UNIVERSITA DEGLI STUDI DI PISA

Dipartimento di Matematica

Corso di Laurea Triennale in Matematica

Laboratorio Computazionale

Parallel Homotopy Continuation in Julia

Studente: Francesco Minnocci
Matricola: 600455

ANNO ACCADEMICO 2022 - 2023

Contents

1 Introduction

2 Homotopy Continuation

2.1 Choosing the homotopy
2.1.1 Gamma tricko
2.2 Tracking down the roots e
2.2.1 Davidenko differential equation
2.2.2 Predictor: Euler’s method,
2.2.3 Corrector: Newton’s method

3 Parallelization

4 Implementation

4.1 Julia code
4.2 Hardware

5 Results

W W wwNn NN

1 Introduction

Homotopy Continuation is a numerical method for solving systems of polynomial equations.
It is based on the idea of "deforming” a given system of equations into a simpler one, whose
solutions are known, and then tracking the solutions of the original system as the deformation
is undone.

In this project, the method will be implemented in the Julia programming language, making use
of parallel computing in order to speed multiple root finding. The method is described in detail
in [1], which was the primary source for this report.

2 Homotopy Continuation

We will only consider square systems of polynomial equations, i.e. systems of n polynomial
equations in n variables, although or over- or under-determined systems can often be solved by
reducing them to square systems, by respectively choosing a suitable square subsystem or adding
equations.

There are many ways to choose the "simpler” system, from now on called a start system, but
in general we can observe that, by Bezout’s theorem, a system F = (fi,..., f,) has at most
D :=d; ...d, solutions, where d; is the degre of f;(x1,...,2,). So, we can use as a start system
G = (g1,..-9n), where

gi(x1,...xp) = zfi —1.

Indeed, this system has exactly D solutions

2mik

{(217...,,2”)7 zi=e 4 fork=0,...,d; andizl,...m}.
2.1 Choosing the homotopy

The deformation between the original system and the start system is a homotopy, for instance

one of the form
H(xz;t) = (1 —t)F(x) + tG(z), (1)

where x := (21, ...,zy). This is such that the roots of H(z;0) = G(z) are known, and the roots
of H(x;1) = F(x) are the solutions of the original system.

2.1.1 Gamma trick

While (1) is a fine choice of a homotopy, it’s not what it’s called a good homotopy: in order to
ensure that the solution paths

o never cross each other for t > 0 (at ¢ = 0 F' could have singular solutions), and
o don’t go to infinity for ¢ — 0 (F could have a solution at infinity),

we can employ the Gamma trick:

2.2 Tracking down the roots

2.2.1 Davidenko differential equation

2.2.2 Predictor: Euler’s method

2.2.3 Corrector: Newton’s method

3 Parallelization

4 Implementation

4.1 Julia code

Listing 1: solve.jl

External dependencies
using TypedPolynomials

Local dependencies
include("start-system.jl")
include("homotopy.jl1")
include("homogenize. j1")
include("euler-newton. jl")
include("adapt-step.jl")
include("plot.jl")

using .StartSystem

using .Homotopy

using .Homogenize

using .EulerNewton

using .AdaptStep

using .Plot

Main homotopy continuation loop

function solve(F, (G, roots) = start_system(F), maxsteps=10000)

F=homogenize(F)
H=homotopy (F,G)
solutions = []

Threads.@threads for r in roots
t=1.0
step_size = 0.01
X0 =71
m=20
steps = 0

while t > 0 & steps < maxsteps

x = en_step(H, x0, t, step_size)
(m, step_size) = adapt_step(x, x0, step_size, m)

X0 = X
t -= step_size
steps += 1
end
push!(solutions, x0)
end

return solutions
end

Input polynomial system
@polyvar x vy

F = [x*xy - 1, xA2 + yr2 - 4]
T =[xy - 1, x*2 + y*2 - 2]
C =
sF = filter(u -> imag(u[1]) <
sT = filter(u -> imag(u[1]) <

loNo]

A&
A&

[xA3 -y + 5xA2 - 10, 2x*2 - y - 10]

