!!$ !!$ !!$ MLD2P4 version 2.0 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.0) !!$ !!$ (C) Copyright 2008,2009,2010 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_daggrmat_minnrg_asb.F90 ! ! Subroutine: mld_daggrmat_minnrg_asb ! Version: real ! ! This routine builds a coarse-level matrix A_C from a fine-level matrix A ! by using the Galerkin approach, i.e. ! ! A_C = P_C^T A P_C, ! ! where P_C is a prolongator from the coarse level to the fine one. ! ! The prolongator P_C is built according to a smoothed aggregation algorithm, ! i.e. it is obtained by applying a damped Jacobi smoother to the piecewise ! constant interpolation operator P corresponding to the fine-to-coarse level ! mapping built by the mld_aggrmap_bld subroutine: ! ! P_C = (I - omega*D^(-1)A) * P, ! ! where D is the diagonal matrix with main diagonal equal to the main diagonal ! of A, and omega is a suitable smoothing parameter. An estimate of the spectral ! radius of D^(-1)A, to be used in the computation of omega, is provided, ! according to the value of p%parms%aggr_omega_alg, specified by the user ! through mld_dprecinit and mld_dprecset. ! ! This routine can also build A_C according to a "bizarre" aggregation algorithm, ! using a "naive" prolongator proposed by the authors of MLD2P4. However, this ! prolongator still requires a deep analysis and testing and its use is not ! recommended. ! ! The coarse-level matrix A_C is distributed among the parallel processes or ! replicated on each of them, according to the value of p%parms%coarse_mat, ! specified by the user through mld_dprecinit and mld_dprecset. ! ! For more details see ! M. Brezina and P. Vanek, A black-box iterative solver based on a ! two-level Schwarz method, Computing, 63 (1999), 233-263. ! P. D'Ambra, D. di Serafino and S. Filippone, On the development of ! PSBLAS-based parallel two-level Schwarz preconditioners, Appl. Num. Math. ! 57 (2007), 1181-1196. ! ! Arguments: ! a - type(psb_dspmat_type), input. ! The sparse matrix structure containing the local part of ! the fine-level matrix. ! desc_a - type(psb_desc_type), input. ! The communication descriptor of the fine-level matrix. ! p - type(mld_donelev_type), input/output. ! The 'one-level' data structure that will contain the local ! part of the matrix to be built as well as the information ! concerning the prolongator and its transpose. ! ilaggr - integer, dimension(:), allocatable. ! The mapping between the row indices of the coarse-level ! matrix and the row indices of the fine-level matrix. ! ilaggr(i)=j means that node i in the adjacency graph ! of the fine-level matrix is mapped onto node j in the ! adjacency graph of the coarse-level matrix. ! nlaggr - integer, dimension(:), allocatable. ! nlaggr(i) contains the aggregates held by process i. ! info - integer, output. ! Error code. ! subroutine mld_daggrmat_minnrg_asb(a,desc_a,ilaggr,nlaggr,p,info) use psb_base_mod use mld_d_inner_mod, mld_protect_name => mld_daggrmat_minnrg_asb #ifdef MPI_MOD use mpi #endif implicit none #ifdef MPI_H include 'mpif.h' #endif ! Arguments type(psb_dspmat_type), intent(in) :: a type(psb_desc_type), intent(in) :: desc_a integer, intent(inout) :: ilaggr(:), nlaggr(:) type(mld_donelev_type), intent(inout), target :: p integer, intent(out) :: info ! Local variables type(psb_dspmat_type) :: b integer, allocatable :: nzbr(:), idisp(:) integer :: nrow, nglob, ncol, ntaggr, nzac, ip, ndx,& & naggr, nzl,naggrm1,naggrp1, i, j, k, jd, icolF, nrt integer ::ictxt,np,me, err_act, icomm character(len=20) :: name type(psb_dspmat_type) :: am1,am2, am3, am4, atmp, atmp2, atran type(psb_d_coo_sparse_mat) :: acoo, acoof, bcoo, tmpcoo type(psb_d_csr_sparse_mat) :: acsr1, acsr2, acsr3, bcsr, acsr, acsrf, ptilde, rtilde type(psb_d_csr_sparse_mat) :: ra, rada, arp, ardap, artp, artdatp, acrtran type(psb_d_csc_sparse_mat) :: ap, adap, atp, atdatp, acsc