
AMG4PSBLAS
User’s and Reference Guide

A guide for the Algebraic MultiGrid
Preconditioners Package based on PSBLAS

Pasqua D’Ambra
IAC-CNR, Italy

Fabio Durastante
University of Pisa and IAC-CNR

Salvatore Filippone
University of Rome Tor-Vergata and IAC-CNR

Software version: 1.0
March 31, 2021

This page intentionally left blank

i

Abstract

AMG4PSBLAS (Algebraic MultiGrid Preconditioners Package based on
PSBLAS) is a package of parallel algebraic multilevel preconditioners included in the
PSCToolkit (Parallel Sparse Computation Toolkit) software framework. It is a
progress of a software development project started in 2007, named MLD2P4, which
originally implemented a multilevel version of some domain decomposition
preconditioners of additive-Schwarz type and was based on a parallel decoupled
version of the well known smoothed aggregation method to generate the multilevel
hierarchy of coarser matrices. In the last years, within the context of the EU-H2020
EoCoE project (Energy Oriented Center of Excellence), the package is being extended
for including new algorithms and functionalities to setup and apply new AMG
preconditioners with the final aims of improving efficiency and scalability when tens of
thousands cores are used and of boosting reliability in dealing with general symmetric
positive definite linear systems. Due to the significant number of changes and the
increase in scope, we decided to rename the package as AMG4PSBLAS.
AMG4PSBLAS is designed to provide scalable and easy-to-use preconditioners in the
context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms)
computational framework and can be used in conjuction with the Krylov solvers
available in this framework. Our package is based on a completely algebraic approach
and users level interfaces assume that the system matrix and preconditioners are
represented as PSBLAS distributed sparse matrices. AMG4PSBLAS enables the user
to easily specify different features of an algebraic multilevel preconditioner, thus
allowing to experiment with different preconditioners for the problem and parallel
computers at hand.
The package employs object-oriented design techniques in Fortran 2003, with
interfaces to additional third party libraries such as MUMPS, UMFPACK, SuperLU,
and SuperLU Dist, which can be exploited in building multilevel preconditioners. The
parallel implementation is based on a Single Program Multiple Data (SPMD)
paradigm; the inter-process communication is based on MPI and is managed mainly
through PSBLAS.
This guide provides a brief description of the functionalities and the user interface of
AMG4PSBLAS.

This page intentionally left blank

iii

Contents

Abstract i

1 General Overview 1

2 Code Distribution 3

3 Configuring and Building AMG4PSBLAS 4
3.1 Prerequisites . 4
3.2 Optional third party libraries . 5
3.3 Configuration options . 5
3.4 Bug reporting . 10
3.5 Example and test programs . 10

4 Getting Started 11
4.1 Examples . 13

5 User Interface 16
5.1 Method init . 17
5.2 Method set . 18
5.3 Method hierarchy build . 28
5.4 Method smoothers build . 29
5.5 Method build . 30
5.6 Method apply . 31
5.7 Method free . 32
5.8 Method descr . 33
5.9 Auxiliary Methods . 33

5.9.1 Method: dump . 33
5.9.2 Method: clone . 33
5.9.3 Method: sizeof . 34
5.9.4 Method: allocate wrk . 34
5.9.5 Method: free wrk . 34

6 Adding new smoother and solver objects to AMG4PSBLAS 35

7 Error Handling 37

A License 38

References 40

This page intentionally left blank

1 General Overview 1

1 General Overview

The Algebraic MultiGrid Preconditioners Package based on PSBLAS
(AMG4PSBLAS) provides parallel Algebraic MultiGrid (AMG) preconditioners (see,
e.g., [3, 27]), to be used in the iterative solution of linear systems,

Ax = b, (1)

where A is a square, real or complex, sparse symmetric positive definite (s.p.d) matrix.
The preconditioners implemented in AMG4PSBLAS are obtained by combining 3
different types of AMG cycles with smoothers and coarsest-level solvers. The V-, W-,
and a version of a Krylov-type cycle (K-cycle) [3, 23] are available, which can be
combined with Jacobi hybrid forward/backward Gauss-Seidel, block-Jacobi, and
additive Schwarz smoothers. Also `1 versions of Jacobi, block-Jacobi and Gauss-Seidel
smoothers are available. An algebraic approach is used to generate a hierarchy of
coarse-level matrices and operators, without explicitly using any information on the
geometry of the original problem, e.g., the discretization of a PDE. To this end, two
different coarsening strategies, based on aggregation, are available:

• a decoupled version of the well known smoothed aggregation procedure proposed
in [2, 29], and already included in the previous versions of the package [10, 9];

• the first parallel implementation of a coupled version of Coarsening based on
Compatible Weighted Matching introduced in [30, 31] and described in details
in [11];

