
UNIVERSITÀ DEGLI STUDI DI PISA

Dipartimento di Matematica
Corso di Laurea Triennale in Matematica

Laboratorio Computazionale

Parallel Homotopy Continuation in Julia

Studente: Francesco Minnocci
Matricola: 600455

ANNO ACCADEMICO 2022 - 2023

Contents
1 Introduction 2

2 Homotopy Continuation 2
2.1 Choosing the homotopy . 2

2.1.1 Gamma trick . 3
2.2 Tracking down the roots . 3

2.2.1 Predictor: Euler’s method . 4
2.2.2 Corrector: Newton’s method . 4
2.2.3 Adaptive step size . 4

3 Parallelization 4
3.1 Multithreading . 4
3.2 MPI . 5

4 Appendix A: Implementation 5
4.1 Julia code . 5
4.2 Hardware . 8

5 Appendix B: Results 8
5.1 Multithreading . 8

1

1 Introduction
Homotopy Continuation is a numerical method for solving systems of polynomial equations.
It is based on the idea of ”deforming” a given system of equations into a simpler one, whose
solutions are known, and then tracking the solutions of the original system as the deformation
is undone.

In this project, the method will be implemented in the Julia programming language, making use
of parallel computing in order to speed multiple root finding. The method is described in detail
in [1], which was the primary source for this report.

2 Homotopy Continuation
We will only consider square systems of polynomial equations, i.e. systems of n polynomial
equations in n variables, although or over- or under-determined systems can often be solved
by reducing them to square systems, by respectively choosing a suitable square subsystem or
adding equations. Morever, we will restrict ourselves to systems with isolated solutions, i.e.
zero-dimensional varieties.

There are many ways to choose the ”simpler” system, from now on called a start system, but
in general we can observe that, by Bezout’s theorem, a system F = (f1, . . . , fn) has at most
D := d1 . . . dn solutions, where di is the degre of fi(x1, . . . , xn). So, we could build a start
system of the same size and whose polynomials have the same degrees, but whose solutions are
easy to find, and thus can be used as starting points for the method.

For instance, the system G = (g1, . . . gn), where

gi(x1, . . . xn) = xdi
i − 1,

is such a system, since it has exactly the D solutions{(
e

k1
d1

2πi, . . . , e
kn
dn

2πi
)
, for 0 ≤ ki ≤ di − 1 and i = 1, . . . , n

}
.

2.1 Choosing the homotopy
The deformation between the original system and the start system is a homotopy, for instance
the convex combination of F and G

H(x, t) = (1− t)F (x) + tG(x), (1)

where x := (x1, . . . , xn) and t ∈ [0, 1]. This is such that the roots of H(x, 0) = G(x) are known,
and the roots of H(x, 1) = F (x) are the solutions of the original system. Therefore, we can
implicitly define a curve z(t) in Cn by the equation

H(z(t), t) = 0, (2)

so that in order to approximate the roots of F it is enough to numerically track z(t).

To do so, we derive the expression (2) with respect to t, and get the Davidenko Differential
Equation

∂H

∂z

dz
dt +

∂H

∂t
= 0,

2

where ∂H
∂z is the Jacobian matrix of H with respect to z:

∂H

∂z
=


∂H1

∂z1
· · · ∂H1

∂zn...
∂Hn

∂z1
· · · ∂Hn

∂zn

 .

This can be rewritten as
ż = −∂H

∂z

−1 ∂H

∂t
. (3)

This is a system of n first-order differential equations, which can be solved numerically for z(t)
as an initial value problem, and is called path tracking.

2.1.1 Gamma trick

While (1) is a fine choice of a homotopy, it’s not what it’s called a good homotopy: in order to
ensure that the solution paths z(t) for different roots

• have no singularities, i.e. never cross each other for t > 0 (at t = 0, F could have singular
solutions), and

• don’t go to infinity for t → 0 (F could have a solution at infinity),

we can employ the Gamma trick: this consists in modifying the linear homotopy (1) by susbti-
tuting the parameter t ∈ [0, 1] with a complex curve q(t) connecting 0 and 1:

q(t) =
γt

γt+ (1− t)
,

where γ ∈ (0, 1) is a random complex parameter.This ”probability one” procedure, i.e. for any
particular system choosing γ outside of a finite amount of lines through the origin ensures that
we get a good homotopy, basically because of the finiteness of the branch locus of the homotopy.
After substituting, we get

H(x, t) =
(1− t)

γt+ (1− t)
F (x) +

γt

γt+ (1− t)
G(x),

and clearing denominators, here’s our final homotopy:

H(x, t) = (1− t)F (x) + γtG(x). (4)

2.2 Tracking down the roots
We now want to track down individual roots, following the solution paths from a root z0 of
the start system by solving the initial value problem associated to the Davidenko differential
equation (3) with starting value z0 and t ranging from 1 to 0.

