
High-Performance Mathematics
Parallel computing intro & auxiliary tools
Progetto Speciale per la Didattica ŵųŵŶ/ŵŷ
Fabio Durastante (LŴ)

April Ŵų, ŵųŵŷ

Ŵ/ŷź

mailto:fabio.durastante@unipi.it


Table of Contents
Ŵ Parallel computing: where?

▶ Parallel computing: where?
Flynn’s Taxonomy
SIMD
MIMD

▶ Parallel computing: where?

▶ The tools at our disposal

▶ Parallel computing: how?

▶ Auxiliary tools
ssh
VPN
GIT

ŵ/ŷź



Parallel computers: Flynn’s Taxonomy
Ŵ Parallel computing: where?

Let us start from the bottom: the machines.

• What is a parallel computer?
• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŷ/ŷź



Parallel computers: Flynn’s Taxonomy
Ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer?

• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŷ/ŷź



Parallel computers: Flynn’s Taxonomy
Ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer? well, it can be a certain number of different “things”

— Multi-core computing
— Symmetric multiprocessing
— Distributed computing
— Cluster computing
— Massively parallel computing
— Grid computing
— General-purpose computing on graphics processing units (GPGPU)
— Vector processors

• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŷ/ŷź



Parallel computers: Flynn’s Taxonomy
Ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer? well, it can be a certain number of different “things”

— Multi-core computing
— Symmetric multiprocessing
— Distributed computing
— Cluster computing
— Massively parallel computing
— Grid computing
— General-purpose computing on graphics processing units (GPGPU)
— Vector processors

• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŷ/ŷź



Parallel computers: Flynn’s Taxonomy
Ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer?
• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŷ/ŷź



Parallel computers: Flynn’s Taxonomy
Ŵ Parallel computing: where?

Let us start from the bottom: the machines.
• What is a parallel computer?
• Let us abstract from the machine by describing Flynn’s taxonomy

Single instruction
stream, single data

stream
SISD

Single instruction
stream, multiple data

streams
SIMD

Multiple instruction
streams, single data

stream
MISD

Multiple instruction
streams, multiple data

streams
MIMD

Ŷ/ŷź



Parallel Computers: the SIMD model
Ŵ Parallel computing: where?

A parallel programming model where a single instruction is executed simultaneously on
multiple data points.

• SIMD architectures exploit data-level
parallelism.

• They operate on multiple data elements
in parallel using a single instruction
stream.

• SIMD instructions perform the same
operation on multiple data elements at
the same time.

• Single instruction stream controls
multiple processing elements.

• Each processing element operates on a
different data element.

• SIMD operations are highly efficient for
certain types of computations.

Key Idea
Parallelism is achieved by how many different data a single operation can act on.

ŷ/ŷź



Parallel Computers: the SIMD model
Ŵ Parallel computing: where?

A parallel programming model where a single instruction is executed simultaneously on
multiple data points.

• SIMD architectures exploit data-level
parallelism.

• They operate on multiple data elements
in parallel using a single instruction
stream.

• SIMD instructions perform the same
operation on multiple data elements at
the same time.

• Single instruction stream controls
multiple processing elements.

• Each processing element operates on a
different data element.

• SIMD operations are highly efficient for
certain types of computations.

Key Idea
Parallelism is achieved by how many different data a single operation can act on.

ŷ/ŷź



Parallel Computers: the SIMD model
Ŵ Parallel computing: where?

A parallel programming model where a single instruction is executed simultaneously on
multiple data points.

• SIMD architectures exploit data-level
parallelism.

• They operate on multiple data elements
in parallel using a single instruction
stream.

• SIMD instructions perform the same
operation on multiple data elements at
the same time.

• Single instruction stream controls
multiple processing elements.

• Each processing element operates on a
different data element.

• SIMD operations are highly efficient for
certain types of computations.

Key Idea
Parallelism is achieved by how many different data a single operation can act on.

ŷ/ŷź



Parallel Computers: the SIMD model
Ŵ Parallel computing: where?

A parallel programming model where a single instruction is executed simultaneously on
multiple data points.

• SIMD architectures exploit data-level
parallelism.

• They operate on multiple data elements
in parallel using a single instruction
stream.

• SIMD instructions perform the same
operation on multiple data elements at
the same time.

• Single instruction stream controls
multiple processing elements.

• Each processing element operates on a
different data element.

• SIMD operations are highly efficient for
certain types of computations.

Key Idea
Parallelism is achieved by how many different data a single operation can act on.

ŷ/ŷź



Parallel Computers: the SIMD model
Ŵ Parallel computing: where?

A parallel programming model where a single instruction is executed simultaneously on
multiple data points.

• SIMD architectures exploit data-level
parallelism.

• They operate on multiple data elements
in parallel using a single instruction
stream.

• SIMD instructions perform the same
operation on multiple data elements at
the same time.

• Single instruction stream controls
multiple processing elements.

• Each processing element operates on a
different data element.

• SIMD operations are highly efficient for
certain types of computations.

Key Idea
Parallelism is achieved by how many different data a single operation can act on.

ŷ/ŷź



CPUs with many cores
Ŵ Parallel computing: where?

Modern CPUs are increasingly equipped with multiple cores, enabling parallel processing
of tasks.

Historically, CPUs contained a single core, capable of executing one instruction at a
time.

CPUs with multiple cores have become prevalent due to the need for increased
computational power and parallel processing capabilities.

Ÿ/ŷź



CPUs with many cores
Ŵ Parallel computing: where?

Modern CPUs are increasingly equipped with multiple cores, enabling parallel processing
of tasks.

