module EulerNewton using LinearAlgebra using TypedPolynomials export en_step # Euler-Newton predictor-corrector function en_step(H, x, t, step_size) # Predictor step vars = variables(H(t)) # Jacobian of H evaluated at (x,t) JH = [jh(vars=>x) for jh in differentiate(H(t), vars)] # ∂H/∂t is the same as γG-F=H(1)-H(0) for our choice of homotopy Δx = JH \ -[gg(vars=>x) for gg in H(1)-H(0)] xh = x + Δx * step_size # Corrector step JHh=differentiate(H(t+step_size), vars) for _ in 1:10 JH = [jh(vars=>xh) for jh in JHh] Δx = JH \ -[h(vars=>xh) for h in H(t+step_size)] xh = xh + Δx if LinearAlgebra.norm([h(vars=>xh) for h in H(t+step_size)]) < 1e-8 break end end return xh end end