diff --git a/docs/amg4psblas_1.0-guide.pdf b/docs/amg4psblas_1.0-guide.pdf
new file mode 100644
index 00000000..65f5f8d7
Binary files /dev/null and b/docs/amg4psblas_1.0-guide.pdf differ
diff --git a/docs/html/amg4psblaslibrary.png b/docs/html/amg4psblaslibrary.png
new file mode 100644
index 00000000..604d1a53
Binary files /dev/null and b/docs/html/amg4psblaslibrary.png differ
diff --git a/docs/html/index.html b/docs/html/index.html
index b7b34168..ae4a08ca 100644
--- a/docs/html/index.html
+++ b/docs/html/index.html
@@ -71,7 +71,7 @@ class="cmr-12">Contributors
MLD2P4 (MuAMG4PSBLAS (AltiLevgel Dombrain Decomposic Multion PaiGrallel Pid Preconers
-Ps Packsed on PSBLAS) is a package of parallel algebraic multilevel
+class="small-caps">n
3 Configuring and Building MLD2P4
+class="cmr-12">Configuring and Building AMG4PSBLAS
3.1 Auxiliary Methods
7 Adding new smoother and solver objects to MLD2P4
+class="cmr-12">Adding new smoother and solver objects to AMG4PSBLAS
8 Contributors
3 Configuring and Building MLD2P4
+class="cmr-12">Configuring and Building AMG4PSBLAS
3.1 Auxiliary Methods
7 Adding new smoother and solver objects to MLD2P4
+class="cmr-12">Adding new smoother and solver objects to AMG4PSBLAS
8 Abstract
AMG4PSBLAS has been designed to provide scalable and easy-to-use applied to generate coarse-level corrections, so that no geometric background is needed +class="cmr-12">preconditioners in the context of the PSBLAS (Parallel Sparse Basic Linear Algebra concerning the matrix to be preconditioned. The matrix is assumed to be square, real +class="cmr-12">Subprograms) computational framework and can be used in conjuction with the Krylov or complex. -
MLD2P4 has been designed to provide scalable and easy-to-use preconditioners in +class="cmr-12">solvers available in this framework. Our package is based on a completely algebraic the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms) +class="cmr-12">approach and users level interfaces assume that the system matrix and preconditioners computational framework and can be used in conjuction with the Krylov solvers +class="cmr-12">are represented as PSBLAS distributed sparse matrices. AMG4PSBLAS enables the available in this framework. MLD2P4 enables the user to easily specify different +class="cmr-12">user to easily specify different features of an algebraic multilevel preconditioner, thus features of an algebraic multilevel preconditioner, thus allowing to search for the “best” +class="cmr-12">allowing to experiment with different preconditioners for the problem and parallel preconditioner for the problem at hand. +class="cmr-12">computers at hand.
The package employs object-oriented design techniques in Fortran 2003, with @@ -136,7 +137,7 @@ class="cmr-12">through PSBLAS.
This guide provides a brief description of the functionalities and the user interface
of MLD2P4.
+class="cmr-12">of AMG4PSBLAS.
diff --git a/docs/html/userhtmlli2.html b/docs/html/userhtmlli2.html
index 2f15012d..51ce9e89 100644
--- a/docs/html/userhtmlli2.html
+++ b/docs/html/userhtmlli2.html
@@ -45,7 +45,7 @@ class="cmr-12">Code Distribution
3 Configuring and Building MLD2P4
+class="cmr-12">Configuring and Building AMG4PSBLAS
3.1 _wrk
7 Adding new smoother and solver objects to MLD2P4
+class="cmr-12">Adding new smoother and solver objects to AMG4PSBLAS
8 ]
Contributors to version 2:
Contributors to version 1: -
[1] [1] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L’Excellent, - C. Weisbecker, Improving multifrontal methods by means of block low-rank - representations, SIAM Journal on Scientific Computing, volume 37 (3), 2015, - A1452–A1474. See also P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, + J. L’Excellent, C. Weisbecker, Improving multifrontal methods + by means of block low-rank representations, SIAM Journal on + Scientific Computing, volume 37 (3), 2015, A1452–A1474. See also + http://mumps.enseeiht.fr. +class="cmbx-12">.
[2] [2] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a - Two-Level Schwarz Method, Computing, 63, 1999, 233–263. +class="cmbx-12">M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based + on a Two-Level Schwarz Method, Computing, 63, 1999, 233–263.
[3] [3] W. L. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial, - Second Edition, SIAM, 2000. +class="cmbx-12">W. L. Briggs, V. E. Henson, S. F. McCormick, A Multigrid + Tutorial, Second Edition, SIAM, 2000.
[4] [4] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending +class="cmbx-12">A. Buttari, PSBLAS to Build Parallel Schwarz Preconditioners, in J. Dongarra, +class="cmbx-12">P. D’Ambra, D. di Serafino, S. Filippone, Extending PSBLAS K. Madsen, J. Wasniewski, editors, Proceedings of PARA 04 Workshop on +class="cmbxti-10x-x-120">to Build Parallel Schwarz Preconditioners, in J. Dongarra, State of the Art in Scientific Computing, Lecture Notes in Computer Science, +class="cmbx-12">K. Madsen, J. Wasniewski, editors, Proceedings of PARA 04 Springer, 2005, 593–602. +class="cmbx-12">Workshop on State of the Art in Scientific Computing, Lecture + Notes in Computer Science, Springer, 2005, 593–602.