Historically, CPUs contained a single core, capable of executing one instruction at a
time.
CPUs with multiple cores have become prevalent due to the need for increased
computational power and parallel processing capabilities.

Ÿ/ŷź



CPUs with many cores
Ŵ Parallel computing: where?

Modern CPUs are increasingly equipped with multiple cores, enabling parallel processing
of tasks.

Historically, CPUs contained a single core, capable of executing one instruction at a
time.
CPUs with multiple cores have become prevalent due to the need for increased
computational power and parallel processing capabilities.

• Samsung Galaxy SŴŶ Ultra: Ż-core (ŴxŶ.ŶżGHz Cortex-Xŷ
& ŶxŶ.ŴGHz Cortex-Aźŵų & ŵxŵ.żGHz Cortex-Aźŵų &
ŵxŵ.ŵGHz Cortex-AŸŵų),

• iPhone ųŷ Pro: Hexa-core, Ŷ.źŻ GHz,

Ÿ/ŷź



CPUs with many cores
Ŵ Parallel computing: where?

Modern CPUs are increasingly equipped with multiple cores, enabling parallel processing
of tasks.

Historically, CPUs contained a single core, capable of executing one instruction at a
time.
CPUs with multiple cores have become prevalent due to the need for increased
computational power and parallel processing capabilities.

• Samsung Galaxy SŴŶ Ultra: Ż-core,
• iPhone ųŷ Pro: Hexa-core, Ŷ.źŻ GHz,

Ÿ/ŷź



CPUs with many cores
Ŵ Parallel computing: where?

Modern CPUs are increasingly equipped with multiple cores, enabling parallel processing
of tasks.

Historically, CPUs contained a single core, capable of executing one instruction at a
time.
CPUs with multiple cores have become prevalent due to the need for increased
computational power and parallel processing capabilities.

CPUs containmultiple independent processing units on a single chip.
Each core can execute its own set of instructions independently of other cores.
Cores typically share resources such as cache andmemory access, but they can
execute different tasks simultaneously.

Ÿ/ŷź



General Purpose GPUs
Ŵ Parallel computing: where?

General Purpose GPU Computing (GPGPU) leverages the SIMD model for parallel
processing using Graphics Processing Units (GPUs).

• GPUs are designed with thousands of small,
efficient cores optimized for parallel
computation.

• Originally developed for graphics rendering,
GPUs are now used for general-purpose
computation due to their high parallelism.

• GPGPU extends the SIMD model beyond
traditional CPU architectures, enabling massively
parallel processing.

• Each GPU core processes a different portion of
the data, achieving parallelism.

The NVIDIA HŴųų GPU features Źŷų
Tensor Cores and ŴŵŻ RT Cores,
providing high-speed processing of
complex data sets. It also features Żų
Streaming Multiprocessors (SMs) and
ŴŻ,ŷŶŵ CUDA cores.

Ź/ŷź



General Purpose GPUs
Ŵ Parallel computing: where?

General Purpose GPU Computing (GPGPU) leverages the SIMD model for parallel
processing using Graphics Processing Units (GPUs).

• GPUs are designed with thousands of small,
efficient cores optimized for parallel
computation.

• Originally developed for graphics rendering,
GPUs are now used for general-purpose
computation due to their high parallelism.

• GPGPU extends the SIMD model beyond
traditional CPU architectures, enabling massively
parallel processing.

• Each GPU core processes a different portion of
the data, achieving parallelism.

The NVIDIA HŴųų GPU features Źŷų
Tensor Cores and ŴŵŻ RT Cores,
providing high-speed processing of
complex data sets. It also features Żų
Streaming Multiprocessors (SMs) and
ŴŻ,ŷŶŵ CUDA cores.

Ź/ŷź



GPU computational performance per dollar
Ŵ Parallel computing: where?

ź/ŷź



Application-Specific Integrated Circuit
Ŵ Parallel computing: where?

Introduction
A Tensor Processing Unit (TPU) is a custom-built ASIC (Application-Specific Integrated
Circuit) developed by Google specifically for accelerating machine learning workloads.

• TPUs are designed to handle the computational
demands of training and executing machine
learning models efficiently.

• TPUs excel at processing tensor operations,
hence the name “Tensor Processing Unit”.

• TPUs are designed to be energy-efficient, i.e.,
more computations per watt compared to
traditional CPUs or GPUs.

Ż/ŷź



Parallel Computers: the MIMD model
Ŵ Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

ż/ŷź



Parallel Computers: the MIMD model
Ŵ Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

• We can be more precise about the connection between processors, one can consider
a network (a collection of switches connected by communication channels) and
delve in a detailed way into its pattern of interconnection, i.e., into what is called the
network topology.

ż/ŷź



Parallel Computers: the MIMD model
Ŵ Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

• An alternative is to summarize the network properties in terms of two parameters:
latency and bandwidth

Latency the time it takes for a message to traverse the network;
Bandwidth the rate at which a processor can inject data into the network.

ż/ŷź



Parallel Computers: the MIMD model
Ŵ Parallel computing: where?

For our task of introducing parallel computations we need to fix a specific multiprocessor
model, i.e., a specific generalization of the sequential RAM model in which there is more
than one processor.

Since we want to stay in a SIMD/MIMD
model, we focus on a local memory machine
model, i.e., a set ofM processors each with
its own local memory that are attached to a
common communication network.

Communication Network

Processors

Memories

Key Idea
Parallelism is achieved by receiving data which I don’t have, and sending data which I have.

ż/ŷź



All Together Now
Ŵ Parallel computing: where?

