COMPITINO DI ALGEBRA 1

3 novembre 2017

Esercizio 1.

Sia σ la permutazione (12)(34)(56) di S_6 .

- 1. Risolvere l'equazione $x^3 = (12)(34)(56)$ in S_6 .
- 2. Determinare la struttura del centralizzatore di σ .

Esercizio 2.

Un sottogruppo H di un gruppo finito G si dice subnormale in G se esiste una successione (H_i) di sottogruppi di G tali che

$$H \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_n \triangleleft G$$
.

Mostrare i seguenti fatti:

- 1. se G è un p-gruppo finito tutti i suoi sottogruppi sono subnormali;
- 2. dare un esempio di un gruppo G e un sottogruppo subnormale H che non è normale in G;
- 3. se H è subnormale in G e S è un p-Sylow di G allora $H \cap S$ è un p-Sylow di H.

Esercizio 3.

Sia G un gruppo di ordine 300.

- 1. Mostrare che G non può essere semplice.
- 2. Classificare i gruppi di ordine 300 che contengono un sottogruppo di ordine 12, un elemento di ordine 4 e uno di ordine 25.

Lo svolgimento dell'esercizio 2 va scritto in un foglio separato.

Soluzioni

Esercizio 1.

Inizialmente osserviamo che:

Se o(x) = 2 allora $x^3 = x$ e troviamo l'unica soluzione di ordine due x = (12)(34)(56). Quindi cerchiamo le soluzioni di ordine 6, la permutazione x non può avere punti fissi altrimenti anche $x^3 = (12)(34)(56)$ li avrebbe.

Gli unici elementi in S_6 di ordine sei senza punti fissi sono i 6-cicli. I seguenti 6-cicli sono soluzione:

(1, 3, 5, 2, 4, 6)	(1, 5, 3, 2, 6, 4)
(1,4,5,2,3,6)	(1, 5, 4, 2, 6, 3)
(1, 3, 6, 2, 4, 5)	(1,6,3,2,5,4)
(1,4,6,2,3,5)	(1, 6, 4, 2, 5, 3)

e sono tutti e soli i 6-cicli tali che nella loro scrittura il 2 è tre posti dopo 1 e similmente per 3, 4 e 5, 6.

I coniugati di (12)(34)(56) sono tutti i tre 2-cicli che sono

$$\frac{1}{3!} \binom{6}{2} \binom{4}{2} \binom{2}{2} = 15$$

Il centralizzatore di (12)(34)(56) ha cardinalità $\frac{|S_6|}{15} = 48$. I due cicli (12), (34) e (56) appartengono al centralizzatore e il sottogruppo $H = \langle (12), (34), (56) \rangle$ generato da queste tre permutazioni è isomorfo a $(\mathbb{Z}/2\mathbb{Z})^3$. Gli elementi di S_6 che permutano questi due-cicli tra di loro sono un sottogruppo K isomorfo a S_3 . Il gruppo K è generato dalle permutazioni (1,3)(2,4) e (1,3,5)(2,4,6). Esse appartengono al centralizzatore di (12)(34)(56) quindi il sottogruppo K appartiene al centralizzatore. I sottogruppi H e K hanno intersezione banale quindi il sottogruppo di S_6 HK ha cardinalità $|H| \cdot |K| = 8 \cdot 6 = 48$ e coincide col centralizzatore di (12)(34)(56). Infine per descrivere la struttura del centralizzatore bisogna osservare che il gruppo K agisce su H per coniugio tramite permutazione dei suoi due cicli. Segue che H è normale in HK e che HK si scrive come prodotto semidiretto

$$HK \simeq (\mathbb{Z}/2\mathbb{Z})^3 \rtimes_{\varphi} S_3$$

dove φ è l'inclusione di S_3 in $\operatorname{Aut}(\mathbb{Z}/2\mathbb{Z})^3$ data dalla permutazione delle coordinate.

Esercizio 2.

Fissato un p-gruppo G dimostriamo che ogni sottogruppo H è subnormale per induzione sulla cardinalità dell'indice [G:H]. Il passo base è banale: se [G:H]=1 allora G è subnormale in G. Altrimenti consideriamo il normalizzatore $N_G(H)$ di H in G. In un p-gruppo il normalizzatore di un sottogruppo H contiene strettamente il gruppo H, quindi $H \rtimes N_G(H)$. Per passo induttivo $N_G(H)$ è subnormale quindi prolungando la catena di sottogruppi normali relativa a $N_G(H)$ con $H \rtimes N_G(H)$ si ottiene che H è subnormale.

Consideriamo il gruppo D_4 e una sua riflessione s. Il sottogruppo $\langle s \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ non è normale in D_4 , infatti sia r la rotazione di angolo minimo si ha:

$$rsr = r^2s$$
.

Per il punto precedente $\langle s \rangle$ è subnormale nel p-gruppo D_4 .

Trattiamo prima il caso in cui il sottogruppo H sia normale in G. Sia $H \cap S$ e T un p-Sylow di H contenente $H \cap S$, vogliamo mostrare che T coincide con $H \cap S$. Sia gSg^{-1} un p-Sylow di G contenente T per un qualche $g \in G$, si ha

$$T = gSg^{-1} \cap H = g(S \cap H)g^{-1}$$

quindi T e $H \cap S$ hanno la stessa cardinalità e quindi coincidono e quindi $H \cap S$ è un p-Sylow di H.

