|
|
|
@ -20,24 +20,26 @@ function solve(F, (G, roots) = start_system(F), maxsteps=10000)
|
|
|
|
|
# F=homogenize(F)
|
|
|
|
|
H=homotopy(F,G)
|
|
|
|
|
solutions = []
|
|
|
|
|
steps = 0
|
|
|
|
|
|
|
|
|
|
@time Threads.@threads for r in roots
|
|
|
|
|
t = 1.0
|
|
|
|
|
step_size = 0.01
|
|
|
|
|
x0 = r
|
|
|
|
|
m = 0
|
|
|
|
|
steps = 0
|
|
|
|
|
|
|
|
|
|
while t > 0 && maxsteps > 0
|
|
|
|
|
while t > 0 && steps < maxsteps
|
|
|
|
|
x = en_step(H, x0, t, step_size)
|
|
|
|
|
(m, step_size) = adapt_step(x, x0, step_size, m)
|
|
|
|
|
x0 = x
|
|
|
|
|
t -= step_size
|
|
|
|
|
maxsteps -= 1
|
|
|
|
|
steps += 1
|
|
|
|
|
end
|
|
|
|
|
push!(solutions, x0)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
return solutions
|
|
|
|
|
return (solutions, steps)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
# Input polynomial system
|
|
|
|
@ -46,9 +48,17 @@ F = [x*y - 1, x^2 + y^2 - 4]
|
|
|
|
|
T = [x*y - 1, x^2 + y^2 - 2]
|
|
|
|
|
C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
|
|
|
|
|
|
|
|
|
|
sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(F))
|
|
|
|
|
sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(T))
|
|
|
|
|
sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(C))
|
|
|
|
|
(sF, sf) = solve(F)
|
|
|
|
|
(sT, st) = solve(T)
|
|
|
|
|
(sC, sc) = solve(C)
|
|
|
|
|
|
|
|
|
|
println(sf)
|
|
|
|
|
println(st)
|
|
|
|
|
println(sc)
|
|
|
|
|
|
|
|
|
|
sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sF)
|
|
|
|
|
sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sT)
|
|
|
|
|
sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sC)
|
|
|
|
|
|
|
|
|
|
# Plotting the system and the real solutions
|
|
|
|
|
ENV["GKSwstype"]="nul"
|
|
|
|
|