“One, two, three, four
Can I have a little more?

Five, six, seven, eight, nine, ten”

Modern machine are now made of:
many distributed systems interconnected by a fast network,
every system has one ormore multi-core processors,
different type of accelerators (GPUs, ASICs, FPGAs. . .) on every computing node.

We need to look for algorithms and programming models to fully exploit all these
resources!

Ŵų/ŷź



All Together Now
Ŵ Parallel computing: where?

“One, two, three, four
Can I have a little more?

Five, six, seven, eight, nine, ten”

Modern machine are now made of:
many distributed systems interconnected by a fast network,
every system has one ormore multi-core processors,
different type of accelerators (GPUs, ASICs, FPGAs. . .) on every computing node.

We need to look for algorithms and programming models to fully exploit all these
resources!

Ŵų/ŷź



Table of Contents
ŵ Parallel computing: where?

▶ Parallel computing: where?
Flynn’s Taxonomy
SIMD
MIMD

▶ Parallel computing: where?

▶ The tools at our disposal

▶ Parallel computing: how?

▶ Auxiliary tools
ssh
VPN
GIT

ŴŴ/ŷź



Parallel computing: where? – https://www.top500.org/
ŵ Parallel computing: where?

“…we have decided in ŴżżŶ to assemble and
maintain a list of the Ÿųų most powerful
computer systems. Our list has been
compiled twice a year since June ŴżżŶ with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
In the present list (which we call the
TOPŸųų), we list computers ranked by their
performance on the LINPACK Benchmark.”
www.netlib.org/benchmark/hpl

The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that

Ŵŵ/ŷź

https://www.top500.org/
http://www.netlib.org/benchmark/hpl/


Parallel computing: where? – https://www.top500.org/
ŵ Parallel computing: where?

“…we have decided in ŴżżŶ to assemble and
maintain a list of the Ÿųų most powerful
computer systems. Our list has been
compiled twice a year since June ŴżżŶ with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
In the present list (which we call the
TOPŸųų), we list computers ranked by their
performance on the LINPACK Benchmark.”
www.netlib.org/benchmark/hpl

The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that

• ∥Ax−b∥
∥A∥∥x∥nε ≤ O(1), for εmachine
precision,

• It uses a specialized right–looking LU
factorization with look–ahead

Ŵŵ/ŷź

https://www.top500.org/
http://www.netlib.org/benchmark/hpl/


Parallel computing: where? – https://www.top500.org/
ŵ Parallel computing: where?

“…we have decided in ŴżżŶ to assemble and
maintain a list of the Ÿųų most powerful
computer systems. Our list has been
compiled twice a year since June ŴżżŶ with
the help of high-performance computer
experts, computational scientists,
manufacturers, and the Internet community
in general…
In the present list (which we call the
TOPŸųų), we list computers ranked by their
performance on the LINPACK Benchmark.”
www.netlib.org/benchmark/hpl

The LINPACK Benchmark.
Solution of a dense n× n system of linear
equations Ax = b, so that

• Measuring

— Rmax the performance in GFLOPS
for the largest problem run on a
machine,

— Nmax the size of the largest
problem run on a machine,

— N1/2 the size where half the Rmax
execution rate is achieved,

— Rpeak the theoretical peak
performance GFLOPS for the
machine.

Ŵŵ/ŷź

https://www.top500.org/
http://www.netlib.org/benchmark/hpl/


The TOPŸųų List
ŵ Parallel computing: where?

Rank System Cores Rmax (PFlop/s) Rpeak (PFlop/s) Power (kW)

Ŵ Frontier Ż,Źżż,żųŷ Ŵ,Ŵżŷ.ųų Ŵ,Źźż.Żŵ ŵŵ,źųŶ
ŵ Aurora ŷ,źŷŵ,ŻųŻ ŸŻŸ.Ŷŷ Ŵ,ųŸż.ŶŶ ŵŷ,ŹŻź
Ŷ Eagle Ŵ,ŴŵŶ,ŵųų ŸŹŴ.ŵų ŻŷŹ.Żŷ –
ŷ Supercomputer

Fugaku
ź,ŹŶų,ŻŷŻ ŷŷŵ.ųŴ ŸŶź.ŵŴ ŵż,Żżż

Ÿ LUMI ŵ,źŸŵ,źųŷ Ŷźż.źų ŸŶŴ.ŸŴ ź,Ŵųź
Ź Leonardo Ŵ,Żŵŷ,źŹŻ ŵŶŻ.źų ŵŸŸ.źŸ ź,ŷųŷ

OS Family System Share

Linux
Ŵųų%

Cores per Socket

8 10 12 14 16 18 20 22 24 26 28 32 36 38 40 48 64 68

5
10
15
20

Pe
rc
en
ta
ge

ŴŶ/ŷź



Table of Contents
Ŷ The tools at our disposal

▶ Parallel computing: where?
Flynn’s Taxonomy
SIMD
MIMD

▶ Parallel computing: where?

▶ The tools at our disposal

▶ Parallel computing: how?

▶ Auxiliary tools
ssh
VPN
GIT

Ŵŷ/ŷź



The machines we have in the department
Ŷ The tools at our disposal

The machines of Aula DMŶ and Aula DMŷ.

• AMD Ryzen Ÿ PRO ŸŹŸųG @ ŷ.ŷ GHz
with Radeon Graphics, Ŵ socket with Ź
cores per socket and ŵ threads per core,

• Ŷŵ GB RAM,
• Ŵ NVIDIA TŴųųų ŻGB GDDRŹ.