In generale procediamo come nel primo punto, cioè per induzione sull'indice di H. Supponiamo H strettamente contenuto in H_1 e per passo induttivo $H_1 \cap S =: S_1$ è un p-Sylow di H_1 . Abbiamo appena visto che $H \cap S_1$ è un p-Sylow di H perché H è normale in H_1 e l'uguaglianza $H \cap S_1 = H \cap S$ conclude la dimostrazione.

Esercizio 3.

Sia n_5 il numero dei 5-Sylow di G, per i teoremi di Sylow si deve avere che $n_5 \equiv 1$ modulo 5 e che $n_5 \mid 12$. Le uniche possibilità sono $n_5 = 1$ o $n_5 = 6$. Nel primo caso il 5 Sylow è unico e quindi normale. Supponiamo che $n_5 = 6$, fissiamo un 5-Sylow S e sia $N_G(S)$ il suo normalizzatore. Sappiamo che l'indice $[G:N_G(S)]$ coincide con n_5 quindi il quoziente $G/N_G(S)$ (non ha una struttura di gruppo perché $N_G(S)$ non è normale!) è un insieme di cardinalità 6. L'azione di G su $G/N_G(S)$

$$\psi: G \longrightarrow S\left({}^{G}/_{N_{G}(S)} \right) \simeq S_{6}$$

definita da $g \cdot xN_G(S) = gxN_G(S)$ ha nucleo non banale poiché |G| = 300 non divide $|S_6| = 720$. In questo caso G ha come sottogruppo normale ker ψ .

Mostriamo che il 5-Sylow è unico, studiando l'azione ψ . Fissiamo una classe laterale $xN_G(S)$ e la formula sulla cardinalità dell'orbita implica che $|\ker\psi|$ | $|\operatorname{Stab}(xN_G(S))|$ =

 $\frac{300}{6} = 50$. Abbiamo già osservato che 5 divide | ker ψ |, se 25 dividesse | ker ψ | allora tutti e sei i 5-Sylow sarebbero contenuti in ker ψ ma in un gruppo di ordine 50 esiste un unico 5-Sylow. Mostriamo che ker ψ contiene un elemento di ordine 2 per concludere che ha cardinalità 10.

Sia H un sottogruppo di ordine 12 di G, il 4-Sylow è ciclico e almeno uno tra il 3-Sylow e il 4-Sylow è normale. Poiché non ci sono omomorfismi non nulli da $\mathbb{Z}/3\mathbb{Z}$ in $\operatorname{Aut}(\mathbb{Z}/4\mathbb{Z})$ il 3-Sylow è normale e il gruppo H è isomorfo a $\mathbb{Z}/12\mathbb{Z}$ o a $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/4\mathbb{Z}$. Sia x un elemento in H di ordine 3, H è contenuto in $N_G(\langle x \rangle)$.

L'elemento $\psi(x)$ in S_6 ha ordine 3 ed è un 3-ciclo o un due 3-ciclo. In entrambi i casi $\psi(x)$ ha $2\binom{6}{3}$ coniugati in S_6 quindi il suo normalizzatore $N_{S_6}(\psi(x))$ ha cardinalità 18. Poiché $\psi(H)$ è un sottogruppo di $N_{S_6}(\psi(x))$ allora esiste un elemento di ordine 2 in $H \cap \ker \psi$.

Studiamo $\psi(G)$ che è un gruppo di ordine 30 con $n_5 = 6$. Il gruppo $\psi(G)$ ha solo $30 - 6 \cdot 4 = 6$ elementi con ordine diverso da 5 quindi sia il 3-Sylow che il 2-Sylow sono normali, cioè $\psi(G) \simeq \mathbb{Z}/6\mathbb{Z} \rtimes \mathbb{Z}/5\mathbb{Z}$. Poiché tutti gli omomorfismi da $\mathbb{Z}/5\mathbb{Z}$ in $\operatorname{Aut}(\mathbb{Z}/6\mathbb{Z})$ sono nulli, si ha $\psi(G) \simeq \mathbb{Z}/30\mathbb{Z}$ contro l'ipotesi $n_5 = 6$.

Abbiamo finalmente concluso che $n_5 = 1$ e quindi il gruppo G si scrive come prodotto semidiretto

$$G \simeq S \rtimes H$$

dove S è il suo unico 5-Sylow, quindi $G \simeq \mathbb{Z}/25\mathbb{Z} \rtimes_f (\mathbb{Z}/3\mathbb{Z} \rtimes_g \mathbb{Z}/4\mathbb{Z})$.

La mappa $g: \mathbb{Z}/4\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$ può essere banale o mandare un generatore c nell'automorfismo che scambia 1 e -1 in $\mathbb{Z}/3\mathbb{Z}$. La mappa $f: \mathbb{Z}/3\mathbb{Z} \rtimes_g \mathbb{Z}/4\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/25\mathbb{Z}) \simeq \mathbb{Z}/20\mathbb{Z}$ ha il sottogruppo $\mathbb{Z}/3\mathbb{Z}$ nel nucleo, quindi il 3-Sylow di G è normale.

Il gruppo G è quindi isomorfo a $\mathbb{Z}/75\mathbb{Z} \rtimes_h \mathbb{Z}/4\mathbb{Z}$ dove per la mappa h ci sono solo 8 possibilità, ognuna fornisce una diversa classe di isomorfismo. La mappa h è un qualsiasi morfismo da $\mathbb{Z}/4\mathbb{Z}$ a $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, il 2-Sylow di $\mathrm{Aut}(\mathbb{Z}/75\mathbb{Z})$.