real(psb_dpk_), allocatable :: adiag(:), pj(:), xj(:), yj(:), omf(:),omp(:),omi(:),& & oden(:), adinv(:) logical :: filter_mat integer :: debug_level, debug_unit integer, parameter :: ncmax=16 real(psb_dpk_) :: omega, anorm, tmp, dg, theta, alpha,beta, ommx name='mld_aggrmat_minnrg' if(psb_get_errstatus().ne.0) return info=psb_success_ call psb_erractionsave(err_act) debug_unit = psb_get_debug_unit() debug_level = psb_get_debug_level() ictxt = desc_a%get_context() icomm = desc_a%get_mpic() ictxt = desc_a%get_context() call psb_info(ictxt, me, np) nglob = desc_a%get_global_rows() nrow = desc_a%get_local_rows() ncol = desc_a%get_local_cols() theta = p%parms%aggr_thresh naggr = nlaggr(me+1) ntaggr = sum(nlaggr) allocate(nzbr(np), idisp(np),stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/2*np,0,0,0,0/),& & a_err='integer') goto 9999 end if naggrm1 = sum(nlaggr(1:me)) naggrp1 = sum(nlaggr(1:me+1)) filter_mat = (p%parms%aggr_filter == mld_filter_mat_) ilaggr(1:nrow) = ilaggr(1:nrow) + naggrm1 call psb_halo(ilaggr,desc_a,info) if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_halo') goto 9999 end if ! naggr: number of local aggregates ! nrow: local rows. ! allocate(adiag(ncol),adinv(ncol),xj(ncol),& & yj(ncol),omf(ncol),omp(ntaggr),oden(ntaggr),omi(ncol),stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/6*ncol+ntaggr,0,0,0,0/),& & a_err='real(psb_dpk_)') goto 9999 end if ! Get the diagonal D ! Get the diagonal D call a%get_diag(adiag,info) if (info == psb_success_) & & call psb_halo(adiag,desc_a,info) if(info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='sp_getdiag') goto 9999 end if ! 1. Allocate Ptilde in sparse matrix form call acoo%allocate(ncol,ntaggr,ncol) do i=1,ncol acoo%val(i) = done acoo%ia(i) = i acoo%ja(i) = ilaggr(i) end do call acoo%set_nzeros(ncol) call acoo%set_dupl(psb_dupl_add_) call ptilde%mv_from_coo(acoo,info) if (info == psb_success_) call a%cscnv(acsr3,info,dupl=psb_dupl_add_) if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='spcnv') goto 9999 end if if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & ' Initial copies done.' call psb_symbmm(acsr3,ptilde,arp,info) if (info == psb_success_) call psb_numbmm(acsr3,ptilde,arp) if(info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='symbmm 1') goto 9999 end if call atmp%cp_from(arp) do i=1,size(adiag) if (adiag(i) /= dzero) then adinv(i) = done / adiag(i) else adinv(i) = done end if end do call atmp%scal(adinv,info) call psb_sphalo(atmp,desc_a,am4,info,& & colcnv=.false.,rowscale=.true.,outfmt='CSR ') if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=am4) if (info == psb_success_) call psb_sp_free(am4,info) call atmp%mv_to(acsr1) call psb_symbmm(acsr3,acsr1,ardap,info) call psb_numbmm(acsr3,acsr1,ardap) call acsr1%free() ! !$ write(0,*) 'Columns of AP',psb_sp_get_ncols(ap) ! !$ write(0,*) 'Columns of ADAP',psb_sp_get_ncols(adap) call ap%mv_from_fmt(arp,info) call adap%mv_from_fmt(ardap,info) call csc_mat_col_prod(ap,adap,omp,info) call csc_mat_col_prod(adap,adap,oden,info) call psb_sum(ictxt,omp) call psb_sum(ictxt,oden) ! !$ write(0,*) trim(name),' OMP :',omp ! !$ write(0,*) trim(name),' ODEN:',oden omp = omp/oden ! !$ write(0,*) 'Check on output prolongator ',omp(1:min(size(omp),10)) if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done NUMBMM 1' ! Compute omega_int ommx = -1d300 do i=1, ncol omi(i) = omp(ilaggr(i)) ommx = max(ommx,omi(i)) end do ! Compute omega_fine do i=1, nrow omf(i) = ommx do j=acsr3%irp(i),acsr3%irp(i+1)-1 omf(i) = min(omf(i),omi(acsr3%ja(j))) end do omf(i) = max(dzero,omf(i)) end do omf(1:nrow) = omf(1:nrow) * adinv(1:nrow) if (filter_mat) then ! ! Build the filtered matrix Af from A ! call a%cscnv(acsrf,info,dupl=psb_dupl_add_) do i=1,nrow tmp = dzero jd = -1 do j=acsrf%irp(i),acsrf%irp(i+1)-1 if (acsrf%ja(j) == i) jd = j if (abs(acsrf%val(j)) < theta*sqrt(abs(adiag(i)*adiag(acsrf%ja(j))))) then tmp=tmp+acsrf%val(j) acsrf%val(j)=dzero endif enddo if (jd == -1) then write(0,*) 'Wrong input: we need the diagonal!!!!', i else acsrf%val(jd)=acsrf%val(jd)-tmp end if enddo ! Take out zeroed terms call acsrf%mv_to_coo(tmpcoo,info) k = 0 do j=1,tmpcoo%get_nzeros() if ((tmpcoo%val(j) /= dzero) .or. (tmpcoo%ia(j) == tmpcoo%ja(j))) then k = k + 1 tmpcoo%val(k) = tmpcoo%val(j) tmpcoo%ia(k) = tmpcoo%ia(j) tmpcoo%ja(k) = tmpcoo%ja(j) end if end do ! !