|
|
|
@ -38,11 +38,11 @@ end
|
|
|
|
|
function solve(F, (G, roots)=start_system(F))
|
|
|
|
|
H = homotopy(F, G)
|
|
|
|
|
|
|
|
|
|
sols = SharedArray{Complex{Float64}}(length(roots))
|
|
|
|
|
sols = SharedArray{ComplexF64,2}(length(roots), length(F))
|
|
|
|
|
steps = SharedArray{Int64}(length(roots))
|
|
|
|
|
@sync @distributed for (i, r) in enumerate(roots)
|
|
|
|
|
(solutions, step_array) = compute_root(H, r)
|
|
|
|
|
sols[i] = solutions
|
|
|
|
|
@sync @distributed for i in eachindex(roots)
|
|
|
|
|
(solutions, step_array) = compute_root(H, roots[i])
|
|
|
|
|
sols[i, :] = solutions
|
|
|
|
|
steps[i] = step_array
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
@ -57,13 +57,15 @@ end
|
|
|
|
|
# T = [x*y - 1, x^2 + y^2 - 2]
|
|
|
|
|
dimension = 2
|
|
|
|
|
R = random_system(2, 2)
|
|
|
|
|
println(R)
|
|
|
|
|
println("System: ", R)
|
|
|
|
|
|
|
|
|
|
# (sC, stepsC) = solve(C)
|
|
|
|
|
# (sQ, stepsQ) = solve(Q)
|
|
|
|
|
# (sF, stepsF) = solve(F)
|
|
|
|
|
# (sT, stepsT) = solve(T)
|
|
|
|
|
(sR, stepsR) = solve(R)
|
|
|
|
|
# converting sR to array of arrays instead of a matrix
|
|
|
|
|
sR = [sR[i, :] for i in 1:length(sR[:, 1])]
|
|
|
|
|
|
|
|
|
|
# println("C: ", stepsC)
|
|
|
|
|
# println("Q: ", stepsQ)
|
|
|
|
@ -78,8 +80,8 @@ println("R: ", stepsR)
|
|
|
|
|
sR = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sR)
|
|
|
|
|
|
|
|
|
|
vars = variables(R)
|
|
|
|
|
println("solutions: ", sR)
|
|
|
|
|
println([LinearAlgebra.norm([f(vars => s) for f in R]) for s in sR])
|
|
|
|
|
println("Solutions: ", sR)
|
|
|
|
|
println("Norms (lower = better): ", [LinearAlgebra.norm([f(vars => s) for f in R]) for s in sR])
|
|
|
|
|
|
|
|
|
|
# Plotting the system and the real solutions
|
|
|
|
|
ENV["GKSwstype"] = "nul"
|
|
|
|
@ -87,4 +89,4 @@ ENV["GKSwstype"] = "nul"
|
|
|
|
|
# plot_real(sQ, Q, 2, 2, "2")
|
|
|
|
|
# plot_real(sF, F, 4, 4, "3")
|
|
|
|
|
# plot_real(sT, T, 4, 4, "4")
|
|
|
|
|
plot_real(sR, R, 5, 5, "random")
|
|
|
|
|
plot_real(sR, R, 5, 5, "random")
|