• AMD Ryzen Ÿ PRO ŸŹŸųG @ ŷ.ŷ GHz
with Radeon Graphics, Ŵ socket with Ź
cores per socket and ŵ threads per core,

• Ż GB RAM.

ŴŸ/ŷź



The machines we have in the department
Ŷ The tools at our disposal

Toeplitz Clustermade of Ÿ+ ŷ nodes:
• ŷ Nodes Intel® Xeon® CPU EŸ-ŵŹŸų
vŷ @ ŵ.ŵųGHz with ŵ threads per
core, Ŵŵ cores per socket and ŵ
socket with ŵŸŹ GB;

• Ŵ Node Intel® Xeon® CPU EŸ-ŵŹŷŶ
vŷ @ Ŷ.ŷųGHz with ŵ threads per
core, Ź cores per socket and ŵ
socket with ŴŵŻ GB.

ŴŹ/ŷź



The machines we have in the department
Ŷ The tools at our disposal

Toeplitz Clustermade of Ÿ+ ŷ nodes:
• ŷ Nodes Intel® Xeon® CPU EŸ-ŵŹŸų
vŷ @ ŵ.ŵųGHz with ŵ threads per
core, Ŵŵ cores per socket and ŵ
socket with ŵŸŹ GB;

• Ŵ Node Intel® Xeon® CPU EŸ-ŵŹŷŶ
vŷ @ Ŷ.ŷųGHz with ŵ threads per
core, Ź cores per socket and ŵ
socket with ŴŵŻ GB.

• ŷ Nodes AMD® with
— ŵ× EPYC® źźŹŶ Źŷ-Core

Processor with ŵ Threads per
core, Źŷ Cores per socket, ŵ
Sockets,

— ŵ TB RAM,
— ŷ NVIDIA GPU/Aŷų ŷŻ GB

GDDRŹ.

ŴŹ/ŷź



The machines we have in the department
Ŷ The tools at our disposal

Toeplitz Clustermade of Ÿ+ ŷ nodes:
• ŷ Nodes Intel® Xeon® CPU EŸ-ŵŹŸų
vŷ @ ŵ.ŵųGHz with ŵ threads per
core, Ŵŵ cores per socket and ŵ
socket with ŵŸŹ GB;

• Ŵ Node Intel® Xeon® CPU EŸ-ŵŹŷŶ
vŷ @ Ŷ.ŷųGHz with ŵ threads per
core, Ź cores per socket and ŵ
socket with ŴŵŻ GB.

ŴŹ/ŷź



The machines we have in the department
Ŷ The tools at our disposal

Toeplitz Clustermade of Ÿ+ ŷ nodes:
• ŷ Nodes AMD® with

— ŵ× EPYC® źźŹŶ Źŷ-Core
Processor with ŵ Threads per
core, Źŷ Cores per socket, ŵ
Sockets,

— ŵ TB RAM,
— ŷ NVIDIA GPU/Aŷų ŷŻ GB

GDDRŹ.

ŴŹ/ŷź



The machines we have in the department
Ŷ The tools at our disposal

Toeplitz Clustermade of Ÿ+ ŷ nodes:
• ŷ Nodes Intel® Xeon® CPU EŸ-ŵŹŸų
vŷ @ ŵ.ŵųGHz with ŵ threads per
core, Ŵŵ cores per socket and ŵ
socket with ŵŸŹ GB;

• Ŵ Node Intel® Xeon® CPU EŸ-ŵŹŷŶ
vŷ @ Ŷ.ŷųGHz with ŵ threads per
core, Ź cores per socket and ŵ
socket with ŴŵŻ GB.

• ŷ Nodes AMD® with
— ŵ× EPYC® źźŹŶ Źŷ-Core

Processor with ŵ Threads per
core, Źŷ Cores per socket, ŵ
Sockets,

— ŵ TB RAM,
— ŷ NVIDIA GPU/Aŷų ŷŻ GB

GDDRŹ.

The machine we built here last year and that we will improve this year!

ŴŹ/ŷź



The machines we have in the department
Ŷ The tools at our disposal

• Ŵ Access Node
• ŵų Nodes with

— Hexa-core Arm® big.LITTLETM dual Arm
Cortex® Aźŵ, quad Cortex-AŸŶ CPU

— ArmMaliTM TŻŹųMPŷ GPU
— RAM ŷ Gb LPDDRŷ a Źŷ bit

• Ź nodes are equipped with a Google
Edge TPU coprocessor ŷ TOPS (intŻ); ŵ
TOPS per watt.

We plan to add other ŴŸ Nodes.

Ŵź/ŷź



The machines we have in the department
Ŷ The tools at our disposal

• Ŵ Access Node
• ŵų Nodes with

— Hexa-core Arm® big.LITTLETM dual Arm
Cortex® Aźŵ, quad Cortex-AŸŶ CPU

— ArmMaliTM TŻŹųMPŷ GPU
— RAM ŷ Gb LPDDRŷ a Źŷ bit

• Ź nodes are equipped with a Google
Edge TPU coprocessor ŷ TOPS (intŻ); ŵ
TOPS per watt.

We plan to add other ŴŸ Nodes.

Ŵź/ŷź



Bēowulf
Ŷ The tools at our disposal

HWÆT: WE GAR-DENA IN GEARDAGUM
þeodcyninga þrym gefrunon.
Hu ða æþelingas ellen fremedon!
Oft Scyld Scefing sceaþena þreatum
monegum mægþum meodosetla ofteah,
egsode eorl, syððan ærest wearð
feasceaft funden. He þæs frofre gebad,
weox under wolcnum, weorðmyndum þah,
oð þæt him æghwylc þara ymbsittendra
ofer hronrade hyran scolde,
gomban gyldan. Þæt wæs god cyning.

