You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

69 lines
1.4 KiB
Julia

# External dependencies
using TypedPolynomials
# Local dependencies
include("homotopy.jl")
include("plot.jl")
include("euler-newton.jl")
include("adapt-step.jl")
include("start-system.jl")
include("homogenize.jl")
using .Homotopy
using .Plot
using .EulerNewton
using .AdaptStep
using .StartSystem
using .Homogenize
# Main homotopy continuation loop
function solve(F, (G, roots) = start_system(F), maxsteps=10000)
# F=homogenize(F)
H=homotopy(F,G)
solutions = []
step_array = []
@time Threads.@threads for r in roots
t = 1.0
step_size = 0.01
x0 = r
m = 0
steps = 0
while t > 0 && steps < maxsteps
x = en_step(H, x0, t, step_size)
(m, step_size) = adapt_step(x, x0, step_size, m)
x0 = x
t -= step_size
steps += 1
end
push!(solutions, x0)
push!(step_array, steps)
end
return (solutions, step_array)
end
# Input polynomial system
@polyvar x y
F = [x*y - 1, x^2 + y^2 - 4]
T = [x*y - 1, x^2 + y^2 - 2]
C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
(sF, sf) = solve(F)
(sT, st) = solve(T)
(sC, sc) = solve(C)
println(sf)
println(st)
println(sc)
sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sF)
sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sT)
sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, sC)
# Plotting the system and the real solutions
ENV["GKSwstype"]="nul"
plot_real(sF, F, 4, 4, "1")
plot_real(sT, T, 4, 4, "2")
plot_real(sC, C, 6, 12, "3")