$ write(debug_unit,*) me,' ',trim(name),' Non zeros from filtered matrix:',k,acsrf%m,acsrf%k call tmpcoo%set_nzeros(k) call acsrf%mv_from_coo(tmpcoo,info) ! ! Build the smoothed prolongator using the filtered matrix ! do i=1,acsrf%get_nrows() do j=acsrf%irp(i),acsrf%irp(i+1)-1 if (acsrf%ja(j) == i) then acsrf%val(j) = done - omf(i)*acsrf%val(j) else acsrf%val(j) = - omf(i)*acsrf%val(j) end if end do end do if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done gather, going for SYMBMM 1' ! ! Symbmm90 does the allocation for its result. ! ! am1 = (I-w*D*Af)Ptilde ! Doing it this way means to consider diag(Af_i) ! ! call psb_symbmm(acsrf,ptilde,acsr1,info) if(info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='symbmm 1') goto 9999 end if call psb_numbmm(acsrf,ptilde,acsr1) if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done NUMBMM 1' else ! ! Build the smoothed prolongator using the original matrix ! do i=1,acsr3%get_nrows() do j=acsr3%irp(i),acsr3%irp(i+1)-1 if (acsr3%ja(j) == i) then acsr3%val(j) = done - omf(i)*acsr3%val(j) else acsr3%val(j) = - omf(i)*acsr3%val(j) end if end do end do if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done gather, going for SYMBMM 1' ! ! Symbmm90 does the allocation for its result. ! ! am1 = (I-w*D*A)Ptilde ! ! call psb_symbmm(acsr3,ptilde,acsr1,info) if(info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='symbmm 1') goto 9999 end if call psb_numbmm(acsr3,ptilde,acsr1) if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done NUMBMM 1' end if ! ! Now encapsulate in AM1 ! call am1%mv_from(acsr1) ! ! Ok, let's start over with the restrictor ! call ptilde%transp(rtilde) call atmp%mv_from(acsr3) call psb_sphalo(atmp,desc_a,am4,info,& & colcnv=.true.,rowscale=.true.) nrt = am4%get_nrows() call am4%csclip(atmp2,info,1,nrt,1,ncol) call atmp2%cscnv(info,type='CSR') if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=atmp2) call am4%free() call atmp2%free() ! This is to compute the transpose. It ONLY works if the ! original A has a symmetric pattern. call atmp%transp(atmp2) call atmp2%csclip(atran,info,1,nrow,1,ncol) call atmp2%free() call atran%mv_to(acrtran) ! Now for the product. call psb_symbmm(acrtran,ptilde,artp,info) if (info == psb_success_) call psb_numbmm(acrtran,ptilde,artp) call atmp2%cp_from(artp) call atmp2%scal(adinv,info) call psb_sphalo(atmp2,desc_a,am4,info,& & colcnv=.false.,rowscale=.true.,outfmt='CSR ') if (info == psb_success_) call psb_rwextd(ncol,atmp2,info,b=am4) if (info == psb_success_) call am4%free() call atmp2%mv_to(acsr2) call psb_symbmm(acrtran,acsr2,artdatp,info) call psb_numbmm(acrtran,acsr2,artdatp) call acsr2%free() call artp%mv_to_fmt(atp,info) call artdatp%mv_to_fmt(atdatp,info) call csc_mat_col_prod(atp,atdatp,omp,info) call csc_mat_col_prod(atdatp,atdatp,oden,info) call psb_sum(ictxt,omp) call psb_sum(ictxt,oden) ! !$ write(debug_unit,*) trim(name),' OMP_R :',omp ! ! $ write(debug_unit,*) trim(name),' ODEN_R:',oden omp = omp/oden ! !