ŴŻ/ŷź



Bēowulf
Ŷ The tools at our disposal

“Bēowulf is a multi-computer architecture which
can be used for parallel computations. It is a system
which usually consists of one server node, and one
or more client nodes connected via Ethernet or
some other network. It is a system built using
commodity hardware components, like any PC
capable of running a Unix-like operating system,
with standard Ethernet adapters, and switches.”

Radajewski, Radajewski; Eadline, Douglas
(ŵŵ November ŴżżŻ).

“Beowulf HOWTO”. ibiblio.org. vŴ.Ŵ.Ŵ.

ŴŻ/ŷź

http://bit.ly/3lh3UIv


Table of Contents
ŷ Parallel computing: how?

▶ Parallel computing: where?
Flynn’s Taxonomy
SIMD
MIMD

▶ Parallel computing: where?

▶ The tools at our disposal

▶ Parallel computing: how?

▶ Auxiliary tools
ssh
VPN
GIT

Ŵż/ŷź



Parallel Algorithms
ŷ Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.

Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi

|

xi+1 · · · xn]
+
y = [y1 y2 · · · yi

|

yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi

|

· · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn
• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations.

ŵų/ŷź



Parallel Algorithms
ŷ Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.
Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi

|

xi+1 · · · xn]
+
y = [y1 y2 · · · yi

|

yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi

|

· · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn

• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations.

ŵų/ŷź



Parallel Algorithms
ŷ Parallel computing: how?

In a fairly general way we can say that a parallel algorithm is an algorithm which can do
multiple operations in a given time.
Example: the sum of two vectors x, y ∈ Rn

x = [x1 x2 · · · xi | xi+1 · · · xn]
+
y = [y1 y2 · · · yi | yi+1 · · · yn]
=

x+ y = [x1 + y1 x2 + y2 · · · xi + yi | · · · xn + yn]

• If we do the operation sequentially we do O(n) operations in Tn
• If we split the operation among 2 processors, one summing up the entries between
1, . . . , i, and one summing up the entries between i+ 1, . . . , n we take Ti time for
the first part and Tn−i time for the second, therefore the overall time is
max(Ti,Tn−i) for doing always O(n) operations.ŵų/ŷź



Parallel Algorithms: speedup
ŷ Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

• We break a process into N distinct portions with the ith portion occupying the Pi fraction of
the overall completion time,

• order the portions in such a way that the Nth portion subsumes all the parts of the overall
processes with fixed costs.

• The speedup of the ith portion can then be defined as

Si ≜
toriginal
toptimized

, i = 1, . . . ,N− 1

where the numerator and denominator are the original and optimized completion time.

ŵŴ/ŷź



Parallel Algorithms: speedup
ŷ Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

• We break a process into N distinct portions with the ith portion occupying the Pi fraction of
the overall completion time,

• order the portions in such a way that the Nth portion subsumes all the parts of the overall
processes with fixed costs.

• The speedup of the ith portion can then be defined as

Si ≜
toriginal
toptimized

, i = 1, . . . ,N− 1

where the numerator and denominator are the original and optimized completion time.

ŵŴ/ŷź



Parallel Algorithms: speedup
ŷ Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

• We break a process into N distinct portions with the ith portion occupying the Pi fraction of
the overall completion time,

• order the portions in such a way that the Nth portion subsumes all the parts of the overall
processes with fixed costs.

• The speedup of the ith portion can then be defined as

Si ≜
toriginal
toptimized

, i = 1, . . . ,N− 1

where the numerator and denominator are the original and optimized completion time.

ŵŴ/ŷź



Parallel Algorithms: speedup
ŷ Parallel computing: how?

Let us think again abstractly and quantify the overall speed gain for a given gain in a subset of a
process.

Amdahl’s Law
Then the overall speedup for P = (P1, . . . , PN), S = (S1, . . . , SN−1) is:

S(P, S) =

(
PN +

N−1∑
i=1

Pi
Si

)−1

.

ŵŴ/ŷź



Parallel Algorithms: Amdahl’s Law
ŷ Parallel computing: how?

Let us make some observations on Amdahl’s Law
• We are not assuming about whether the original completion time involves some
optimization,

• We are not making any assumption on what our optimization process is,
• We are not even saying that the process in question involves a computer!

Amdahl’s Law is a fairly general way of looking at how processes can be speed up by
dividing them into sub-tasks with lower execution time.

Moreover, it fixes the theoretical maximum speedup in various scenarios.
• If we allow all components Si to grow unbounded then the upper bound on all
scenario si Smax = 1/PN.

Let us decline it in the context of the potential utility of parallel hardware.

ŵŵ/ŷź



Parallel Algorithms: Amdahl’s Law
ŷ Parallel computing: how?

Let us make some observations on Amdahl’s Law
• We are not assuming about whether the original completion time involves some
optimization,

• We are not making any assumption on what our optimization process is,
• We are not even saying that the process in question involves a computer!

Amdahl’s Law is a fairly general way of looking at how processes can be speed up by
dividing them into sub-tasks with lower execution time.
Moreover, it fixes the theoretical maximum speedup in various scenarios.
• If we allow all components Si to grow unbounded then the upper bound on all
scenario si Smax = 1/PN.

Let us decline it in the context of the potential utility of parallel hardware.

ŵŵ/ŷź



Parallel Algorithms: Amdahl’s Law for parallel hardware
ŷ Parallel computing: how?

