
UNIVERSITÀ DEGLI STUDI DI PISA

Dipartimento di Matematica
Corso di Laurea Triennale in Matematica

Laboratorio Computazionale

Parallel Homotopy Continuation in Julia

Studente: Francesco Minnocci
Matricola: 600455

ANNO ACCADEMICO 2022 - 2023

Contents
1 Introduction 2

2 Homotopy Continuation 2
2.1 Choosing the homotopy . 2

2.1.1 Gamma trick . 3
2.2 Tracking down the roots . 3

2.2.1 Predictor: Euler’s method . 4
2.2.2 Corrector: Newton’s method . 4
2.2.3 Adaptive step size . 4

3 Testing the method 5

4 Appendix A: Results 5
4.1 Single- vs Multi-threaded . 5
4.2 Parallelization . 7

5 Appendix B: Implementation 7
5.1 Julia code . 7
5.2 Hardware . 11

1

1 Introduction
Homotopy Continuation is a numerical method for solving systems of polynomial equations.
It is based on the idea of ”deforming” a given system of equations into a simpler one whose
solutions are known, and then tracking the solutions of the original system as the deformation
is undone.

In this project, the method will be implemented in the Julia programming language, which is
particularly suited for scientific computing. The primary source for this report is [1], where the
method is explained in much more detail.

2 Homotopy Continuation
We will only consider square systems of polynomial equations, i.e. systems of n polynomial
equations in n variables, although or over- or under-determined systems can often be solved
by reducing them to square systems, by respectively choosing a suitable square subsystem or
squaring it by adding equations. Morever, we will restrict ourselves to systems which have
isolated solutions, i.e. zero-dimensional varieties.

There are many ways to choose the ”simpler” system, from now on called a start system, but
in general we can observe that, by Bezout’s theorem, a system F = (f1, . . . , fn) has at most
D := d1 . . . dn solutions, where di is the degre of fi(x1, . . . , xn).

Therefore, we can build a start system of the same size and whose polynomials have the same
degrees, but whose solutions are easy to find, and thus can be used as starting points for the
method.

For instance, the system G = (g1, . . . gn), where

gi(x1, . . . xn) = xdi
i − 1,

is such a system, since its zero locus is obtained by combining the di-th roots of unity in each
variable, which are exactly D points:{(

e
k1
d1

2πi, . . . , e
kn
dn

2πi
)
, for 0 ≤ ki ≤ di − 1 and i = 1, . . . , n

}
.

2.1 Choosing the homotopy
The deformation between the original system and the start system is a homotopy, for instance
the convex combination of F and G

H(x, t) = (1− t)F (x) + tG(x), (1)

where x := (x1, . . . , xn) and t ∈ [0, 1]. This is such that the roots of H(x, 0) = G(x) are known,
and the roots of H(x, 1) = F (x) are the solutions of the original system (the reason why we
place the start system at t = 0 and the original system at t = 1 is that we need higher numerical
precision for the solutions of the original system, and there are more floating point numbers
near to t = 0; see [1], p. 33). Therefore, we can implicitly define a curve z(t) in Cn by the
equation

H(z(t), t) = 0, (2)

so that in order to approximate the roots of F it is enough to numerically track z(t).

2

To do so, we derive the expression (2) with respect to t, and get the Davidenko Differential
Equation

∂H

∂z

dz
dt +

∂H

∂t
= 0,

where ∂H
∂z is the Jacobian matrix of H with respect to z:

∂H

∂z
=

∂H1

∂z1
· · · ∂H1

∂zn...
∂Hn

∂z1
· · · ∂Hn

∂zn

 .

This can be rewritten as
ż = −∂H

∂z

−1 ∂H

∂t
. (3)

This is a system of n first-order differential equations, which can be solved numerically for z(t)
as an initial value problem, which is called path tracking.

2.1.1 Gamma trick

While (1) is a fine choice of a homotopy, it’s not what it’s called a good homotopy: in order to
ensure that the solution paths z(t) for different roots

• have no singularities, i.e. never cross each other for t > 0 (at t = 0 F could have singular
solutions), and

• don’t go to infinity for t → 0 (as F could have a solution at infinity),

we can employ the Gamma trick: this consists in modifying the linear homotopy (1) by susbti-
tuting the parameter t ∈ [0, 1] with a complex curve q(t) connecting 0 and 1, such as

q(t) =
γt

γt+ (1− t)
,

where γ ∈ (0, 1) is a random complex parameter.

