SOLUZIONI DEL COMPITO DI ALGEBRA 1

20 gennaio 2017

- 1. (a) Sia p un primo e sia H il gruppo delle matrici 3×3 a coefficienti in \mathbb{F}_p della seguente forma: $A = (a_{ij})$ tali che $\forall i$ vale $a_{ii} = 1$ e $\forall i < j$ vale $a_{ij} = 0$. Calcolare l'ordine di H e dire se è abeliano.
 - (b) Sia $n \in \mathbb{N}$, $n \geq 2$ tale che ogni gruppo di ordine n è abeliano. Sia $n = p_1^{\alpha_1} \cdots p_m^{\alpha_m}$ la fattorizzazione in primi, con p_1, \ldots, p_m primi distinti. Dire per ciascuna delle seguenti affermazioni se è vera o falsa:

i. $\forall i = 1, ..., m \text{ vale } \alpha_i \in \{1, 2\};$

ii. $\forall i, j = 1, \ldots, m \text{ vale } p_i \nmid (p_j - 1);$

iii. $\forall i, j = 1, ..., m$ vale che se $\alpha_i = 2$ allora $p_i \nmid (p_i + 1)$.

Traccia della soluzione:

VEDI DOPO

2. Sia $n \geq 3$ un intero. Si consideri il gruppo A_n . Al variare di n trovare il più grande m intero tale che A_n contiene un sottogruppo isomorfo a S_m .

Traccia della soluzione: -> VENI DOPO

- 3. Sia dato il polinomio $p(x) = x^4 3x^2 + 4$.
 - (a) Calcolare il campo di spezzamento \mathbb{K} di p(x) su \mathbb{Q} ;
 - (b) calcolare il gruppo di Galois $\operatorname{Aut}(\mathbb{K}/\mathbb{Q});$
 - (c) calcolare il campo di spezzamento e il gruppo di Galois di p(x) su \mathbb{F}_7 .

Soluzione:

(a) Il campo di spezzamento deve contenere la radice quadrata del discriminante del polinomio di secondo grado y^2-3y+4 , quindi, posto $\Delta=9-16=-7, \sqrt{-7}\in\mathbb{K}$. Inoltre osserviamo che $[\mathbb{Q}(\sqrt{-7}):\mathbb{Q}]=2$ in quanto $\sqrt{-7}$ è radice di x^2+7 che essendo somma di un quadrato e un numero positivo non ha radici reali e dunque è irriducibile su \mathbb{Q} .

In \mathbb{K} possiamo quindi scrivere

$$p(x) = \left(x^2 - \frac{3 + \sqrt{-7}}{2}\right) \left(x^2 - \frac{3 - \sqrt{-7}}{2}\right)$$

Poniamo $q_1(x) = \left(x^2 - \frac{3+\sqrt{-7}}{2}\right), q_2(x) = \left(x^2 - \frac{3-\sqrt{-7}}{2}\right).$

Affermiamo che il polinomio $q_1(x) = x^2 - \frac{3+\sqrt{-7}}{2}$ non ha radici in $\mathbb{Q}(\sqrt{-7})$, che equivale a dire che $x^2 - 6 - 2\sqrt{-7}$ non ha radici in $\mathbb{Q}(\sqrt{-7})$. Infatti, sia $x = \sqrt{-7}$

 $\alpha+\sqrt{-7}\beta$ un generico elemento di $\mathbb{Q}(\sqrt{-7}),$ con $\alpha,\beta\in\mathbb{Q},$ supponendo che $x^2=6+2\sqrt{-7}$ avremmo

 $\begin{cases} \alpha^2 - 7\beta^2 = 6 \\ 2\alpha\beta = 2 \end{cases}$

da cui segue $\beta=1/\alpha$ e quindi, sostituendo β nella prima equazione, $\alpha^2-7/\alpha^2=6$, che non ha soluzioni in $\mathbb Q$ perché il polinomio associato y^2-6y-7 ha radici 7,-1 che non sono quadrati in $\mathbb Q$. Notiamo che il sistema ha (tra le altre) una soluzione data da $\alpha=i,\beta=-i$ e dunque possiamo vedere che $\omega=\frac{i+\sqrt{7}}{2}$ è una soluzione di $q_1(x)$.