& imag(u[2]) < 0.1, solve(F)
& imag(u[2]) < 0.1, solve(T)

)
)

sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(C))

Plotting the system and the real solutions
ENV["GKSwstype"]="nul"

plot_real(sF, F, 4, 4, "1")

plot_real(sT, T, 4, 4, "2")

plot_real(sC, C, 6, 12, "3")

Listing 2: start-system.jl

module StartSystem
using TypedPolynomials

export start_system

Define start system based on total degree

function start_system(F)
degrees = [maxdegree(p) for p in F]
G = [x_ird - 1 for (d, x_i) in zip(degrees, variables(F))]
T = [[exp(2im¥pi/d)Ak for k=0:d-1] for d in degrees]
roots = vec([collect(root) for root in collect(Iterators.product(r...))])
return (G, roots)

end

end

Listing 3: homotopy.jl

module Homotopy
export homotopy

Define a straight-line homotopy between the two systems
function homotopy(F, G)
vy = cis(2m % rand())
function H(t)
return [(1 - t) * f + v % t » g for (f, g) in zip(F, G)]
end
return H
end
end

Listing 4: homogenize.jl

module Homogenize
using TypedPolynomials

export homogenize, homogenized_start_system

function homogenize(F)
@polyvar h
return [sum([h”(maxdegree(p)-maxdegree(t))*t for t in p.terms]) for p in F

end

function homogenized_start_system(F)
degrees = [maxdegree(p) for p in F]
@oolyvar h
G = [x_ird - hAd for (d, x_i) in zip(degrees, variables(F))]
T = [[exp(2imxpi/d)Ak for k=0:d-1] for d in degrees]
roots = vec([vcat(collect(root), 1) for root in collect(Iterators.product(r

return (G, roots)
end
end

Listing 5: euler-newton.jl

module EulerNewton
using LinearAlgebra
using TypedPolynomials

export en_step

Euler-Newton predictor-corrector
function en_step(H, x, t, step_size)

Predictor step

vars = variables(H(t))

Jacobian of H evaluated at (x,t)

JH = [jh(vars=>x) for jh in differentiate(H(t), vars)]

Ax = JH \ -[gg(vars=>x) for gg in H(1)-H(O®)] # OH/0t is the same as yG-F=H
(1)-H(0) for our choice of homotopy

Xp = X .+ Ax % step_size

Corrector step
for _ in 1:10
JH = [jh(vars=>xp) for jh in differentiate(H(t+step_size), vars)]
Ax = JH \ -[h(vars=>xp) for h in H(t+step_size)]
Xp = Xp .+ Ax
if LinearAlgebra.norm(Ax) < 1le-6
break
end
end

return xp
end
end

Listing 6: adapt-step.jl

module AdaptStep
using LinearAlgebra

export adapt_step

Adaptive step size
function adapt_step(x, x_old, step, m)
A = LinearAlgebra.norm(x - x_old)
if A > 0.1
step = 0.5 % step
m=0
else
m+=1
if (m == 5)
step = 2 % step
m=20
end
end

return (m, step)
end
end

Listing 7: plot.jl

module Plot
using Plots, TypedPolynomials

export plot_real

function plot_real(solutions, F, h, v, name)
plot(xlim = (-h, h), ylim = (-v, v), aspect_ratio = :equal)

contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[1](variables(F)=>[x,y]), levels=[0],
cbar=false, color=:cyan)

contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[2](variables(F)=>[x,y]), levels=[0],
cbar=false, color=:green)

scatter!([real(sol[1]) for sol in solutions], [real(sol[2]) for sol in
solutions], color = "red", label = "Real solutions")
png(joinpath("plots", "solutions" % name))

end
end

4.2 Hardware

5 Results

References

[1] Bates, Daniel J. Numerically solving polynomial systems with Bertini. STAM, Society for
Industrial Applied Mathematics, 2013.

	Introduction
	Homotopy Continuation
	Choosing the homotopy
	Gamma trick

	Tracking down the roots
	Davidenko differential equation
	Predictor: Euler's method
	Corrector: Newton's method

	Parallelization
	Implementation
	Julia code
	Hardware

	Results