This is a ”probability one” procedure, i.e. for any particular system we can choose γ outside
of a finite amount of rays through the origin to ensure that we get a good homotopy, basically
because of the finiteness of the branch locus of the homotopy. After substituting, we have

H(x, t) =
(1− t)

γt+ (1− t)
F (x) +

γt

γt+ (1− t)
G(x),

and by clearing denominators, we get our final choice of homotopy:

H(x, t) = (1− t)F (x) + γtG(x). (4)

2.2 Tracking down the roots
We then need to track down individual roots, following the solution paths from a root z0 of
the start system by solving the initial value problem associated to the Davidenko differential
equation (3) with starting value z0 and t ranging from 1 to 0.

This will be done numerically, by using a first-order predictor-corrector tracking method, whose
typical iteration goes like this:

3

• Predictor: we first apply Euler’s method to get an approximation z̃i of the next value of
the solution path;

• Corrector: we then use Newton’s method to correct z̃i using equation (2), so that it
becomes a good approximation zi of the next value of the solution path.

In the following sections, we go into more detail on each of these steps.

2.2.1 Predictor: Euler’s method

Recall that Euler’s method consists in approximating the solution of the initial value problem
associated to a system of first-order ordinary differential equations{

ż = f(z, t)

z(t0) = z0

by the sequence of points (zi)i∈N defined by the recurrence relation

zi+1 = zi + h · f(zi, ti),

where h is the step size. In the case of the Davidenko equation (3), we have

f(z, t) = −
(
∂H

∂z
(z, t)

)−1
∂H

∂t
(z, t)

and t0 = 1, since we are tracking from 1 to 0. For the same reason, we set

ti+1 = ti − h.

2.2.2 Corrector: Newton’s method

Since we want to solve
H(z, t) = 0,

we can use Newton’s method to improve the approximation z̃i obtained by Euler’s method. This
is done by moving towards the root of the tangent line of H at the current approximation, or in
other words through the iteration

zi+1 = zi −
(
∂H

∂z
(zi, ti+1)

)−1

H(zi, ti+1),

where this time z0 = z̃i, with z̃i and ti+1 obtained from the i-th Euler step.

Usually, only a few steps of Newton’s method are needed; we chose a fixed number of 5 iterations.
At which point, we use the final value of the Newton iteration as the starting value for the next
Euler step.

2.2.3 Adaptive step size

In order to improve the efficiency of the method, we will use an adaptive step size, which is based
on the norm of the residual of Newton’s iteration. If the desired accuracy is not reached (say,
when the norm of H(zi, ti) is bigger than 10−8), then we halve the step size; if instead we have
5 ”successful” iterations in a row, we double the step size.

4

3 Testing the method
To test the method and its scalability, we first launched it on a single-threaded machine, then
one a multi-threaded one, and finally parallelized it on a Cluster, whose specifications can be
found in the Hardware section. The latter was done by using the Julia package Distributed.jl to
parallelize the tracking of the roots on separate nodes, and the SlurmClusterManager package,
which allows to run Julia code using the Slurm workload manager.

In order to scale the method to larger systems, we also implemented a random polynomial
generator, which can be found in random-poly.jl; this was used to create the systems used to
evaluate the performance of the parallel implementation.

For sake of visualization, a set of smaller tests was run, in addition to the parallel ones, on a
single-threaded machine and a multi-threaded one (using the @threads macro from the Threads.jl
package on the root tracking for loop in the file solve.jl); however the multi-threaded runs didn’t
improve the performance on these smaller systems, as the overhead of the multi-threading was
too big compared to the actual computation time.

…perhaps because of our choice of predictor-corrector which could be unsuitable for larger sys-
tems.

The Julia implementation for the tests described above can be found in Appendix B.

4 Appendix A: Results
4.1 Single- vs Multi-threaded
Here are the plots for the solutions of four different 2x2 systems for the single-threaded and
multi-threaded cases, with the corresponding systems and the real solutions shown in red.

5

Single-threaded Multithreaded

{
x3 + 5x2 − y − 1

2x2 − y − 1

{
x2 + 2y

y − 3x3

{
x2 + y2 − 4

xy − 1

{
x2 + y2 − 2

xy − 1

6

4.2 Parallelization
Below are the plotted residual norms for the solutions of a randomly generated 3x3 system for
the parallelized runs, compared with single-threaded runs for the same systems (the latter were
run on a single node of the cluster):

The running times for the parallel runs are the following:

5 Appendix B: Implementation
5.1 Julia code

Listing 1: solve.jl� �
1 # External deps
2 using LinearAlgebra
3 using TypedPolynomials
4 using Distributed, SlurmClusterManager
5 slurm_manager = SlurmManager()
6 addprocs(slurm_manager)
7
8 # Local deps
9 include("random-poly.jl")
10 include("plot.jl")
11 using .RandomPoly
12 using .Plot
13 @everywhere begin
14 include("start-system.jl")
15 include("homotopy.jl")
16 include("euler-newton.jl")
17 include("adapt-step.jl")
18 end
19 # Macros defined in an @everywhere block aren't available inside it
20 @everywhere begin
21 using .StartSystem
22 using .Homotopy
23 using .EulerNewton
24 using .AdaptStep
25 end
26
27 @everywhere function compute_root(H, r, maxsteps=200)
28 t = 1.0
29 step_size = 0.001
30 x0 = r
31 m = 0
32 steps = 0
33
34 while t > 0 && steps < maxsteps
35 x0 = en_step(H, x0, t, step_size)
36 (m, step_size) = adapt_step(H, x0, t, step_size, m)
37 t -= step_size
38 steps += 1
39 end
40 return (x0, steps)
41 end
42
43 # Main homotopy continuation loop
44 function solve(F, G, roots)
45 H = homotopy(F, G)
46
47 result = Array{Future}(undef, length(roots))
48 for i in eachindex(roots)
49 result[i] = @spawnat :any compute_root(H, roots[i])
50 end
51
52 sols = Array{ComplexF64,2}(undef, length(roots), length(F))
53 steps = Array{Int64}(undef, length(roots))

7

54 for i in eachindex(roots)
55 (solution, step_array) = fetch(result[i])
56 sols[i, :] = solution
57 steps[i] = step_array
58 end
59
60 return (sols, steps)
61 end
62
63 # @polyvar x y
64 # C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
65 # Q = [x^2 + 2y, y - 3x^3]
66 # F = [x*y - 1, x^2 + y^2 - 4]
67 # T = [x*y - 1, x^2 + y^2 - 2]
68
69 R = random_system(5, 5)
70 println("System: ", R)
71 (G, roots)=start_system(R)
72 println("Number of roots: ", length(roots))
73
74 # Parallel execution
75 println("PARALLEL")
76 @time begin
77 (sol, steps) = solve(R, G, roots)
78 end
79 println("Number of steps: ", steps)
80 # converting sR to array of arrays instead of a matrix
81 sol = [sol[i, :] for i in 1:length(sol[:, 1])]
82 sol = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sol)
83 sol = map(u -> real.(u), sol)
84 vars = variables(R)
85 println("Solutions: ", sol)
86 println("Norms (lower = better): ", [norm([f(vars => s) for f in R]) for s in

sol])
87
88 # Single execution
89 println("SINGLE")
90 wait(rmprocs(workers()))
91 @time begin
92 (sol, steps) = solve(R, G, roots)
93 end
94 println("Number of steps: ", steps)
95 # converting sR to array of arrays instead of a matrix
96 sol = [sol[i, :] for i in 1:length(sol[:, 1])]
97 sol = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sol)
98 sol = map(u -> real.(u), sol)
99 vars = variables(R)

100 println("Solutions: ", sol)
101 println("Norms (lower = better): ", [norm([f(vars => s) for f in R]) for s in

sol])
102
103 # See https://github.com/kleinhenz/SlurmClusterManager.jl/issues/11
104 finalize(slurm_manager)
105
106 # Plotting the system and the real solutions
107 # ENV["GKSwstype"] = "nul"
108 # plot_real(sC, C, 6, 12, "1")
109 # plot_real(sQ, Q, 2, 2, "2")
110 # plot_real(sF, F, 4, 4, "3")
111 # plot_real(sT, T, 4, 4, "4")
112 # plot_real(sol, R, 5, 5, "random")� �

Listing 2: start-system.jl� �
1 module StartSystem
2 using TypedPolynomials
3
4 export start_system
5
6 # Define start system based on total degree

8

7 function start_system(F)
8 degrees = [maxdegree(p) for p in F]
9 G = [x_i^d - 1 for (d, x_i) in zip(degrees, variables(F))]
10 r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees]
11 roots = vec([collect(root) for root in collect(Iterators.product(r...))])
12 return (G, roots)
13 end
14 end� �

Listing 3: homotopy.jl� �
1 module Homotopy
2 export homotopy
3
4 # Define a straight-line homotopy between the two systems
5 function homotopy(F, G)
6 γ = cis(2π * rand())
7 function H(t)
8 return [(1 - t) * f + γ * t * g for (f, g) in zip(F, G)]
9 end
10 return H
11 end
12 end� �

Listing 4: homogenize.jl� �
1 module Homogenize
2 using TypedPolynomials
3
4 export homogenize, homogenized_start_system
5
6 function homogenize(F)
7 @polyvar h
8 return [sum([h^(maxdegree(p)-maxdegree(t))*t for t in p.terms]) for p in F