Quindi $q_1(x)$ non ha radici in $\mathbb{Q}(\sqrt{-7})$, ma ha radici $\pm \omega$ in un'estensione di grado 2 di $\mathbb{Q}(\sqrt{-7})$. Dunque $\mathbb{F} = \mathbb{Q}(\sqrt{-7}, \omega)$ è un'estensione di \mathbb{Q} di grado 4 che contiene le radici di $q_1(x)$. In particolare per il conto visto sopra possiamo dire esplicitamente che $\mathbb{F} = \mathbb{Q}(\sqrt{-7}, i)$.

Poichè il termine noto di p(x) è 4, ovvero un quadrato in \mathbb{Q} , il campo \mathbb{F} contiene anche le radici di $q_2(x) = x^2 + \frac{3-\sqrt{-7}}{2}$. Infatti, siano $\pm \tau$ le radici di $q_2(x)$, $\omega^2 \tau^2 = 4$ e quindi $\omega \tau = \pm 2$ e dunque se $\omega \in \mathbb{F}$, allora anche $\tau \in \mathbb{F}$. Abbiamo quindi mostrato che $\mathbb{F} = \mathbb{K}$ è il campo di spezzamento di p(x), perché è generato da una radice del polinomio p(x) e da $\sqrt{\Delta}$ e contiene tutte le radici di p(x). Inoltre \mathbb{K} abbiamo visto che ha grado 4 su \mathbb{Q} .

(b) Poichè il campo di spezzamento ha grado 4 su \mathbb{Q} , il gruppo di Galois G avrà cardinalità esattamente 4. Dobbiamo determinare se $G \simeq \mathbb{Z}_4$ o $G \simeq \mathbb{Z}_2^2$. Notiamo che \mathbb{K} contiene due sottoestensioni di grado 2 su \mathbb{Q} date da $\mathbb{Q}(\sqrt{-7})$ e $\mathbb{Q}(i\sqrt{-7}) = \mathbb{Q}(\sqrt{7})$ distinte tra loro perché una reale, l'altra non reale. Dunque G deve contenere due sottogruppi distinti di indice 2 e per questo non può essere \mathbb{Z}_4 . Ne segue che $G \simeq \mathbb{Z}_2^2$. I suoi elementi devono mandare ciascun generatore in un elemento del suo polinomio minimo, ovvero $i \mapsto \pm i$, $\sqrt{-7} \mapsto \pm \sqrt{-7}$. Quindi il gruppo è generato da:

$$\sigma: \left\{ \begin{array}{ccc} \sqrt{-7} & \mapsto & \sqrt{-7} \\ i & \mapsto & -i \end{array} \right. \quad \rho: \left\{ \begin{array}{ccc} \sqrt{-7} & \mapsto & -\sqrt{-7} \\ i & \mapsto & i. \end{array} \right.$$

- (c) In \mathbb{F}_7 il discriminante di $y^2 3y + 4$ è $\Delta = 9 16 = 0$ e quindi p(x) è un quadrato: $p(x) = (x^2 5)$. I quadrati in \mathbb{F}_7^* sono solo 1, 2, 4 e quindi 5 non è un quadrato in \mathbb{F}_7 . Ne segue che il campo di spezzamento di $x^2 5$ è l'estensione di grado 2 di \mathbb{F}_7 . Dunque Il campo di spezzamento di p(x) su \mathbb{F}_7 è \mathbb{F}_{7^2} e poiché il grado è 2 il gruppo di Galois è \mathbb{Z}_2 .
- **4.** (a) Trovare un'estensione di Galois \mathbb{E}_1 di \mathbb{Q} tale che $\operatorname{Aut}(\mathbb{E}_1/\mathbb{Q}) \simeq \mathbb{Z}_8$;
 - (b) trovare un elemento $\alpha \in \mathbb{C}$ tale che $\mathbb{E}_1 = \mathbb{Q}(\alpha)$;
 - (c) trovare un'estensione di Galois \mathbb{E}_2 di \mathbb{Q} tale che $\operatorname{Aut}(\mathbb{E}_2)/\mathbb{Q}) \simeq \mathbb{Z}_4 \times \mathbb{Z}_8$;

(d) trovare un elemento $\beta \in \mathbb{C}$ tale che $\mathbb{E}_2 = \mathbb{Q}(\beta)$.

