMM_WORLD);
MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode+1,1,MPI_COMM_WORLD,
&status);
fx[n-1] = (mpitemp-f[n-2])*scale;

}
And the routine is complete!
ŶŹ/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

A simple (and not very useful) principal program for this routine can be written by first initializing the parallel
environment, and discovering who we are.
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mynode);
MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);
Then we build the local values of the f function
globala = 0; globalb = 1;
a = globala + ((double) mynode)*(globalb - globala)/((double) totalnodes);
b = globala + ((double) mynode+1)*(globalb - globala)/((double) totalnodes);
f = (double *) malloc(sizeof(double)*(n));
fx = (double *) malloc(sizeof(double)*(n));
dx = (b-a)/((double) n);
for(int i = 0; i < n; i++){ f[i] = fun(a+((double) i)*dx); }
Finally we invoke our parallel computation
firstderiv1Dp_vec(n, dx, f, fx, mynode, totalnodes);

Ŷź/ŷų

Writing the parallel algorithm
Ŷ A first scientific computation

To check if what we have done makes sens we evaluate the error in the ∥ · ∥2 norm on the
grid, i.e.,

√
∆x∥f′ − fx∥2 on every process

error = 0.0;
for(int i = 0; i < n; i++){
error += pow(fx[i]-funprime(a+((b-a)*((double) i))/((double) n)),2.0);

}
error = sqrt(dx*error);
printf("Node %d ||f' - fx||_2 = %e\n",mynode,error);
Then we clear the memory and close the parallel environment
free(f);
free(fx);
MPI_Finalize();

ŶŻ/ŷų

Table of Contents
ŷ References

▶ Setup

▶ Point-to-Point Communications
Deadlock
Nonblocking communications
Sendreceive
Things left out

▶ A first scientific computation

▶ References

Ŷż/ŷų

References
ŷ References

There are more books, notes, tutorials, online courses and oral tradition on scientific and
parallel computing than we would have time to read and listen in a life. Pretty much
everything that contains the words Parallel Programming and Scientific Computing is
good…
I suggest here the book

[Ŵ] Rouson, D., Xia, J., & Xu, X. (ŵųŴŴ). Scientific software design: the object-oriented
way. Cambridge University Press.

that discusses general aspect of scientific computing (not perfectly related to parallel
computing), and to have on your bedside

[Ŵ] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version ŷ.ų. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf,
High Performance Computing Center Stuttgart (HLRS).

ŷų/ŷų

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

	Setup
	Point-to-Point Communications
	Deadlock
	Nonblocking communications
	Sendreceive
	Things left out

	A first scientific computation
	References

