You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Francesco Minnocci
a1ca1a3613
continue report |
11 months ago | |
---|---|---|
plots | 1 year ago | |
report | 11 months ago | |
LICENSE | 1 year ago | |
README.md | 11 months ago | |
adapt-step.jl | 1 year ago | |
euler-newton.jl | 1 year ago | |
homogenize.jl | 1 year ago | |
homotopy.jl | 1 year ago | |
plot.jl | 1 year ago | |
random-poly.jl | 11 months ago | |
solve.jl | 11 months ago | |
start-system.jl | 1 year ago |
README.md
Homotopy Continuation in Julia
This is a project for the "Laboratorio Computazionale" exam at the University of Pisa
Implemented
- Total-degree Homotopy with "Roots of unity" start system
- Euler-Newton predictor-corrector method with adaptive step size
- Homotopy Continuation for all roots of the target system
TODO
- Parallelization
Homogenization
Example systems
Here's some tests on 2x2 systems, with the plotted real approximate solutions
\begin{align*}
x^3 + 5x^2 - y - 10 &= 0 \\
2x^2 - y - 10 &= 0 \\
\end{align*}
Single-threaded | Multi-threaded (nproc=6) |
---|---|
\begin{align*}
x^2 + 2y &= 0 \\
y - 3x^3 &= 0 \\
\end{align*}
Single-threaded | Multi-threaded (nproc=6) |
---|---|
\begin{align*}
x^2 + y^2 - 4 &= 0 \\
xy - 1 &= 0 \\
\end{align*}
Single-threaded | Multi-threaded (nproc=6) |
---|---|
\begin{align*}
x^2 + y^2 - 2 &= 0 \\
xy - 1 &= 0 \\
\end{align*}
Single-threaded | Multi-threaded (nproc=6) |
---|---|