[5] [5] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a - package of high-performance preconditioners for scientific and engineering +class="cmbx-12">A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, applications, Applicable Algebra in Engineering, Communications and +class="cmbxti-10x-x-120">2LEV-D2P4: a package of high-performance preconditioners Computing, 18 (3) 2007, 223–239. +class="cmbxti-10x-x-120">for scientific and engineering applications, Applicable Algebra + in Engineering, Communications and Computing, 18 (3) 2007, + 223–239.
[6] [6] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for +class="cmbx-12">X. C. Cai, M. Sarkis, A Restricted Additive Schwarz General Sparse Linear Systems, SIAM Journal on Scientific Computing, 21 +class="cmbxti-10x-x-120">Preconditioner for General Sparse Linear Systems, SIAM (2), 1999, 792–797. +class="cmbx-12">Journal on Scientific Computing, 21 (2), 1999, 792–797.
[7] [7] + P. D’Ambra, S. Filippone, +class="cmbx-12">P. D’Ambra, S. Filippone, D. di Serafino, On the Development D. di Serafino, On the Development of PSBLAS-based Parallel Two-level +class="cmbxti-10x-x-120">of PSBLAS-based Parallel Two-level Schwarz Preconditioners, Schwarz Preconditioners, Applied Numerical Mathematics, Elsevier Science, +class="cmbx-12">Applied Numerical Mathematics, Elsevier Science, 57 (11-12), 57 (11-12), 2007, 1181-1196. +class="cmbx-12">2007, 1181-1196.
[8] [8] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of +class="cmbx-12">P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a + Package of Parallel Multilevel Algebraic Domain Decomposition Parallel Multilevel Algebraic Domain Decomposition Preconditioners in +class="cmbxti-10x-x-120">Preconditioners in Fortran 95, ACM Trans. Math. Softw., 37(3), Fortran 95, ACM Trans. Math. Softw., 37(3), 2010, art. 30. +class="cmbx-12">2010, art. 30.
[9] [9] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, + 2LEV-D2P4: a Package of High-Performance Preconditioners + for Scientific and Engineering Applications, Appl. Algebra + Engrg. Comm. Comput., 18(3), 2007, 223–239. +
++ [10] P. D’Ambra, F Durastante, S. Filippone, AMG + preconditioners for Linear Solvers towards Extreme Scale, 2020, + arXiv:2006.16147v2. +
++ [11] T. A. Davis, Algorithm 832: UMFPACK +class="cmbx-12">T. A. Davis, Algorithm + 832: UMFPACK - an Unsymmetric-pattern Multifrontal Method - an Unsymmetric-pattern Multifrontal Method with a Column Pre-ordering +class="cmbxti-10x-x-120">with a Column Pre-ordering Strategy, ACM Transactions Strategy, ACM Transactions on Mathematical Software, 30, 2004, 196–199. +class="cmbx-12">on Mathematical Software, 30, 2004, 196–199. (See also (See also http://www.cise.ufl.edu/~davis/) +class="cmbx-12">) + + +
[10] [12] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, - X. S. Li, J. W. H. Liu, A supernodal approach to sparse partial pivoting, - SIAM Journal on Matrix Analysis and Applications, 20 (3), 1999, 720–755. +class="cmbx-12">J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, + J. W. H. Liu, A supernodal approach to sparse partial pivoting, + SIAM Journal on Matrix Analysis and Applications, 20 (3), 1999, + 720–755.
[11] [13] J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, A set of Level - 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical - Software, 16 (1) 1990, 1–17. +class="cmbx-12">J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, + A set of Level 3 Basic Linear Algebra Subprograms, ACM + Transactions on Mathematical Software, 16 (1) 1990, 1–17.
[12] [14] + J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An - extended set of FORTRAN Basic Linear Algebra Subprograms, ACM - Transactions on Mathematical Software, 14 (1) 1988, 1–17. - - - +class="cmbx-12">J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An + extended set of FORTRAN Basic Linear Algebra Subprograms, + ACM Transactions on Mathematical Software, 14 (1) 1988, 1–17.
[13] [15] S. Filippone, A. Buttari, PSBLAS 3.5.0 User’s Guide. A Reference +class="cmbx-12">S. Filippone, A. Buttari, PSBLAS 3.5.0 User’s Guide. A Guide for the Parallel Sparse BLAS Library, 2012, available from +class="cmbxti-10x-x-120">Reference + Guide for the Parallel Sparse BLAS Library, 2012, available from https://github.com/sfilippone/psblas3/tree/master/docs. +class="cmbx-12">.