Soluzione:

- (a) e (b) [Seguiamo quanto già visto a esercitazione.] Sia $\mathbb{K} = \mathbb{Q}(\zeta_{17})$. Sappiamo che $G = \operatorname{Aut}(\mathbb{Q}(\zeta_{17})/\mathbb{Q})$ è isomorfo a \mathbb{Z}_{16} , ma in \mathbb{Z}_{16} vi è un sottogruppo H di indice 8, abbiamo dunque che il sottocampo \mathbb{E}_1 di \mathbb{K} fissato da H è una estensione di Galois (tutti i sottogruppi di un gruppo abeliano sono normali) di \mathbb{Q} tale che $\operatorname{Aut}(\mathbb{K}^H/\mathbb{Q}) = G/H \simeq \mathbb{Z}_8$. Un elemento di ordine 2 in G è definito da $\phi: \zeta_{17} \mapsto \zeta_{17}^{-1}$. Prendiamo quindi $\alpha = \zeta_{17} + \zeta_{17}^{-1} \in \mathbb{K}^H$; possiamo considerare che in $\mathbb{Q}(\alpha)[x]$ il polinomio $x^2 \alpha x + 1$ annulla ζ_{17} , quindi $[\mathbb{K}: \mathbb{Q}(\alpha)] \leq 2$. Inoltre per costruzione $\mathbb{Q}(\alpha) \subset \mathbb{Q}(\zeta_{17})^H$ e dunque ha grado al più 8 su \mathbb{Q} . Dalla torre di estensioni segue $\mathbb{E}_1 = \mathbb{Q}(\alpha) = \mathbb{K}^H$ e che il grado di \mathbb{E}_1 su \mathbb{Q} è esattamente 8.
- (c) e (d) Abbiamo già visto a lezione, da un risultato generale per le estensioni ciclotomiche, che $\operatorname{Aut}(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \simeq \mathbb{Z}_5^* = \mathbb{Z}_4$.

Come visto a lezione, poichè 5 e 17 sono primi distinti e quindi in particolare sono numeri coprimi, $\mathbb{Q}(\zeta_5, \zeta_{17}) = \mathbb{Q}(\zeta_{5\cdot 17})$ ed è un'estensione di Galois di \mathbb{Q} di grado $\phi(5)\phi(17) = 4\cdot 16$. Inoltre, sempre per quanto visto a lezione, anche $\mathbb{Q}(\zeta_5)$ e $\mathbb{Q}(\zeta_{17})$ sono estensioni di Galois di \mathbb{Q} e $\mathbb{Q}(\zeta_5) \cap \mathbb{Q}(\zeta_{17}) = \mathbb{Q}$. Il gruppo di automorfismi $\mathrm{Aut}(\mathbb{Q}(\zeta_5,\zeta_{17})/\mathbb{Q})$ è dato dunque dal prodotto $G'=\mathbb{Z}_4\times\mathbb{Z}_{16}$, abeliano e quindi con tutti i sottogruppi normali (e tutti i sottocampi che sono estensioni di Galois di \mathbb{Q}). Inoltre nel prodotto il fattore \mathbb{Z}_4 è inteso agire banalmente su $\mathbb{Q}(\zeta_{17})$ e il fattore \mathbb{Z}_{16} è inteso agire banalmente su $\mathbb{Q}(\zeta_5)$. Sia \mathbb{E}_2 il campo fisso del sottogruppo $H'=\{0\}\times\{0,8\}$, il suo gruppo di Galois su \mathbb{Q} è quindi isomorfo a $G'/H'\simeq\mathbb{Z}_4\times\mathbb{Z}_8$. Per quanto detto su come agiscono i due fattori di G' e per quanto visto nel punto precedente, il campo fisso di H' è $\mathbb{Q}(\zeta_5,\alpha)$.