$ write(0,*) 'Check on output restrictor',omp(1:min(size(omp),10)) ! Compute omega_int ommx = -1d300 do i=1, ncol omi(i) = omp(ilaggr(i)) ommx = max(ommx,omi(i)) end do ! Compute omega_fine ! Going over the columns of atmp means going over the rows ! of A^T. Hopefully ;-) call atmp%cp_to(acsc) do i=1, nrow omf(i) = ommx do j=acsc%icp(i),acsc%icp(i+1)-1 omf(i) = min(omf(i),omi(acsc%ia(j))) end do omf(i) = max(dzero,omf(i)) end do omf(1:nrow) = omf(1:nrow)*adinv(1:nrow) call psb_halo(omf,desc_a,info) call acsc%free() call atmp%mv_to(acsr1) do i=1,acsr1%get_nrows() do j=acsr1%irp(i),acsr1%irp(i+1)-1 if (acsr1%ja(j) == i) then acsr1%val(j) = done - acsr1%val(j)*omf(acsr1%ja(j)) else acsr1%val(j) = - acsr1%val(j)*omf(acsr1%ja(j)) end if end do end do call psb_symbmm(rtilde,acsr1,acsr2,info) call psb_numbmm(rtilde,acsr1,acsr2) ! ! Now we have to fix this. The only rows of B that are correct ! are those corresponding to "local" aggregates, i.e. indices in ilaggr(:) ! call acsr2%mv_to_coo(tmpcoo,info) nzl = tmpcoo%get_nzeros() i=0 do k=1, nzl if ((naggrm1 < tmpcoo%ia(k)) .and. (tmpcoo%ia(k) <= naggrp1)) then i = i+1 tmpcoo%val(i) = tmpcoo%val(k) tmpcoo%ia(i) = tmpcoo%ia(k) tmpcoo%ja(i) = tmpcoo%ja(k) end if end do call tmpcoo%set_nzeros(i) call acsr2%mv_from_coo(tmpcoo,info) if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'starting sphalo/ rwxtd' ! ! Final steps: build the product. ! Now we have to gather the halo of am1, and add it to itself ! to multiply it by A, ! call psb_sphalo(am1,desc_a,am4,info,& & colcnv=.false.,rowscale=.true.) if (info == psb_success_) call psb_rwextd(ncol,am1,info,b=am4) if (info == psb_success_) call am4%free() if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,a_err='Halo of am1') goto 9999 end if call am1%cp_to(acsr1) call a%cp_to(acsr) call psb_symbmm(acsr,acsr1,acsr3,info) if(info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='symbmm 2') goto 9999 end if call psb_numbmm(acsr,acsr1,acsr3) if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done NUMBMM 2' call am3%mv_from(acsr3) ! am2 = ((i-wDA)Ptilde)^T call psb_sphalo(am3,desc_a,am4,info,& & colcnv=.false.,rowscale=.true.) if (info == psb_success_) call psb_rwextd(ncol,am3,info,b=am4) if (info == psb_success_) call am4%free() call am3%mv_to(acsr3) call psb_symbmm(acsr2,acsr3,bcsr,info) if (info == psb_success_) call psb_numbmm(acsr2,acsr3,bcsr) call acsr3%free() call bcsr%mv_to_coo(bcoo,info) call am2%mv_from(acsr2) select case(p%parms%coarse_mat) case(mld_distr_mat_) nzl = bcoo%get_nrows() if (info == psb_success_) call psb_cdall(ictxt,p%desc_ac,info,nl=nlaggr(me+1)) if (info == psb_success_) call psb_cdins(nzl,bcoo%ia,bcoo%ja,p%desc_ac,info) if (info == psb_success_) call psb_cdasb(p%desc_ac,info) if (info == psb_success_) call psb_glob_to_loc(bcoo%ia(1:nzl),p%desc_ac,info,iact='I') if (info == psb_success_) call psb_glob_to_loc(bcoo%ja(1:nzl),p%desc_ac,info,iact='I') if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,a_err='Creating p%desc_ac and converting ac') goto 9999 end if if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Assembld aux descr. distr.' call bcoo%set_nrows(p%desc_ac%get_local_rows()) call bcoo%set_ncols(p%desc_ac%get_local_cols()) call p%ac%mv_from(bcoo) if (np>1) then call am1%mv_to(tmpcoo) nzl = tmpcoo%get_nzeros() call psb_glob_to_loc(tmpcoo%ja(1:nzl),p%desc_ac,info,'I') if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_glob_to_loc') goto 9999 end if call am1%mv_from(tmpcoo) endif call am1%set_ncols(p%desc_ac%get_local_cols()) if (np>1) then call am2%mv_to(tmpcoo) nzl = tmpcoo%get_nzeros() if (info == psb_success_) call psb_glob_to_loc(tmpcoo%ia(1:nzl),p%desc_ac,info,'I') if(info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,a_err='Converting am2 to local') goto 9999 end if call am2%mv_from(tmpcoo) end if call am2%set_nrows(p%desc_ac%get_local_cols()) if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done ac ' case(mld_repl_mat_) ! ! call psb_cdall(ictxt,p%desc_ac,info,mg=ntaggr,repl=.true.) nzbr(:) = 0 nzbr(me+1) = bcoo%get_nzeros() call psb_sum(ictxt,nzbr(1:np)) nzac = sum(nzbr) if (info == psb_success_) call tmpcoo%allocate(ntaggr,ntaggr,nzac) if (info /= psb_success_) goto 9999 do ip=1,np idisp(ip) = sum(nzbr(1:ip-1)) enddo