# External dependencies using TypedPolynomials using LinearAlgebra # Local dependencies include("random_poly.jl") include("start-system.jl") include("homotopy.jl") include("euler-newton.jl") include("adapt-step.jl") include("plot.jl") using .RandomPoly using .StartSystem using .Homotopy using .EulerNewton using .AdaptStep using .Plot # Main homotopy continuation loop function solve(F, (G, roots) = start_system(F), maxsteps = 1000) H=homotopy(F,G) solutions = [] step_array = [] Threads.@threads for r in roots # for r in roots println("New root") t = 1.0 step_size = 0.01 x0 = r m = 0 steps = 0 while t > 0 && steps < maxsteps x0 = en_step(H, x0, t, step_size) (m, step_size) = adapt_step(H, x0, t, step_size, m) t -= step_size steps += 1 end push!(solutions, x0) push!(step_array, steps) end return (solutions, step_array) end # Input polynomial system dimension = 2 max_degree = 2 R = random_system(dimension, max_degree) # @polyvar x y # C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10] # Q = [x^2 + 2y, y - 3x^3] # F = [x*y - 1, x^2 + y^2 - 4] # T = [x*y - 1, x^2 + y^2 - 2] (sR, stepsR) = solve(R) # (sC, stepsC) = solve(C) # (sQ, stepsQ) = solve(Q) # (sF, stepsF) = solve(F) # (sT, stepsT) = solve(T) println("R: ", stepsR) println("solutions:", sR) vars = variables(R) println([LinearAlgebra.norm([f(vars=>s) for f in R]) for s in sR]) # println("C: ", stepsC) # println("Q: ", stepsQ) # println("F: ", stepsF) # println("T: ", stepsT) # sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sC) # sQ = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sQ) # sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sF) # sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sT) # Plotting the system and the real solutions # ENV["GKSwstype"]="nul" # plot_real(sC, C, 6, 12, "1") # plot_real(sQ, Q, 2, 2, "2") # plot_real(sF, F, 4, 4, "3") # plot_real(sT, T, 4, 4, "4")