# External dependencies using TypedPolynomials using LinearAlgebra using Distributed, SlurmClusterManager using SharedArrays # Local dependencies include("random_poly.jl") include("start-system.jl") include("homotopy.jl") include("euler-newton.jl") include("adapt-step.jl") include("plot.jl") using .RandomPoly using .StartSystem using .Homotopy using .EulerNewton using .AdaptStep using .Plot addprocs(SlurmManager()) function compute_root(H, r, maxsteps=1000) t = 1.0 step_size = 0.01 x0 = r m = 0 steps = 0 while t > 0 && steps < maxsteps x0 = en_step(H, x0, t, step_size) (m, step_size) = adapt_step(H, x0, t, step_size, m) t -= step_size steps += 1 end return (x0, steps) end # Main homotopy continuation loop function solve(F, (G, roots)=start_system(F)) H = homotopy(F, G) sols = SharedArray{ComplexF64,2}(length(roots), length(F)) steps = SharedArray{Int64}(length(roots)) @sync @distributed for i in eachindex(roots) (solutions, step_array) = compute_root(H, roots[i]) sols[i, :] = solutions steps[i] = step_array end return (sols, steps) end # Input polynomial systems # @polyvar x y # C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10] # Q = [x^2 + 2y, y - 3x^3] # F = [x*y - 1, x^2 + y^2 - 4] # T = [x*y - 1, x^2 + y^2 - 2] dimension = 2 R = random_system(2, 2) println("System: ", R) # (sC, stepsC) = solve(C) # (sQ, stepsQ) = solve(Q) # (sF, stepsF) = solve(F) # (sT, stepsT) = solve(T) (sR, stepsR) = solve(R) # converting sR to array of arrays instead of a matrix sR = [sR[i, :] for i in 1:length(sR[:, 1])] # println("C: ", stepsC) # println("Q: ", stepsQ) # println("F: ", stepsF) # println("T: ", stepsT) println("R: ", stepsR) # sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sC) # sQ = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sQ) # sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sF) # sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sT) sR = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sR) vars = variables(R) println("Solutions: ", sR) println("Norms (lower = better): ", [LinearAlgebra.norm([f(vars => s) for f in R]) for s in sR]) # Plotting the system and the real solutions ENV["GKSwstype"] = "nul" # plot_real(sC, C, 6, 12, "1") # plot_real(sQ, Q, 2, 2, "2") # plot_real(sF, F, 4, 4, "3") # plot_real(sT, T, 4, 4, "4") plot_real(sR, R, 5, 5, "random")