ndx = nzbr(me+1) call mpi_allgatherv(bcoo%val,ndx,mpi_double_precision,tmpcoo%val,nzbr,idisp,& & mpi_double_precision,icomm,info) if (info == psb_success_) call mpi_allgatherv(bcoo%ia,ndx,mpi_integer,tmpcoo%ia,nzbr,idisp,& & mpi_integer,icomm,info) if (info == psb_success_) call mpi_allgatherv(bcoo%ja,ndx,mpi_integer,tmpcoo%ja,nzbr,idisp,& & mpi_integer,icomm,info) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,a_err=' from mpi_allgatherv') goto 9999 end if call tmpcoo%fix(info) call p%ac%mv_from(tmpcoo) call bcoo%free() if(info /= psb_success_) goto 9999 deallocate(nzbr,idisp,stat=info) if (info /= psb_success_) then info = psb_err_alloc_dealloc_ call psb_errpush(info,name) goto 9999 end if case default info = psb_err_internal_error_ call psb_errpush(info,name,a_err='invalid mld_coarse_mat_') goto 9999 end select call p%ac%cscnv(info,type='csr') if(info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='spcnv') goto 9999 end if ! ! Copy the prolongation/restriction matrices into the descriptor map. ! am2 => R i.e. restriction operator ! am1 => P i.e. prolongation operator ! p%map = psb_linmap(psb_map_aggr_,desc_a,& & p%desc_ac,am2,am1,ilaggr,nlaggr) if (info == psb_success_) call am1%free() if (info == psb_success_) call am2%free() if(info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='sp_Free') goto 9999 end if !!$ if (.false.) then !!$ i = 4 !!$ select case (i) !!$ case(1) !!$ !!$ call psb_transp(ptilde,rtilde,fmt='CSR') !!$ call psb_spcnv(a,atmp,info,afmt='CSR') !!$ !!$ am4%fida='COO' !!$ am4%m=ncol-nrow !!$ am4%k=ncol !!$ call psb_sp_all(ncol,ntaggr,am4,ncol,info) !!$ !!$ do i=1,ncol-nrow !!$ am4%aspk(i) = dzero !!$ am4%ia1(i) = i !!$ am4%ia2(i) = nrow+i !!$ end do !!$ call psb_sp_setifld(nrow-ncol,psb_nnz_,am4,info) !!$ call psb_spcnv(am4,info,afmt='CSR') !!$ if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=am4) !!$ if (info == psb_success_) call psb_sp_free(am4,info) !!$ !!$ case(2) !!$ !!$ call psb_transp(ptilde,rtilde,fmt='CSR') !!$ call psb_spcnv(a,atmp,info,afmt='CSR') !!$ call psb_sphalo(atmp,desc_a,am4,info,& !!$ & colcnv=.true.,rowscale=.true.) !!$ nrt = psb_sp_get_nrows(am4) !!$ call psb_sp_clip(am4,atmp2,info,1,nrt,1,ncol) !!$ call psb_spcnv(atmp2,info,afmt='CSR') !!$ atmp2%aspk(:) = dzero !!$ if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=atmp2) !!$ if (info == psb_success_) call psb_sp_free(am4,info) !!$ if (info == psb_success_) call psb_sp_free(atmp2,info) !!$ !!$ case (3) !!$ !!$ ! We are doing the product only on the local !!$ ! rows, the non-local contributions will be handled !!$ ! through the global sum. !!$ call psb_transp(ptilde,am4,fmt='CSR') !!$ nrt = psb_sp_get_nrows(am4) !!$ call psb_sp_clip(am4,rtilde,info,1,nrt,1,nrow) !!$ call psb_spcnv(a,atmp,info,afmt='CSR') !!$ !!$ case(4) !!$ !!$ call psb_transp(ptilde,rtilde,fmt='COO') !!$ do i=1, psb_sp_get_nnzeros(rtilde) !!$ if (rtilde%ia2(i) > nrow) then !!$ rtilde%aspk(i) = dzero !!$ end if !!$ end do !!$ call psb_spcnv(rtilde,info,afmt='CSR') !!$ call psb_spcnv(a,atmp,info,afmt='CSR') !!$ call psb_sphalo(atmp,desc_a,am4,info,& !!$ & colcnv=.true.,rowscale=.true.) !!$ nrt = psb_sp_get_nrows(am4) !!$ call psb_sp_clip(am4,atmp2,info,1,nrt,1,ncol) !!$ call psb_spcnv(atmp2,info,afmt='CSR') !!$! !$ atmp2%aspk(:) = dzero !!$ if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=atmp2) !!$ if (info == psb_success_) call psb_sp_free(am4,info) !!$ if (info == psb_success_) call psb_sp_free(atmp2,info) !!$ !!$ case default !!$ write(0,*) 'Not building rtilde/atmp, this will blow up' !!$ info = psb_err_from_subroutine_ !!$ goto 9999 !!$ end select !!$ !!$ if (info == psb_success_) call psb_symbmm(rtilde,atmp,ra,info) !!$ if (info == psb_success_) call psb_numbmm(rtilde,atmp,ra) !!$ if (info /= psb_success_) then !!$ write(0,*) 'From symbmm 1:',info !!$ goto 9999 !!$ end if !!$ call psb_sp_scal(adinv,atmp,info) !!