diff --git a/docs/amg4psblas_1.0-guide.pdf b/docs/amg4psblas_1.0-guide.pdf index d318bfac..bf67aac6 100644 Binary files a/docs/amg4psblas_1.0-guide.pdf and b/docs/amg4psblas_1.0-guide.pdf differ diff --git a/docs/html/index.html b/docs/html/index.html index 075294d0..a287a5ae 100644 --- a/docs/html/index.html +++ b/docs/html/index.html @@ -3,8 +3,8 @@
+2-78.@article{DDF2021, - author = {D’Ambra, Pasqua and Durastante, Fabio and Filippone, Salvatore}, - title = {{{AMG Preconditioners for Linear Solvers towards Extreme Scale}}, - journal = {arXiv e-preprints}, - eprint = {2006.16147v3}, - archivePrefix = {arXiv}, - year={2021} - } -@Misc{psctoolkit-web-page, - author = {D’Ambra, Pasqua and Durastante, Fabio and Filippone, Salvatore}, - title = {{PSCToolkit} {W}eb page}, - url = {https://psctoolkit.github.io/}, - howpublished = {\url{https://psctoolkit.github.io/}}, - year = {2021} - } - -++
author = {D’Ambra, Pasqua and Durastante, Fabio and Filippone, Salvatore}, +
title = {{{AMG Preconditioners for Linear Solvers towards Extreme Scale}}, +
journal = {arXiv e-preprints}, +
eprint = {2006.16147v3}, +
archivePrefix = {arXiv}, +
year={2021} +
} +
+
@Misc{psctoolkit-web-page, +
author = {D’Ambra, Pasqua and Durastante, Fabio and Filippone, Salvatore}, +
title = {{PSCToolkit} {W}eb page}, +
url = {https://psctoolkit.github.io/}, +
howpublished = {\url{https://psctoolkit.github.io/}}, +
year = {2021} +
} +diff --git a/docs/html/userhtmlli5.html b/docs/html/userhtmlli5.html new file mode 100644 index 00000000..3a2ce1cb --- /dev/null +++ b/docs/html/userhtmlli5.html @@ -0,0 +1,695 @@ + + +
References + + + + + + + + +References
++
++ + + + + + + ++ [1] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L’Excellent, + C. Weisbecker, Improving multifrontal methods by means of block low-rank + representations, SIAM Journal on Scientific Computing, volume 37 (3), 2015, + A1452–A1474. See also http://mumps.enseeiht.fr. +
++ [2] D. Bertaccini and S. Filippone, Sparse approximate inverse + preconditioners on high performance GPU platforms, Comput. Math. Appl. + 71 (2016), no. 3, 693–711. +
++ [3] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a + Two-Level Schwarz Method, Computing, 63, 1999, 233–263. +
++ [4] W. L. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial, + Second Edition, SIAM, 2000. +
++ [5] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending + PSBLAS to Build Parallel Schwarz Preconditioners, in J. Dongarra, + K. Madsen, J. Wasniewski, editors, Proceedings of PARA 04 Workshop on + State of the Art in Scientific Computing, Lecture Notes in Computer Science, + Springer, 2005, 593–602. +
+ + + ++ [6] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a + package of high-performance preconditioners for scientific and engineering + applications, Applicable Algebra in Engineering, Communications and + Computing, 18 (3) 2007, 223–239. +
++ [7] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for + General Sparse Linear Systems, SIAM Journal on Scientific Computing, 21 + (2), 1999, 792–797. +
++ [8] U.. V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halappanavar, + and A. Pothen, Distributed-memory parallel algorithms for matching and + coloring, in PCO11 New Trends in Parallel Computing and Optimization, + IEEE International Symposium on Parallel and Distributed Processing + Workshops, IEEE CS, 2011. +
++ [9] P. D’Ambra, S. Filippone, + D. di Serafino, On the Development of PSBLAS-based Parallel Two-level + Schwarz Preconditioners, Applied Numerical Mathematics, Elsevier Science, + 57 (11-12), 2007, 1181-1196. +
++ [10] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of + Parallel Multilevel Algebraic Domain Decomposition Preconditioners in + Fortran 95, ACM Trans. Math. Softw., 37(3), 2010, art. 30. +
++ [11] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a + Package of High-Performance Preconditioners for Scientific and Engineering + Applications, Appl. Algebra Engrg. Comm. Comput., 18(3), 2007, 223–239. +
++ [12] P. D’Ambra, F Durastante, S. Filippone, AMG preconditioners for + Linear Solvers towards Extreme Scale, 2020, arXiv:2006.16147v3. + + + +
++ [13] T. A. Davis, Algorithm 832: UMFPACK + - an Unsymmetric-pattern Multifrontal Method with a Column Pre-ordering + Strategy, ACM Transactions on Mathematical Software, 30, 2004, 196–199. + (See also http://www.cise.ufl.edu/~davis/) +
++ [14] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, + X. S. Li, J. W. H. Liu, A supernodal approach to sparse partial pivoting, + SIAM Journal on Matrix Analysis and Applications, 20 (3), 1999, 720–755. +
++ [15] J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, A set of Level + 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical + Software, 16 (1) 1990, 1–17. +