Consider now having a parallel machine that permits us dividing the execution of code
acrossM hardware units, then the problem independent maximum speedup that such
hardware can provide isM.

Parallel Efficiency
We define the parallel efficiency E as

E ≜ Soverall
M

,

where E = 100% correspond to the maximal use of the available hardware. When
Smax < M, it is then impossible to take full advantage of all available execution units.

Goal: we require very large Smax and correspondingly tiny PN.

Every dusty corner of a code must scale, any portion that doesn’t becomes the
rate-limiting step!

ŵŶ/ŷź



Parallel Algorithms: Amdahl’s Law for parallel hardware
ŷ Parallel computing: how?

Consider now having a parallel machine that permits us dividing the execution of code
acrossM hardware units, then the problem independent maximum speedup that such
hardware can provide isM.

Parallel Efficiency
We define the parallel efficiency E as

E ≜ Soverall
M

,

where E = 100% correspond to the maximal use of the available hardware. When
Smax < M, it is then impossible to take full advantage of all available execution units.

Goal: we require very large Smax and correspondingly tiny PN.

Every dusty corner of a code must scale, any portion that doesn’t becomes the
rate-limiting step!

ŵŶ/ŷź



Parallel Algorithms: Amdahl’s Law for parallel hardware
ŷ Parallel computing: how?

Consider now having a parallel machine that permits us dividing the execution of code
acrossM hardware units, then the problem independent maximum speedup that such
hardware can provide isM.

Parallel Efficiency
We define the parallel efficiency E as

E ≜ Soverall
M

,

where E = 100% correspond to the maximal use of the available hardware. When
Smax < M, it is then impossible to take full advantage of all available execution units.

Goal: we require very large Smax and correspondingly tiny PN.

Every dusty corner of a code must scale, any portion that doesn’t becomes the
rate-limiting step!ŵŶ/ŷź



Parallel Algorithms: Amdahl’s Law limitations
ŷ Parallel computing: how?

What we are neglecting and what we are tacitly assuming
• We are neglecting overhead costs, i.e., the cost associated with parallel execution
such as
— initializing (spawning) and joining of different computation threads,
— communication between processes, data movement and memory allocation.

• We considered also the ideal case in which Si → +∞∀i, observe that with finite
speedup on portions 1 through N− 1, the Soverall might continue to improve with
increasing number of execution units.

• We are assuming that the size of the problem remains fixed while the number of
execution units increases, this is called the case of strong scalability. In some
contexts, we need to turn instead to weak scalability in which the problem size grows
proportionally to the number of execution units.

ŵŷ/ŷź



Gustafson’s law
ŷ Parallel computing: how?

In the weak scalability case the right framework is to use Gustafson’s law

Gustafson’s law

S = s+ p× N = s+ (1− s)× N = N+ (1− N)× s

where
• S is the theoretical speedup of the program with parallelism (scaled speedup),
• N is the number of computing units,
• s and p are the fractions of time spent executing the serial parts and the parallel
parts of the program on the parallel system, i.e., s+ p = 1.

“Solving a larger problem in the same amount of time should be possible by usingmore
computing units”

ŵŸ/ŷź



Gustafson’s law
ŷ Parallel computing: how?

In the weak scalability case the right framework is to use Gustafson’s law

Gustafson’s law

S = s+ p× N = s+ (1− s)× N = N+ (1− N)× s

where
• S is the theoretical speedup of the program with parallelism (scaled speedup),
• N is the number of computing units,
• s and p are the fractions of time spent executing the serial parts and the parallel
parts of the program on the parallel system, i.e., s+ p = 1.

“Solving a larger problem in the same amount of time should be possible by usingmore
computing units”

ŵŸ/ŷź



Table of Contents
Ÿ Auxiliary tools

▶ Parallel computing: where?
Flynn’s Taxonomy
SIMD
MIMD

▶ Parallel computing: where?

▶ The tools at our disposal

▶ Parallel computing: how?

▶ Auxiliary tools
ssh
VPN
GIT

ŵŹ/ŷź



Connecting to a Remote Machine using SSH
Ÿ Auxiliary tools

Secure Shell
SSH (Secure Shell) is a cryptographic network protocol that allows secure communication
over an unsecured network. It is commonly used for remote login to execute commands
on a remote machine securely.

• SSH provides a secure encrypted connection between a client and a server.
• It ensures that data transmitted between the client and server is encrypted,
preventing eavesdropping and unauthorized access.

• SSH is widely used in managing remote servers, transferring files securely, and
executing remote commands.

ŵź/ŷź



SSH Connection Process
Ÿ Auxiliary tools

Connection Process
To establish an SSH connection to a remote machine, follow these steps:
Ŵ. Open Terminal: Launch your terminal application.
ŵ. SSH Command: Use the SSH command with the following syntax:

ssh username@hostname
Ŷ. Authentication: Enter your password when prompted. Some setups may require SSH
keys for authentication.

ŷ. Connected: Once authenticated, you are connected to the remote machine’s shell.

ŵŻ/ŷź



Example: Connecting to a Remote Machine
Ÿ Auxiliary tools

SSH Command Syntax
ssh username@hostname

Example Command
ssh <login-ateneo>@login.cs.dm.unipi.it

Note
Replace username with your username on the remote machine and hostname with the
hostname or IP address of the remote machine.

ŵż/ŷź



SSH Key Authentication
Ÿ Auxiliary tools

SSH Keys
SSH keys provide a more secure method of authentication compared to passwords.
• A key pair is generated: public and private keys.
• The public key is stored on the remote server, while the private key remains on your
local machine.