Consideriamo l'elemento $\beta = \zeta_5 \alpha$. Affermiamo che $\mathbb{Q}(\beta) = \mathbb{Q}(\zeta_5, \alpha)$. Infatti $\mathbb{Q}(\beta) \subset \mathbb{Q}(\zeta_5, \alpha)$. Inoltre $\beta^5 = \alpha^5$ genera $\mathbb{Q}(\alpha^5)$ che è una sottoestensione di $\mathbb{Q}(\alpha)$. Se non fosse che $\alpha \in \mathbb{Q}(\alpha^5)$ allora $x^5 - \alpha^5$ si fattorizzerebbe in $\mathbb{Q}(\alpha^5)$ con un fattore irriducibile di grado dispari maggiore di 1. In particolare il grado del suo campo di spezzamento, ovvero $\mathbb{Q}(\alpha, \zeta_5)$, dovrebbe avere un grado su $\mathbb{Q}(\alpha^5)$ diviso da un numero dispari, ma questo non è possibile perchè il suo grado è $4\cdot 8$, cioé potenza di 2 e quindi per la torre di estensioni $\mathbb{Q}(\alpha, \zeta_5) \supset \mathbb{Q}(\alpha) \supset \mathbb{Q}(\alpha^5) \supset \mathbb{Q}$ anche il grado dell'estensione $\mathbb{Q}(\alpha) \supset \mathbb{Q}(\alpha^5)$ è potenza di 2. Dunque $\mathbb{Q}(\beta) \supset \mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\zeta_5, \alpha)$. Quindi, $\mathbb{Q}(\beta) = \mathbb{E}_2$ e $\mathrm{Aut}(\mathbb{E}_2/\mathbb{Q}) = \mathbb{Z}_4 \times \mathbb{Z}_8$.

Macuia sol. es 1 a) il grupo ha ordine p³ e non è chelione come motra il seguente esempio: $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 100 \\ 010 \\ 011 \end{pmatrix} \begin{pmatrix} 100 \\ 110 \\ 001 \end{pmatrix} = \begin{pmatrix} 100 \\ 110 \\ 111 \end{pmatrix}$ b) le tre offernazioni sono tutte nero. Le vole 2,23 per gudche i, allora P_c ne olungure abhamo el grupo non obeliano A × 2/m done A é un guys non aboliano di croline Pi (Veoli evenye del punto a)). Le 12=1 non oblians altre de alimostrare. Le 12=2 est enstore peq pini. The devidans n,

l'di che p/9-1, allora faccions come sopra con B x 2/mpg done B è un grupo non abeliano di ordine pq (che roggiono che esiste della teoria). Infine, se esistano paq primi distriti l'ali che peq [n e 9 pt1, continians un gruppo (di ordine p2 g non abelians e concludions constolerande (x // pèg les costrire Corremans che $\left| \text{Aut} \left(2l_p \times 2l_p \right) \right| = \left| \text{GL} \left(2l_p^2 \right) \right| = \left(p^2 - 1 \right) \left(p^2 - p \right) =$ $= (p-1)^2 p (p+1)$ In jorticolore 9 | Aut (2/2×2/p) |. Allona F T: Z/g -> Aut (Z/p×Z/p) Omamerfusme non bonole (per Couchy earste in Aut (2p × 2/p) un elemente y obi ordere q, e possions definire 7 mediante (4)=). Il gryle (= (2(1 × 2(p) × 2 2/9 non è abeliano (in giriole se A_1 e A_2 sono grupo Alebani $\stackrel{\sharp}{=}$ $T: A_1 \sim$) Aut (A_2) non è banale, allona $A_2 \times_{\mathbb{Z}} A_1$ non è abeliano perchi (ONTINUATE VOI!)

Traccia sol. es. Z. Immonsitulto si osserva che per ogni n c'è una ummensione Sm Am+2 data da re o e jon: o -> o (m+1, m+z) Save l'o che compare a obstra Yeumuta gli elementi di {1, n} esattamente came il o a sinistra e moltre loscia fissi not e maz. Mostrians advos che per n > 4 non è possibile $Che \qquad S_m \longrightarrow A_{m+1}.$ Infatti: se avessimo una sumile immersione, chiamiamo It l'immagne ali Sm.
Allora A_{m+1} aquebbre sui laterali ali H
dande origine ad un omamafisme Amont Sudice di Hundrand Sund de gui già si bosselha che m dere usere oliopari Ora, visto che n+125, sappiano che Ant e semplio. Durque Kery = /Amy1 Fimpossibile jerché l'asiane sur laterali non é barole. Allona Kery = (e), ASSURDO perche (m+1)! > (m+1)! rel motho coro un un m z4.

Li condude l'esercisió Madrando i casi M=1,2,3:

Sy si unmerge en Az (è dunque un coso speciale)

Sz non si unmerge en Az

Sz non si unmerge en Az