# Homotopy Continuation in Julia This is a project for the "Laboratorio Computazionale" exam at the University of Pisa ## Implemented - Total-degree Homotopy with "Roots of unity" start system - Euler-Newton predictor-corrector method with adaptive step size - Homotopy Continuation for all roots of the target system ## TODO - Parallelization - Projective coordinates (maybe) ## Example systems Here's some tests on 2x2 systems, with the plotted real approximate solutions $$ \begin{align*} x^2 + y^2 - 4 &= 0 \\ xy - 1 &= 0 \\ \end{align*} $$ ![](solutions1.png) --- $$ \begin{align*} x^2 + y^2 - 2 &= 0 \\ xy - 1 &= 0 \\ \end{align*} $$ ![](solutions2.png) --- $$ \begin{align*} x^3 + 5x^2 - y - 10 &= 0 \\ 2x^2 - y - 10 &= 0 \\ \end{align*} $$ ![](solutions3.png)