[14] [16] S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matrix +class="cmbx-12">S. Filippone, A. Buttari, Object-Oriented Techniques for Computations in Fortran 2003. ACM Transactions on on Mathematical +class="cmbxti-10x-x-120">Sparse Matrix Computations in Fortran 2003. ACM Transactions Software, 38 (4), 2012, art. 23. +class="cmbx-12">on on Mathematical Software, 38 (4), 2012, art. 23.
[15] [17] S. Filippone, M. Colajanni, PSBLAS: A +class="cmbx-12">S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Library for Parallel Linear Algebra Computation on Sparse Matrices, ACM +class="cmbxti-10x-x-120">Linear Algebra Computation on Sparse Matrices, ACM Transactions on Mathematical Software, 26 (4), 2000, 527–550. +class="cmbx-12">Transactions on Mathematical Software, 26 (4), 2000, 527–550.
[16] [18] S. Gratton, P. Henon, P. Jiranek and X. Vasseur, Reducing complexity of +class="cmbx-12">S. Gratton, P. Henon, P. Jiranek and X. Vasseur, Reducing algebraic multigrid by aggregation, Numerical Lin. Algebra with Applications, +class="cmbxti-10x-x-120">complexity of algebraic multigrid by aggregation, Numerical Lin. 2016, 23:501-518 +class="cmbx-12">Algebra with Applications, 2016, 23:501-518 + + +
[17] [19] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, - W. Saphir, M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 - Extensions, MIT Press, 1998. +class="cmbx-12">W. Gropp, S. Huss-Lederman, A. Lumsdaine, + E. Lusk, B. Nitzberg, W. Saphir, M. Snir, MPI: The Complete + Reference. Volume 2 - The MPI-2 Extensions, MIT Press, 1998.
[18] [20] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear - Algebra Subprograms for FORTRAN usage, ACM Transactions on - Mathematical Software, 5 (3), 1979, 308–323. +class="cmbx-12">C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, + Basic Linear Algebra Subprograms for FORTRAN usage, ACM + Transactions on Mathematical Software, 5 (3), 1979, 308–323.
[19] [21] X. S. Li, J. W. Demmel, SuperLU_DIST: A Scalable - Distributed-memory Sparse Direct Solver for Unsymmetric Linear Systems, - ACM Transactions on Mathematical Software, 29 (2), 2003, 110–140. - - - +class="cmbx-12">X. S. Li, J. W. Demmel, + SuperLU_DIST: A Scalable Distributed-memory Sparse Direct + Solver for Unsymmetric Linear Systems, ACM Transactions on + Mathematical Software, 29 (2), 2003, 110–140.
[20] [22] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, - Numerical Linear Algebra with Applications, 15 (5), 2008, 473–487. +class="cmbx-12">Y. Notay, P. S. Vassilevski, Recursive Krylov-based + multigrid cycles, Numerical Linear Algebra with Applications, 15 + (5), 2008, 473–487.
[21] [23] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, +class="cmbx-12">Y. Saad, Iterative methods for sparse linear systems, 2nd 2003. +class="cmbx-12">edition, SIAM, 2003.
[22] [24] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel +class="cmbx-12">B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Multilevel Methods for Elliptic Partial Differential Equations, Cambridge +class="cmbxti-10x-x-120">Parallel Multilevel Methods for Elliptic Partial Differential University Press, 1996. +class="cmbxti-10x-x-120">Equations, Cambridge University Press, 1996.
[23] [25] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: - The Complete Reference. Volume 1 - The MPI Core, second edition, MIT - Press, 1998. +class="cmbx-12">M. Snir, + S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The + Complete Reference. Volume 1 - The MPI Core, second edition, + MIT Press, 1998. + + +
[24] [26] K. Stüben, An Introduction to Algebraic Multigrid, in A. Schüller, - U. Trottenberg, C. Oosterlee, Multigrid, Academic Press, 2001. +class="cmbx-12">K. Stüben, An Introduction to Algebraic Multigrid, in + A. Schüller, U. Trottenberg, C. Oosterlee, Multigrid, Academic + Press, 2001.
[25] [27] R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: +class="cmbx-12">R. S. Tuminaro, Aggregation Strategies on Massively Parallel Machines, in J. Donnelley, +class="cmbx-12">C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation editor, Proceedings of SuperComputing 2000, Dallas, 2000. +class="cmbxti-10x-x-120">Strategies on Massively Parallel Machines, in J. Donnelley, + editor, Proceedings of SuperComputing 2000, Dallas, 2000.
[26] [28] P. Vaněk, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed - Aggregation for Second and Fourth Order Elliptic Problems, Computing, 56 - (3) 1996, 179–196. -
-+ [29] P. D’Ambra and P. S. Vassilevski, Adaptive AMG with + coarsening based on compatible weighted matching, Computing + and Visualization in Science, 16, (2013) 59–76. +
++ [30] P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: + a software package for bootstrap AMG based on graph weighted + matching, ACM Transactions on Mathematical Software, 44, + (2018) 39:1–39:25.
@@ -561,19 +657,19 @@ class="cmr-12">(3) 1996, 179–196. +class="cmbx-12">up]