]
9 end
10
11 function homogenized_start_system(F)
12 degrees = [maxdegree(p) for p in F]
13 @polyvar h
14 G = [x_i^d - h^d for (d, x_i) in zip(degrees, variables(F))]
15 r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees]
16 roots = vec([vcat(collect(root), 1) for root in collect(Iterators.product(r

...))])
17 return (G, roots)
18 end
19 end� �

Listing 5: euler-newton.jl� �
1 module EulerNewton
2 using LinearAlgebra
3 using TypedPolynomials
4
5 export en_step
6
7 # Euler-Newton predictor-corrector
8 function en_step(H, x, t, step_size)
9
10 # Predictor step
11 vars = variables(H(t))
12 # Jacobian of H evaluated at (x,t)
13 JH = [jh(vars=>x) for jh in differentiate(H(t), vars)]

9

14 # ∂H/∂t is the same as γG-F=H(1)-H(0) for our choice of homotopy
15 Δx = JH \ -[gg(vars=>x) for gg in H(1)-H(0)]
16 xh = x + Δx * step_size
17
18 # Corrector step
19 JHh=differentiate(H(t-step_size), vars)
20 for _ in 1:5
21 JH = [jh(vars=>xh) for jh in JHh]
22 Δx = JH \ -[h(vars=>xh) for h in H(t-step_size)]
23 xh = xh + Δx
24 end
25
26 return xh
27 end
28 end� �

Listing 6: adapt-step.jl� �
1 module AdaptStep
2 using LinearAlgebra
3 using TypedPolynomials
4
5 export adapt_step
6
7 # Adaptive step size
8 function adapt_step(H, x, t, step, m)
9 Δ = norm([h(variables(H(t))=>x) for h in H(t-step)])
10 if Δ > 1e-8
11 step = 0.5 * step
12 m = 0
13 else
14 m+=1
15 if (m == 4) && (step < 0.05)
16 step = 2 * step
17 m = 0
18 end
19 end
20
21 return (m, step)
22 end
23 end� �

Listing 7: random-poly.jl� �
1 module RandomPoly
2 export random_system
3
4 using TypedPolynomials
5 using Random
6 using Distributions
7
8 # Random polynomial of degree n in m variables
9 function random_poly(n, m)
10 x = [TypedPolynomials.Variable{Symbol("x[$i]")}() for i in 1:m]
11
12 monomial_powers=collect(Iterators.product([0:n for _ in 1:m]...))
13 monomials = [prod(x.^i) for i in monomial_powers if sum(i) <= n && sum(i) !

= 0]
14
15 return sum(map(m -> rand(Normal()) * m, monomials))
16 end
17
18 # Generate a system of m random polynomials in m variables
19 # of degree d_i randomly chosen between 1 and max_degree
20 function random_system(m, max_degree)
21 d = rand(1:max_degree, m)

10

22 random_polys = [random_poly(d[i], m) for i in 1:m]
23
24 return random_polys
25 end
26 end� �

Listing 8: plot.jl� �
1 module Plot
2 using Plots, TypedPolynomials
3
4 export plot_real
5
6 function plot_real(solutions, F, h, v, name)
7 plot(xlim = (-h, h), ylim = (-v, v), aspect_ratio = :equal)
8 contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[1](variables(F)=>[x,y]), levels=[0],

cbar=false, color=:cyan)
9 contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[2](variables(F)=>[x,y]), levels=[0],

cbar=false, color=:green)
10 scatter!([real(sol[1]) for sol in solutions], [real(sol[2]) for sol in

solutions], color = "red", label = "Real solutions")
11
12 png(joinpath("./plots", "solutions" * name))
13 end
14 end� �

5.2 Hardware
For the single-threaded runs, the code was executed on a laptop with an Intel Core i7-3520M
CPU @ 3.60GHz and 6 GB of RAM.

The multithreaded runs were tested on a desktop with an AMD FX-8350 CPU @ 4.00GHz with
4 cores and 8 threads, and 12 GB of RAM.

Finally, the parallel computations were run on a cluster with 20 nodes, each having a CPU @
1.008GHz with 4 Performance cores, 2 efficiency cores and 4 GB of RAM.

References
[1] Bates, Daniel J. Numerically solving polynomial systems with Bertini. SIAM, Society for

Industrial Applied Mathematics, 2013.

[2] https://docs.julialang.org/en/v1/stdlib/Distributed

11

	Introduction
	Homotopy Continuation
	Choosing the homotopy
	Gamma trick

	Tracking down the roots
	Predictor: Euler's method
	Corrector: Newton's method
	Adaptive step size

	Testing the method
	Appendix A: Results
	Single- vs Multi-threaded
	Parallelization

	Appendix B: Implementation
	Julia code
	Hardware