This will be done numerically, using a first-order predictor-corrector tracking method, which
consists in first using Euler’s method to get an approximation z̃i, and then using Newton’s
method to correct it using equation (2) so that it becomes a good approximation zi of the next
value of the solution path.

3

2.2.1 Predictor: Euler’s method

Recall that Euler’s method consists in approximating the solution of the initial value problem
associated to a first-order ordinary differential equations{

ż = f(z, t)

z(t0) = z0

by the sequence of points (zi)i∈N defined by the recurrence relation
zi+1 = zi + h · f(zi, ti),

where h is the step size. In our case, we have

f(z, t) = −
(
∂H

∂z
(z, t)

)−1
∂H

∂t
(z, t)

and t0 = 1, since we track from 1 to 0. For the same reason, we set
ti+1 = ti − h.

2.2.2 Corrector: Newton’s method

Since we want to solve
H(z, t) = 0,

we can use Newton’s method to improve the approximation z̃i obtained by Euler’s method to a
solution of such equation. This is done by moving towards the root of the tangent line of H at
the current approximation, or in other words through the iteration

zi+1 = zi −
(
∂H

∂z
(zi, ti+1)

)−1

H(zi, ti+1),

where this time z0 = z̃i, with z̃i and ti+1 obtained from the i-th Euler step.

Usually, only a few steps of Newton’s method are needed; we will use a fixed number of 5
iterations. At this point, we use the final value of the Newton iteration as the starting value for
the next Euler step.

2.2.3 Adaptive step size

In order to improve the efficiency of the method, we will use an adaptive step size, which will
be based on the norm of the residual of the Newton iteration. If the desired accuracy is not
reached, for instance when the norm of H(zi, ti) is bigger than 10−8, then we halve the step size;
if instead we have 5 ”successful” iterations in a row, we double the step size.

3 Parallelization
3.1 Multithreading
When testing the method, we tried to use multithreading to speed up the computation. This
was done in Julia by using the Threads.@threads macro, which automatically distributes the
work of a for loop among the available threads. However, in the case of looping over multiple
roots, this didn’t improve the performance, as the overhead of the multithreading was too big
compared to the actual computation time, as the systems were too small to benefit from this
kind of parallelization, as can be seen by the results in Appendix B.

4

3.2 MPI
Next, we tried to use MPI to parallelize the tracking of the roots. This was done by using the
MPI.jl package, which provides a Julia interface to the MPI library.

4 Appendix A: Implementation
4.1 Julia code

Listing 1: solve.jl� �
External dependencies
using TypedPolynomials

Local dependencies
include("start-system.jl")
include("homotopy.jl")
include("homogenize.jl")
include("euler-newton.jl")
include("adapt-step.jl")
include("plot.jl")
using .StartSystem
using .Homotopy
using .Homogenize
using .EulerNewton
using .AdaptStep
using .Plot

Main homotopy continuation loop
function solve(F, (G, roots) = start_system(F), maxsteps = 1000)
F=homogenize(F)
H=homotopy(F,G)
solutions = []
step_array = []

Threads.@threads for r in roots
t = 1.0
step_size = 0.01
x0 = r
m = 0
steps = 0

while t > 0 && steps < maxsteps
x0 = en_step(H, x0, t, step_size)
(m, step_size) = adapt_step(H, x0, t, step_size, m)
t -= step_size
steps += 1

end
push!(solutions, x0)
push!(step_array, steps)

end

return (solutions, step_array)
end

Input polynomial system
@polyvar x y
C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
Q = [x^2 + 2y, y - 3x^3]
F = [x*y - 1, x^2 + y^2 - 4]
T = [x*y - 1, x^2 + y^2 - 2]

(sC, stepsC) = solve(C)
(sQ, stepsQ) = solve(Q)
(sF, stepsF) = solve(F)
(sT, stepsT) = solve(T)

println("C: ", stepsC)

5

println("Q: ", stepsQ)
println("F: ", stepsF)
println("T: ", stepsT)

sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sC)
sQ = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sQ)
sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sF)
sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sT)

Plotting the system and the real solutions
ENV["GKSwstype"]="nul"
plot_real(sC, C, 6, 12, "1")
plot_real(sQ, Q, 2, 2, "2")
plot_real(sF, F, 4, 4, "3")
plot_real(sT, T, 4, 4, "4")� �

Listing 2: start-system.jl� �
module StartSystem
using TypedPolynomials

export start_system

Define start system based on total degree
function start_system(F)
degrees = [maxdegree(p) for p in F]
G = [x_i^d - 1 for (d, x_i) in zip(degrees, variables(F))]
r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees]
roots = vec([collect(root) for root in collect(Iterators.product(r...))])
return (G, roots)

end
end� �

Listing 3: homotopy.jl� �
module Homotopy
export homotopy

Define a straight-line homotopy between the two systems
function homotopy(F, G)
γ = cis(2π * rand())
function H(t)
return [(1 - t) * f + γ * t * g for (f, g) in zip(F, G)]

end
return H

end
end� �

Listing 4: homogenize.jl� �
module Homogenize
using TypedPolynomials

export homogenize, homogenized_start_system

function homogenize(F)
@polyvar h
return [sum([h^(maxdegree(p)-maxdegree(t))*t for t in p.terms]) for p in F
]

end

function homogenized_start_system(F)

6

degrees = [maxdegree(p) for p in F]
@polyvar h
G = [x_i^d - h^d for (d, x_i) in zip(degrees, variables(F))]
r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees]
roots = vec([vcat(collect(root), 1) for root in collect(Iterators.product(r
...))])

return (G, roots)
end

end� �
Listing 5: euler-newton.jl� �

module EulerNewton
using LinearAlgebra
using TypedPolynomials

export en_step

Euler-Newton predictor-corrector
function en_step(H, x, t, step_size)

Predictor step
vars = variables(H(t))
Jacobian of H evaluated at (x,t)
JH = [jh(vars=>x) for jh in differentiate(H(t), vars)]
∂H/∂t is the same as γG-F=H(1)-H(0) for our choice of homotopy
Δx = JH \ -[gg(vars=>x) for gg in H(1)-H(0)]
xh = x + Δx * step_size

Corrector step
JHh=differentiate(H(t-step_size), vars)
for _ in 1:5
JH = [jh(vars=>xh) for jh in JHh]
Δx = JH \ -[h(vars=>xh) for h in H(t-step_size)]
xh = xh + Δx

end

return xh
end

end� �
Listing 6: adapt-step.jl� �

module AdaptStep
using LinearAlgebra
using TypedPolynomials

export adapt_step

Adaptive step size
function adapt_step(H, x, t, step, m)
Δ = LinearAlgebra.norm([h(variables(H(t))=>x) for h in H(t-step)])
if Δ > 1e-8
step = 0.5 * step
m = 0

else
m+=1
if (m == 5) && (step < 0.05)
step = 2 * step
m = 0

end
end

return (m, step)
end

end

7

� �
Listing 7: plot.jl� �

module Plot
using Plots, TypedPolynomials

export plot_real

function plot_real(solutions, F, h, v, name)
plot(xlim = (-h, h), ylim = (-v, v), aspect_ratio = :equal)
contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[1](variables(F)=>[x,y]), levels=[0],
cbar=false, color=:cyan)

contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[2](variables(F)=>[x,y]), levels=[0],
cbar=false, color=:green)

scatter!([real(sol[1]) for sol in solutions], [real(sol[2]) for sol in
solutions], color = "red", label = "Real solutions")

png(joinpath("plots", "solutions" * name))
end

end� �
4.2 Hardware

5 Appendix B: Results
5.1 Multithreading
Here are the plots for the solutions of four different 2x2 systems, with the single-threaded version
next to the multithreaded one:

8

(a) Single-threaded

{
x3 + 5x2 − y − 1

2x2 − y − 1 (b) Multithreaded

(c) Single-threaded

{
x2 + 2y

y − 3x3

(d) Multithreaded

(e) Single-threaded

{
x2 + y2 − 4

xy − 1 (f) Multithreaded

(g) Single-threaded

{
x2 + y2 − 2

xy − 1 (h) Multithreaded

9

References
[1] Bates, Daniel J. Numerically solving polynomial systems with Bertini. SIAM, Society for

Industrial Applied Mathematics, 2013.

10

	Introduction
	Homotopy Continuation
	Choosing the homotopy
	Gamma trick

	Tracking down the roots
	Predictor: Euler's method
	Corrector: Newton's method
	Adaptive step size

	Parallelization
	Multithreading
	MPI

	Appendix A: Implementation
	Julia code
	Hardware

	Appendix B: Results
	Multithreading