++ [16] J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An + extended set of FORTRAN Basic Linear Algebra Subprograms, ACM + Transactions on Mathematical Software, 14 (1) 1988, 1–17. +
++ [17] S. Filippone, A. Buttari, PSBLAS 3.5.0 User’s Guide. A Reference + Guide for the Parallel Sparse BLAS Library, 2012, available from + https://github.com/sfilippone/psblas3/tree/master/docs. +
++ [18] S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matrix + Computations in Fortran 2003. ACM Transactions on on Mathematical + Software, 38 (4), 2012, art. 23. +
++ [19] S. Filippone, M. Colajanni, PSBLAS: A + Library for Parallel Linear Algebra Computation on Sparse Matrices, ACM + Transactions on Mathematical Software, 26 (4), 2000, 527–550. + + + +
++ [20] S. Gratton, P. Henon, P. Jiranek and X. Vasseur, Reducing complexity of + algebraic multigrid by aggregation, Numerical Lin. Algebra with Applications, + 2016, 23:501-518 +
++ [21] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, + W. Saphir, M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 + Extensions, MIT Press, 1998. +
++ [22] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear + Algebra Subprograms for FORTRAN usage, ACM Transactions on + Mathematical Software, 5 (3), 1979, 308–323. +
++ [23] X. S. Li, J. W. Demmel, SuperLU_DIST: A Scalable + Distributed-memory Sparse Direct Solver for Unsymmetric Linear Systems, + ACM Transactions on Mathematical Software, 29 (2), 2003, 110–140. +
++ [24] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, + Numerical Linear Algebra with Applications, 15 (5), 2008, 473–487. +
++ [25] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, + 2003. +
++ [26] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel + Multilevel Methods for Elliptic Partial Differential Equations, Cambridge + University Press, 1996. +
+ + + ++ [27] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: + The Complete Reference. Volume 1 - The MPI Core, second edition, MIT + Press, 1998. +
++ [28] K. Stüben, An Introduction to Algebraic Multigrid, in A. Schüller, + U. Trottenberg, C. Oosterlee, Multigrid, Academic Press, 2001. +
++ [29] R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: + Aggregation Strategies on Massively Parallel Machines, in J. Donnelley, + editor, Proceedings of SuperComputing 2000, Dallas, 2000. +
++ [30] P. Vaněk, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed + Aggregation for Second and Fourth Order Elliptic Problems, Computing, 56 + (3) 1996, 179–196. +
++ [31] P. D’Ambra and P. S. Vassilevski, Adaptive AMG with coarsening based + on compatible weighted matching, Computing and Visualization in Science, + 16, (2013) 59–76. +
++ [32] P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software + package for bootstrap AMG based on graph weighted matching, ACM + Transactions on Mathematical Software, 44, (2018) 39:1–39:25.
+ diff --git a/docs/html/userhtmlse1.html b/docs/html/userhtmlse1.html index 1109e6eb..5f8f1c19 100644 --- a/docs/html/userhtmlse1.html +++ b/docs/html/userhtmlse1.html @@ -3,8 +3,8 @@
General Overview - - + + diff --git a/docs/html/userhtmlse2.html b/docs/html/userhtmlse2.html index 8c0e20d1..474befde 100644 --- a/docs/html/userhtmlse2.html +++ b/docs/html/userhtmlse2.html @@ -3,8 +3,8 @@Code Distribution - - + + diff --git a/docs/html/userhtmlse3.html b/docs/html/userhtmlse3.html index 3184abfd..c806825f 100644 --- a/docs/html/userhtmlse3.html +++ b/docs/html/userhtmlse3.html @@ -3,8 +3,8 @@Configuring and Building AMG4PSBLAS - - + + diff --git a/docs/html/userhtmlse4.html b/docs/html/userhtmlse4.html index ac26f075..8269c972 100644 --- a/docs/html/userhtmlse4.html +++ b/docs/html/userhtmlse4.html @@ -3,8 +3,8 @@Getting Started - - + + @@ -137,8 +137,8 @@ class="cmr-12">
string
der
’NONE’
Considered to use the PSBLAS Krylov solvers with no preconditioner.
’DIAG’L1-JACOBI’
Diagonal preconditioner. For any zero diagonal entry of the matrix to be preconditioned, the corresponding entry @@ -308,7 +308,7 @@ of the preconditioner is set to 1.
’GS’L1-GS’
Hybrid Gauss-Seidel (forward), that is, global block Jacobi with Gauss-Seidel as local solver.
’FBGS’L1-FBGS’
Symmetrized hybrid Gauss-Seidel, that is, forward Gauss-Seidel followed by backward Gauss-Seidel.
’BJAC’L1-BJAC’
Block-Jacobi with ILU(0) on the local blocks.
’AS’
Additive Schwarz (AS), with overlap 1 and ILU(0) on the local blocks.
’ML’
V-cycle with one hybrid forward Gauss-Seidel (GS) sweep as pre-smoother and one hybrid backward @@ -382,7 +382,7 @@ algorithm, and LU (plus triangular solve) as coarsest-level solver. See the default values in Tables 2-7 for further details of +href="userhtmlsu8.html#x18-17015r8">8 for further details of the preconditioner.
-