• Authentication is based on possession of the private key.
• SSH keys are often used for automated processes and server-to-server
communication.

Ŷų/ŷź



OpenSSH in Windows
Ÿ Auxiliary tools

The latest builds of Windows Ŵų and Windows ŴŴ include a built-in SSH server and client
that are based on OpenSSH.
• OpenSSH is a connectivity tool for remote sign-in that uses the SSH protocol.
• It encrypts all traffic between client and server to eliminate eavesdropping,
connection hijacking, and other attacks.

Location of OpenSSH Client
By default, the OpenSSH client is located in the directory:
C:\Windows\System32\OpenSSH.

Checking Installation
You can also check that it is installed inWindows Settings > Apps > Optional features,
then search for ”OpenSSH” in your installed features.

ŶŴ/ŷź



Connecting to a Server via SSH in Terminal (Mac)
Ÿ Auxiliary tools

Step Ŵ: Open Terminal
In Finder, open the Applications folder and double click on the Utilities folder.

Step ŵ: Enter the SSH Command
The basic syntax of connecting to SSH is as follows:
ssh user@IP-Address
Replace user and IP-Address with the username and IP address/name of the remote
server. Hit return to execute the command.

Ŷŵ/ŷź



Generating SSH Key
Ÿ Auxiliary tools

You can generate your key either on your personal machine or on the machine
login.cs.dm.unipi.it so as to have it preserved.

Step Ŵ: Open Terminal
Open your terminal application.

Step ŵ: Run the Command
ssh-keygen -t ed25519 -C "your_email@example.com"

Note
Replace your_email@example.com with your UNIPI email address.

ŶŶ/ŷź



Generating SSH Key (Contd.)
Ÿ Auxiliary tools

Step Ŷ: Accept Default Location
When prompted to ”Enter a file in which to save the key”, press Enter to accept the
default file location. If you want to create a custom-named SSH key, type the desired file
location and replace id_ALGORITHM with your custom key name.
Enter a file in which to save the key (/home/YOU/.ssh/id_ALGORITHM):

[Press enter]↪→

Step ŷ: Type Passphrase
At the prompt, type a secure passphrase.
Enter passphrase (empty for no passphrase): [Type a passphrase]
Enter same passphrase again: [Type passphrase again]

Ŷŷ/ŷź



Adding SSH Private Key to ssh-agent
Ÿ Auxiliary tools

Step Ÿ: Start ssh-agent (only on Linux)
Start the ssh-agent in the background.
eval `ssh-agent`

Step Ź: Add SSH Private Key
Add your SSH private key to the ssh-agent.
ssh-add ~/.ssh/id_ed25519

Note
If you created your key with a different name, or if you are adding an existing key with a
different name, replace id_ed25519 in the command with the name (and place) of your
private key file.

ŶŸ/ŷź



Virtual Private Network (VPN)
Ÿ Auxiliary tools

VPN
A Virtual Private Network (VPN) extends a private network across a public network,
enabling users to securely transmit data as if their devices were directly connected to the
private network.

• VPNs provide privacy, security, and anonymity by encrypting data and masking IP
addresses.

• They are commonly used for remote access to corporate networks, bypassing
geographical restrictions, and enhancing online privacy.

The University of Pisa uses it to allow access to its sensitive resources from machines
external to the university network.

ŶŹ/ŷź



Virtual Private Network (VPN)
Ÿ Auxiliary tools

VPN
A Virtual Private Network (VPN) extends a private network across a public network,
enabling users to securely transmit data as if their devices were directly connected to the
private network.

• VPNs provide privacy, security, and anonymity by encrypting data and masking IP
addresses.

• They are commonly used for remote access to corporate networks, bypassing
geographical restrictions, and enhancing online privacy.

The University of Pisa uses it to allow access to its sensitive resources from machines
external to the university network.

ŶŹ/ŷź



How VPNWorks
Ÿ Auxiliary tools

Connection Process
To establish a VPN connection, follow these steps:
Ŵ. VPN Client: Install and configure a VPN client software on your device.
ŵ. Authentication: Enter your credentials (username and password) or use other
authentication methods.

Ŷ. VPN Server: Connect to a VPN server hosted by a VPN service provider.
ŷ. Tunneling: Establish a secure encrypted connection between your device and the
VPN server.

Ÿ. Data Transmission: Transmit data through the encrypted tunnel, ensuring privacy
and security.

Ŷź/ŷź



Types of VPN
Ÿ Auxiliary tools

Ŵ. Remote Access VPN
• Allows individual users to securely connect to a private network remotely.
• Commonly used by employees to access corporate networks from outside the office.

ŵ. Site-to-Site VPN
• Connects multiple networks together, such as branch offices to a central corporate
network.

• Provides secure communication between different geographical locations.

ŶŻ/ŷź



Advantages of VPN
Ÿ Auxiliary tools

Ŵ. Security
• Encrypts data transmitted over public networks, preventing unauthorized access.
• Protects against cyber threats and surveillance.

ŵ. Privacy
• Masks IP addresses, preserving anonymity and preventing tracking.
• Secures online activities from ISPs and government surveillance.

Ŷ. Access Control
• Grants access to restricted resources based on user credentials and policies.
• Enables bypassing of geo-blocked content.

Ŷż/ŷź



Introduction to VPN at the University
Ÿ Auxiliary tools

Protection Against Cyber Attacks
To counter the expansion of cyber attacks on
University resources, increasingly stringent
filters have been introduced to protect
digital resources hosted within the
University network.

Which profile to choose
To obtain an IP address internal to UNIPI you
must choose “Internet through UNIPI”
(Internet attraverso UNIPI).