$ if (info == psb_success_) call psb_symbmm(ra,atmp,rada,info) !!$ if (info == psb_success_) call psb_numbmm(ra,atmp,rada) !!$ if (info /= psb_success_) then !!$ write(0,*) 'From symbmm 2:',info !!$ goto 9999 !!$ end if !!$ !!$ call csr_mat_row_prod(ra,rada,omp,info) !!$ call csr_mat_row_prod(rada,rada,oden,info) !!$ call psb_sum(ictxt,omp) !!$ call psb_sum(ictxt,oden) !!$ else !!$ !!$ call psb_transp(ptilde,rtilde,fmt='CSR') !!$ call psb_spcnv(a,atmp,info,afmt='CSR') !!$ call psb_sphalo(atmp,desc_a,am4,info,& !!$ & colcnv=.true.,rowscale=.true.) !!$ nrt = psb_sp_get_nrows(am4) !!$ call psb_sp_clip(am4,atmp2,info,1,nrt,1,ncol) !!$ call psb_spcnv(atmp2,info,afmt='CSR') !!$ if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=atmp2) !!$ if (info == psb_success_) call psb_sp_free(am4,info) !!$ if (info == psb_success_) call psb_sp_free(atmp2,info) !!$ ! This is to compute the transpose. It ONLY works if the !!$ ! original A has a symmetric pattern. !!$ call psb_transp(atmp,atmp2) !!$ call psb_sp_clip(atmp2,atran,info,1,nrow,1,ncol) !!$ call psb_sp_free(atmp2,info) !!$ ! Now for the product. !!$ call psb_symbmm(atran,ptilde,atp,info) !!$ if (info == psb_success_) call psb_numbmm(atran,ptilde,atp) !!$ call psb_sp_clone(atp,atmp2,info) !!$ call psb_sp_scal(adinv,atmp2,info) !!$ call psb_sphalo(atmp2,desc_a,am4,info,& !!$ & colcnv=.false.,rowscale=.true.,outfmt='CSR ') !!$ if (info == psb_success_) call psb_rwextd(ncol,atmp2,info,b=am4) !!$ if (info == psb_success_) call psb_sp_free(am4,info) !!$ !!$ call psb_symbmm(atran,atmp2,atdatp,info) !!$ call psb_numbmm(atran,atmp2,atdatp) !!$ call psb_sp_free(atmp2,info) !!$ !!$ call psb_spcnv(atp,info,afmt='coo') !!$ if (info == psb_success_) call psb_spcnv(atp,info,afmt='csc') !!$ if (info == psb_success_) call psb_spcnv(atdatp,info,afmt='coo') !!$ if (info == psb_success_) call psb_spcnv(atdatp,info,afmt='csc') !!$ if (info /= psb_success_) then !!$ write(0,*) 'Failed conversion to CSC' !!$ end if !!$ !!$ call csc_mat_col_prod(atp,atdatp,omp,info) !!$ call csc_mat_col_prod(atdatp,atdatp,oden,info) !!$ call psb_sum(ictxt,omp) !!$ call psb_sum(ictxt,oden) !!$ !!$ !!$ end if !!$! !$ write(debug_unit,*) trim(name),' OMP_R :',omp !!$! ! $ write(debug_unit,*) trim(name),' ODEN_R:',oden !!$ omp = omp/oden !!$! !$ write(0,*) 'Check on output restrictor',omp(1:min(size(omp),10)) !!$ ! Compute omega_int !!$ ommx = -1d300 !!$ do i=1, ncol !!$ omi(i) = omp(ilaggr(i)) !!$ ommx = max(ommx,omi(i)) !!$ end do !!$ ! Compute omega_fine !!$ ! Going over the columns of atmp means going over the rows !!$ ! of A^T. Hopefully ;-) !!$ call psb_spcnv(atmp,atmp2,info,afmt='coo') !!$ if (info == psb_success_) call psb_spcnv(atmp2,info,afmt='csc') !!$ !!$ do i=1, nrow !!$ omf(i) = ommx !!$ do j=atmp2%ia2(i),atmp2%ia2(i+1)-1 !!$ omf(i) = min(omf(i),omi(atmp2%ia1(j))) !!$ end do !!$ omf(i) = max(dzero,omf(i)) !!$ end do !!$ omf(1:nrow) = omf(1:nrow)*adinv(1:nrow) !!$ call psb_halo(omf,desc_a,info) !!$ call psb_sp_free(atmp2,info) !!$ !!$ !!$ if (psb_toupper(atmp%fida) == 'CSR') then !!$ do i=1,atmp%m !!$ do j=atmp%ia2(i),atmp%ia2(i+1)-1 !!$ if (atmp%ia1(j) == i) then !!$ atmp%aspk(j) = done - atmp%aspk(j)*omf(atmp%ia1(j)) !!$ else !!$ atmp%aspk(j) = - atmp%aspk(j)*omf(atmp%ia1(j)) !!$ end if !!$ end do !!$ end do !!$ else !!$ call psb_errpush(psb_err_internal_error_,name,a_err='Invalid ATMP storage format') !!$ goto 9999 !!$ end if !!$ call psb_symbmm(rtilde,atmp,am2,info) !!$ call psb_numbmm(rtilde,atmp,am2) !!$ !!$ ! !!$ ! Now we have to gather the halo of am1, and add it to itself !!$ ! to multiply it by A, !!$ ! !!$ call psb_sphalo(am1,desc_a,am4,info,& !!$ & colcnv=.false.,rowscale=.true.) !!$ if (info == psb_success_) call psb_rwextd(ncol,am1,info,b=am4) !!$ if (info == psb_success_) call psb_sp_free(am4,info) !!$ !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,a_err='Halo of am1') !!