!!$ !!$ !!$ MLD2P4 version 2.0 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.3) !!$ !!$ (C) Copyright 2008, 2010, 2012, 2015 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_saggrmat_nosmth_asb.F90 ! ! Subroutine: mld_saggrmat_nosmth_asb ! Version: real ! ! This routine builds a coarse-level matrix A_C from a fine-level matrix A ! by using the Galerkin approach, i.e. ! ! A_C = P_C^T A P_C, ! ! where P_C is the piecewise constant interpolation operator corresponding ! the fine-to-coarse level mapping built by mld_aggrmap_bld. ! ! The coarse-level matrix A_C is distributed among the parallel processes or ! replicated on each of them, according to the value of p%parms%coarse_mat ! specified by the user through mld_sprecinit and mld_zprecset. ! On output from this routine the entries of AC, op_prol, op_restr ! are still in "global numbering" mode; this is fixed in the calling routine ! mld_s_lev_aggrmat_asb. ! ! For details see ! P. D'Ambra, D. di Serafino and S. Filippone, On the development of ! PSBLAS-based parallel two-level Schwarz preconditioners, Appl. Num. Math., ! 57 (2007), 1181-1196. ! ! ! Arguments: ! a - type(psb_sspmat_type), input. ! The sparse matrix structure containing the local part of ! the fine-level matrix. ! desc_a - type(psb_desc_type), input. ! The communication descriptor of the fine-level matrix. ! p - type(mld_s_onelev_type), input/output. ! The 'one-level' data structure that will contain the local ! part of the matrix to be built as well as the information ! concerning the prolongator and its transpose. ! parms - type(mld_sml_parms), input ! Parameters controlling the choice of algorithm ! ac - type(psb_sspmat_type), output ! The coarse matrix on output ! ! ilaggr - integer, dimension(:), input ! The mapping between the row indices of the coarse-level ! matrix and the row indices of the fine-level matrix. ! ilaggr(i)=j means that node i in the adjacency graph ! of the fine-level matrix is mapped onto node j in the ! adjacency graph of the coarse-level matrix. Note that the indices ! are assumed to be shifted so as to make sure the ranges on ! the various processes do not overlap. ! nlaggr - integer, dimension(:) input ! nlaggr(i) contains the aggregates held by process i. ! op_prol - type(psb_sspmat_type), input/output ! The tentative prolongator on input, the computed prolongator on output ! ! op_restr - type(psb_sspmat_type), output ! The restrictor operator; normally, it is the transpose of the prolongator. ! ! info - integer, output. ! Error code. ! ! subroutine mld_saggrmat_nosmth_asb(a,desc_a,ilaggr,nlaggr,parms,ac,op_prol,op_restr,info) use psb_base_mod use mld_s_inner_mod, mld_protect_name => mld_saggrmat_nosmth_asb implicit none ! Arguments type(psb_sspmat_type), intent(in) :: a type(psb_desc_type), intent(in) :: desc_a integer(psb_ipk_), intent(inout) :: ilaggr(:), nlaggr(:) type(mld_sml_parms), intent(inout) :: parms type(psb_sspmat_type), intent(inout) :: op_prol type(psb_sspmat_type), intent(out) :: ac,op_restr integer(psb_ipk_), intent(out) :: info ! Local variables integer(psb_ipk_) :: err_act integer(psb_ipk_) :: ictxt,np,me, icomm, ndx, minfo character(len=20) :: name integer(psb_ipk_) :: ierr(5) type(psb_s_coo_sparse_mat) :: ac_coo, acoo type(psb_s_csr_sparse_mat) :: acsr1, acsr2 integer(psb_ipk_) :: debug_level, debug_unit integer(psb_ipk_) :: nrow, nglob, ncol, ntaggr, nzl, ip, & & naggr, nzt, naggrm1, i, k name='mld_aggrmat_nosmth_asb' if(psb_get_errstatus().ne.0) return info=psb_success_ call psb_erractionsave(err_act) ictxt = desc_a%get_context() icomm = desc_a%get_mpic() call psb_info(ictxt, me, np) nglob = desc_a%get_global_rows() nrow = desc_a%get_local_rows() ncol = desc_a%get_local_cols() naggr = nlaggr(me+1) ntaggr = sum(nlaggr) naggrm1=sum(nlaggr(1:me)) call acoo%allocate(ncol,ntaggr,ncol) call op_prol%cscnv(info,type='csr',dupl=psb_dupl_add_) if (info /= psb_success_) goto 9999 call op_prol%transp(op_restr) call a%cp_to(ac_coo) nzt = ac_coo%get_nzeros() k = 0 do i=1, nzt k = k + 1 ac_coo%ia(k) = ilaggr(ac_coo%ia(i)) ac_coo%ja(k) = ilaggr(ac_coo%ja(i)) ac_coo%val(k) = ac_coo%val(i) enddo call ac_coo%set_nrows(naggr) call ac_coo%set_ncols(naggr) call ac_coo%set_nzeros(k) call ac_coo%set_dupl(psb_dupl_add_) call ac_coo%fix(info) call ac%mv_from(ac_coo) call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine mld_saggrmat_nosmth_asb