VPN Service
The University VPN service offers different
profiles for accessing different digital
resources:
• Access to UNIPI resources (Accesso
risorse UNIPI)

• Internet through UNIPI (Internet
attraverso UNIPI)

• Bibliographic resources (to be
discontinued)

• External Staff

ŷų/ŷź



Introduction to VPN at the University
Ÿ Auxiliary tools

Protection Against Cyber Attacks
To counter the expansion of cyber attacks on
University resources, increasingly stringent
filters have been introduced to protect
digital resources hosted within the
University network.

Which profile to choose
To obtain an IP address internal to UNIPI you
must choose “Internet through UNIPI”
(Internet attraverso UNIPI).

VPN Service
The University VPN service offers different
profiles for accessing different digital
resources:
• Access to UNIPI resources (Accesso
risorse UNIPI)

• Internet through UNIPI (Internet
attraverso UNIPI)

• Bibliographic resources (to be
discontinued)

• External Staff

ŷų/ŷź



Installing the VPN Program
Ÿ Auxiliary tools

For PC/Mac
The technology used is Connect Tunnel by SonicWALL. You need to download the
program from here (choose the version for your platform).

For Smartphone/Tablet
Android: Download the SonicWALL Mobile Connect app from the PlayStore.
iOS: Download the SonicWALL Mobile Connect app from the Apple Store.

To get versions from your
phone you can use QR codes.

ŷŴ/ŷź

https://www.sonicwall.com/products/remote-access/vpn-clients/
https://play.google.com/store/apps/details?id=com.sonicwall.mobileconnect&hl=en_US&gl=US
https://apps.apple.com/it/app/sonicwall-mobile-connect/id466931806


Configuring a VPN Connection
Ÿ Auxiliary tools

Server Information
The VPN connection server is called access.unipi.it.

Figure: Adding a New Configuration Figure: Naming and Addressing the Serverŷŵ/ŷź



Configuring a VPN Connection (Contd.)
Ÿ Auxiliary tools

Connection Procedure
• Save the configuration.
• Select it and press Connect.
• The system will present the service
terms and, upon first access, ask to
select the connection profile.

• To change the profile selection, modify
the configuration and use the ”forget
login group” function represented in
the Windows application by the eraser
icon.

Figure: Forget Login Group Function

ŷŶ/ŷź



Software Version Control: GIT
Ÿ Auxiliary tools

In software engineering, version control is a class of
systems responsible for managing changes to
computer programs, documents, large web sites, or
other collections of information. Version control is a
component of software configuration management.

• We are going to use GIT: https://git-scm.com/,
• Specifically, the Gitea instance run by the PHC: https://git.phc.dm.unipi.it/.

ŷŷ/ŷź

https://git-scm.com/
https://git.phc.dm.unipi.it/


Getting an up-and-running GIT account
Ÿ Auxiliary tools

From the settings menu you have access to
the configurations of the Git service.

• SSH key entry

—
— Which inserts similarly

— Concluding with:

ŷŸ/ŷź



Getting an up-and-running GIT account
Ÿ Auxiliary tools

From the settings menu you have access to
the configurations of the Git service. • SSH key entry:

—
— Which inserts similarly

— Concluding with:

ŷŸ/ŷź



Getting an up-and-running GIT account
Ÿ Auxiliary tools

From the settings menu you have access to
the configurations of the Git service.

• SSH key entry

—

— Which inserts similarly

— Concluding with:

ŷŸ/ŷź



Getting an up-and-running GIT account
Ÿ Auxiliary tools

From the settings menu you have access to
the configurations of the Git service. • SSH key entry

—
— Which inserts similarly:

— Concluding with:

ŷŸ/ŷź



Getting an up-and-running GIT account
Ÿ Auxiliary tools

From the settings menu you have access to
the configurations of the Git service. • SSH key entry

—
— Which inserts similarly:

— Concluding with:

ŷŸ/ŷź



A repository
Ÿ Auxiliary tools

• You can create a new
repository easily.

• And then:

ŷŹ/ŷź



A repository
Ÿ Auxiliary tools

• You can create a new
repository easily.

• And then:

ŷŹ/ŷź



A repository
Ÿ Auxiliary tools

• You can create a new
repository easily.

• And then:

ŷŹ/ŷź



A repository
Ÿ Auxiliary tools

• You can create a new
repository easily.

• And then:

ŷŹ/ŷź



A repository
Ÿ Auxiliary tools

• You can create a new
repository easily.

• And then:
git clone git@git.phc.dm.unipi.it:HighPerformanceMathematics/HPM-Lezioni2024.git
cd HPM-Lezioni2024

The folder will contain these slides, and – in the future – the other material we will use.

ŷŹ/ŷź



GIT Workflow
Ÿ Auxiliary tools

We will use GIT to exchange files and working on writing code.

The repository is where
files’ current and historical
data are stored, often on a

server.

checkout To check out is to create a local working copy
from the repository,

pull, push Copy revisions from one repository into another.
Pull is initiated by the receiving repository, while
push is initiated by the source.

commit To commit is to write ormerge the changes
made in the working copy back to the
repository. A commit containsmetadata,
typically the author information and a commit
message that describes the change.

merge is an operation in which two sets of changes are
applied to a file or set of files.

ŷź/ŷź


	Parallel computing: where?
	Flynn's Taxonomy
	SIMD
	MIMD

	Parallel computing: where?
	The tools at our disposal
	Parallel computing: how?
	Auxiliary tools
	ssh
	VPN
	GIT