$ goto 9999 !!$ end if !!$ !!$ !!$ !!$ call psb_symbmm(a,am1,am3,info) !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='symbmm 2') !!$ goto 9999 !!$ end if !!$ !!$ call psb_numbmm(a,am1,am3) !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done NUMBMM 2' !!$ !!$ ! !!$ ! Now we have to fix this. The only rows of B that are correct !!$ ! are those corresponding to "local" aggregates, i.e. indices in ilaggr(:) !!$ ! !!$ call psb_spcnv(am2,info,afmt='COO') !!$ nzl = psb_sp_get_nnzeros(am2) !!$ i=0 !!$ do k=1, nzl !!$ if ((naggrm1 < am2%ia1(k)) .and. (am2%ia1(k) <= naggrp1)) then !!$ i = i+1 !!$ am2%aspk(i) = am2%aspk(k) !!$ am2%ia1(i) = am2%ia1(k) !!$ am2%ia2(i) = am2%ia2(k) !!$ end if !!$ end do !!$ am2%infoa(psb_nnz_) = i !!$ call psb_spcnv(am2,info,afmt='csr',dupl=psb_dupl_add_) !!$ if (info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='spcnv am2') !!$ goto 9999 !!$ end if !!$ !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'starting sphalo/ rwxtd' !!$ !!$ ! am2 = ((i-wDA)Ptilde)^T !!$ call psb_sphalo(am3,desc_a,am4,info,& !!$ & colcnv=.false.,rowscale=.true.) !!$ if (info == psb_success_) call psb_rwextd(ncol,am3,info,b=am4) !!$ if (info == psb_success_) call psb_sp_free(am4,info) !!$ !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,a_err='Extend am3') !!$ goto 9999 !!$ end if !!$ !!$ !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'starting symbmm 3' !!$ call psb_symbmm(am2,am3,b,info) !!$ if (info == psb_success_) call psb_numbmm(am2,am3,b) !!$ if (info == psb_success_) call psb_sp_free(am3,info) !!$ if (info == psb_success_) call psb_spcnv(b,info,afmt='coo',dupl=psb_dupl_add_) !!$ if (info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,a_err='Build b = am2 x am3') !!$ goto 9999 !!$ end if !!$ !!$ !!$ !!$ select case(p%parms%coarse_mat) !!$ !!$ case(mld_distr_mat_) !!$ !!$ call psb_sp_clone(b,p%ac,info) !!$ nzac = p%ac%infoa(psb_nnz_) !!$ nzl = p%ac%infoa(psb_nnz_) !!$ if (info == psb_success_) call psb_cdall(ictxt,p%desc_ac,info,nl=nlaggr(me+1)) !!$ if (info == psb_success_) call psb_cdins(nzl,p%ac%ia1,p%ac%ia2,p%desc_ac,info) !!$ if (info == psb_success_) call psb_cdasb(p%desc_ac,info) !!$ if (info == psb_success_) call psb_glob_to_loc(p%ac%ia1(1:nzl),p%desc_ac,info,iact='I') !!$ if (info == psb_success_) call psb_glob_to_loc(p%ac%ia2(1:nzl),p%desc_ac,info,iact='I') !!$ if (info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,a_err='Creating p%desc_ac and converting ac') !!$ goto 9999 !!$ end if !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Assembld aux descr. distr.' !!$ !!$ !!$ p%ac%m=p%desc_ac%get_local_rows() !!$ p%ac%k=p%desc_ac%get_local_cols() !!$ p%ac%fida='COO' !!$ p%ac%descra='GUN' !!$ !!$ call psb_sp_free(b,info) !!$ if (info == psb_success_) deallocate(nzbr,idisp,stat=info) !!$ if (info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_sp_free') !!$ goto 9999 !!$ end if !!$ !!$ if (np>1) then !!$ nzl = psb_sp_get_nnzeros(am1) !!$ call psb_glob_to_loc(am1%ia1(1:nzl),p%desc_ac,info,'I') !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_glob_to_loc') !!$ goto 9999 !!$ end if !!$ endif !!$ am1%k=p%desc_ac%get_local_cols() !!$ !!$ if (np>1) then !!$ call psb_spcnv(am2,info,afmt='coo',dupl=psb_dupl_add_) !!$ nzl = am2%infoa(psb_nnz_) !!$ if (info == psb_success_) call psb_glob_to_loc(am2%ia1(1:nzl),p%desc_ac,info,'I') !!$ if (info == psb_success_) call psb_spcnv(am2,info,afmt='csr',dupl=psb_dupl_add_) !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,a_err='Converting am2 to local') !!$ goto 9999 !!$ end if !!$ end if !!$ am2%m=p%desc_ac%get_local_cols() !!$ !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done ac ' !!$ !!$ case(mld_repl_mat_) !!$ ! !!$ ! !!$ call psb_cdall(ictxt,p%desc_ac,info,mg=ntaggr,repl=.true.) !!$ nzbr(:) = 0 !!$ nzbr(me+1) = b%infoa(psb_nnz_) !!$ !!$ call psb_sum(ictxt,nzbr(1:np)) !!