First working prototype

main
Francesco Minnocci 1 year ago
parent beb68a45d8
commit 9203003f1a
Signed by untrusted user: BachoSeven
GPG Key ID: 2BE4AB7FDAD828A4

@ -0,0 +1,25 @@
# Homotopy Continuation in Julia
## Implemented
- Total-degree Homotopy
- Roots of unity start system
## TODO
- Projective coordinates
- Parallelization
- Endgames(?)
## Example system
$$
\begin{{align*}}
x^2 + y^2 - 4 &= 0 \\
xy - 1 &= 0 \\
\end{{align*}}
$$
Plot of our approximate solutions:
![](solution.png)

103
hc.jl

@ -0,0 +1,103 @@
using LinearAlgebra
using TypedPolynomials
using Plots
# Define start system based on total degree
function start_system(F)
degrees = [maxdegree(p) for p in F]
G = [x_i^d - 1 for (d, x_i) in zip(degrees, variables(F))]
r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees]
roots = collect(Iterators.product(r...))
return (G, roots)
end
# Define homotopy function
function homotopy(F, G)
γ = cis(2π * rand())
function H(t)
return [(1 - t) * f + γ * t * g for (f, g) in zip(F, G)]
end
return H
end
# Euler-Newton predictor-corrector
function en_step(H, x, t, step_size)
# Predictor step
vars = variables(H(t))
# Jacobian of H evaluated at (x,t)
JH = [jh(vars=>x) for jh in differentiate(H(t), vars)]
# ∂H/∂t is the same as γG-F=H(1)-H(0) for our choice of homotopy
Δx = JH \ -[gg(vars=>x) for gg in H(1)-H(0)]
xp = x .+ Δx * step_size
# Corrector step
for _ in 1:5
JH = [jh(vars=>xp) for jh in differentiate(H(t+step_size), vars)]
Δx = JH \ -[h(vars=>xp) for h in H(t+step_size)]
xp = xp .+ Δx
if LinearAlgebra.norm(Δx) < 1e-6
break
end
end
return xp
end
# Adaptive step size
function adapt_step(H, x, t, step, m)
Δ = LinearAlgebra.norm([h(variables(H(t))=>x) for h in H(t)])
if Δ > 0.1
step = 0.5 * step
elseif Δ < 0.001
m+=1
if (m == 5)
step = 2 * step
m = 0
end
end
return (m, step)
end
# Main homotopy continuation loop
function solve(F, maxsteps=10000)
(G, roots) = start_system(F)
H=homotopy(F,G)
solutions = []
for r in roots
t = 1.0
step_size = 0.1
x0 = r
m = 0
while t > 0 && maxsteps > 0
x0 = en_step(H, x0, t, step_size)
(m, step_size) = adapt_step(H, x0, t, step_size, m)
t -= step_size
maxsteps -= 1
end
push!(solutions, x0)
end
return solutions
end
function plot_real(solutions, F)
p=plot(xlim = (-3, 3), ylim = (-3, 3), aspect_ratio = :equal)
contour!(-3:0.1:3, -3:0.1:3, (x,y)->F[1](variables(F)=>[x,y]), levels=[0], color=:cyan)
contour!(-3:0.1:3, -3:0.1:3, (x,y)->F[2](variables(F)=>[x,y]), levels=[0], color=:green)
scatter!([real(sol[1]) for sol in solutions], [real(sol[2]) for sol in solutions], color = "red", label = "Solutions")
png("solutions")
end
# Input polynomial system
@polyvar x y
F = [x*y - 1, x^2 + y^2 - 4]
sF = solve(F)
# Plotting the system and the real solutions
plot_real(sF, F)

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Loading…
Cancel
Save