$ nzac = sum(nzbr) !!$ if (info == psb_success_) call psb_sp_all(ntaggr,ntaggr,p%ac,nzac,info) !!$ if (info /= psb_success_) goto 9999 !!$ !!$ do ip=1,np !!$ idisp(ip) = sum(nzbr(1:ip-1)) !!$ enddo !!$ ndx = nzbr(me+1) !!$ !!$ call mpi_allgatherv(b%aspk,ndx,mpi_double_precision,p%ac%aspk,nzbr,idisp,& !!$ & mpi_double_precision,icomm,info) !!$ if (info == psb_success_) call mpi_allgatherv(b%ia1,ndx,mpi_integer,p%ac%ia1,nzbr,idisp,& !!$ & mpi_integer,icomm,info) !!$ if (info == psb_success_) call mpi_allgatherv(b%ia2,ndx,mpi_integer,p%ac%ia2,nzbr,idisp,& !!$ & mpi_integer,icomm,info) !!$ !!$ if (info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,a_err=' from mpi_allgatherv') !!$ goto 9999 !!$ end if !!$ !!$ p%ac%m = ntaggr !!$ p%ac%k = ntaggr !!$ p%ac%infoa(psb_nnz_) = nzac !!$ p%ac%fida='COO' !!$ p%ac%descra='GUN' !!$ call psb_spcnv(p%ac,info,afmt='coo',dupl=psb_dupl_add_) !!$ if(info /= psb_success_) goto 9999 !!$ call psb_sp_free(b,info) !!$ if(info /= psb_success_) goto 9999 !!$ !!$ deallocate(nzbr,idisp,stat=info) !!$ if (info /= psb_success_) then !!$ info = psb_err_alloc_dealloc_ !!$ call psb_errpush(info,name) !!$ goto 9999 !!$ end if !!$ case default !!$ info = psb_err_internal_error_ !!$ call psb_errpush(info,name,a_err='invalid mld_coarse_mat_') !!$ goto 9999 !!$ end select !!$ !!$ !!$ !!$ call psb_spcnv(p%ac,info,afmt='csr',dupl=psb_dupl_add_) !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='spcnv') !!$ goto 9999 !!$ end if !!$ !!$ ! !!$ ! Copy the prolongation/restriction matrices into the descriptor map. !!$ ! am2 => R i.e. restriction operator !!$ ! am1 => P i.e. prolongation operator !!$ ! !!$ p%map = psb_linmap(psb_map_aggr_,desc_a,& !!$ & p%desc_ac,am2,am1,ilaggr,nlaggr) !!$ if (info == psb_success_) call psb_sp_free(am1,info) !!$ if (info == psb_success_) call psb_sp_free(am2,info) !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='sp_Free') !!$ goto 9999 !!$ end if if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done smooth_aggregate ' call psb_erractionrestore(err_act) return 9999 continue call psb_errpush(info,name) call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return contains subroutine csc_mat_col_prod(a,b,v,info) type(psb_d_csc_sparse_mat), intent(in) :: a, b real(psb_dpk_), intent(out) :: v(:) integer, intent(out) :: info integer :: i,j,k, nr, nc,iap,nra,ibp,nrb info = psb_success_ nc = a%get_ncols() if (nc /= b%get_ncols()) then write(0,*) 'Matrices A and B should have same columns' info = -1 return end if do j=1, nc iap = a%icp(j) nra = a%icp(j+1)-iap ibp = b%icp(j) nrb = b%icp(j+1)-ibp v(j) = sparse_srtd_dot(nra,a%ia(iap:iap+nra-1),a%val(iap:iap+nra-1),& & nrb,b%ia(ibp:ibp+nrb-1),b%val(ibp:ibp+nrb-1)) end do end subroutine csc_mat_col_prod subroutine csr_mat_row_prod(a,b,v,info) type(psb_d_csr_sparse_mat), intent(in) :: a, b real(psb_dpk_), intent(out) :: v(:) integer, intent(out) :: info integer :: i,j,k, nr, nc,iap,nca,ibp,ncb info = psb_success_ nr = a%get_nrows() if (nr /= b%get_nrows()) then write(0,*) 'Matrices A and B should have same rows' info = -1 return end if do j=1, nr iap = a%irp(j) nca = a%irp(j+1)-iap ibp = b%irp(j) ncb = b%irp(j+1)-ibp v(j) = sparse_srtd_dot(nca,a%ja(iap:iap+nca-1),a%val(iap:iap+nca-1),& & ncb,b%ja(ibp:ibp+ncb-1),b%val(ibp:ibp+ncb-1)) end do end subroutine csr_mat_row_prod function sparse_srtd_dot(nv1,iv1,v1,nv2,iv2,v2) result(dot) integer, intent(in) :: nv1,nv2 integer, intent(in) :: iv1(:), iv2(:) real(psb_dpk_), intent(in) :: v1(:),v2(:) real(psb_dpk_) :: dot integer :: i,j,k, ip1, ip2 dot = dzero ip1 = 1 ip2 = 1 do if (ip1 > nv1) exit if (ip2 > nv2) exit if (iv1(ip1) == iv2(ip2)) then dot = dot + v1(ip1)*v2(ip2) ip1 = ip1 + 1 ip2 = ip2 + 1 else if (iv1(ip1) < iv2(ip2)) then ip1 = ip1 + 1 else ip2 = ip2 + 1 end if end do end function sparse_srtd_dot end subroutine mld_daggrmat_minnrg_asb