Either exact or approximate solvers can be used on the coarsest-level system.
Specifically, different sparse LU factorizations from external packages, native
incomplete LU and approximate inverse factorizations, weighted Jacobi, hybrid
Gauss-Seidel, block-Jacobi solvers and recursive call to preconditioned Krylov methods
are available. All the smoothers can be also exploited as one-level preconditioners.
AMG4PSBLAS is written in Fortran 2003, following an object-oriented design
through the exploitation of features such as abstract data type creation, type
extension, functional overloading, and dynamic memory management. The parallel
implementation is based on a Single Program Multiple Data (SPMD) paradigm.
Single and double precision implementations of AMG4PSBLAS are available for both
the real and the complex case, which can be used through a single interface.
AMG4PSBLAS has been designed to implement scalable and easy-to-use multilevel
preconditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational
framework [18, 17]. PSBLAS provides basic linear algebra operators and data
management facilities for distributed sparse matrices, kernels for sequential
incomplete factorizations needed for the parallel block-Jacobi and additive Schwarz
smoothers, and parallel Krylov solvers which can be used with the AMG4PSBLAS
preconditioners. The choice of PSBLAS has been mainly motivated by the need of
having a portable and efficient software infrastructure implementing “de facto”
standard parallel sparse linear algebra kernels, to pursue goals such as performance,

2 AMG4PSBLAS User’s and Reference Guide

portability, modularity ed extensibility in the development of the preconditioner
package. On the other hand, the implementation of AMG4PSBLAS, which was driven
by the need to face the exascale challenge, has led to some important revisions and
extentions of the PSBLAS infrastructure. The inter-process comunication required by
AMG4PSBLAS is encapsulated in the PSBLAS routines; therefore, AMG4PSBLAS
can be run on any parallel machine where PSBLAS implementations are available. In
the most recent version of PSBLAS (release 3.7), a plug-in for GPU is included; it
includes CUDA versions of main vector operations and of sparse matrix-vector
multiplication, so that Krylov methods coupled with AMG4PBLAS preconditioners
relying on Jacobi and block-Jacobi smoothers with sparse approximate inverses on the
blocks can be efficiently executed on cluster of GPUs.
AMG4PSBLAS has a layered and modular software architecture where three main
layers can be identified. The lower layer consists of the PSBLAS kernels, the middle
one implements the construction and application phases of the preconditioners, and
the upper one provides a uniform interface to all the preconditioners. This
architecture allows for different levels of use of the package: few black-box routines at
the upper layer allow all users to easily build and apply any preconditioner available in
AMG4PSBLAS; facilities are also available allowing expert users to extend the set of
smoothers and solvers for building new versions of the preconditioners (see Section 6).
This guide is organized as follows. General information on the distribution of the
source code is reported in Section 2, while details on the configuration and installation
of the package are given in Section 3. The basics for building and applying the
preconditioners with the Krylov solvers implemented in PSBLAS are reported
in Section 4, where the Fortran codes of a few sample programs are also shown. A
reference guide for the user interface routines is provided in Section 5. Information on
the extension of the package through the addition of new smoothers and solvers is
reported in Section 6. The error handling mechanism used by the package is briefly
described in Section 7. The copyright terms concerning the distribution and
modification of AMG4PSBLAS are reported in Appendix A.

2 Code Distribution 3

2 Code Distribution

AMG4PSBLAS is available from the web site

https://psctoolkit.github.io/products/amg4psblas/

where contact points for further information can be also found.
The software is available under a modified BSD license, as specified in Appendix A;
please note that some of the optional third party libraries may be licensed under a
different and more stringent license, most notably the GPL, and this should be taken
into account when treating derived works.
The library defines a version string with the constant

amg_version_string_

whose current value is 1.0.

Contributors

• Pasqua D’Ambra, IAC-CNR, IT;

• Fabio Durastante, University of Pisa and IAC-CNR, IT;

• Salvatore Filippone, University of Rome Tor-Vergata and IAC-CNR, IT;

https://psctoolkit.github.io/products/amg4psblas/

4 AMG4PSBLAS User’s and Reference Guide

3 Configuring and Building AMG4PSBLAS

In order to build AMG4PSBLAS it is necessary to set up a Makefile with appropriate
system-dependent variables; this is done by means of the configure script. The
distribution also includes the autoconf and automake sources employed to generate
the script, but usually this is not needed to build the software.

AMG4PSBLAS is implemented almost entirely in Fortran 2003, with some interfaces
to external libraries in C; the Fortran compiler must support the Fortran 2003
standard plus the extension MOLD= feature, which enhances the usability of ALLOCATE.
Many compilers do this; in particular, this is supported by the GNU Fortran compiler,
for which we recommend to use at least version 4.8. The software defines data types
and interfaces for real and complex data, in both single and double precision.

Building AMG4PSBLAS requires some base libraries (see Section 3.1); interfaces to
optional third-party libraries, which extend the functionalities of AMG4PSBLAS (see
Section 3.2), are also available. Many Linux distributions (e.g., Ubuntu, Fedora,
CentOS) provide precompiled packages for the prerequisite and optional software. In
many cases these packages are split between a runtime part and a “developer” part; in
order to build AMG4PSBLAS you need both. A description of the base and optional
software used by AMG4PSBLAS is given in the next sections.

3.1 Prerequisites

The following base libraries are needed:

BLAS [14, 15, 21] Many vendors provide optimized versions of BLAS; if no vendor
version is available for a given platform, the ATLAS software
(math-atlas.sourceforge.net) may be employed. The reference BLAS from Netlib
(www.netlib.org/blas) are meant to define the standard behaviour of the BLAS
interface, so they are not optimized for any particular platform, and should only
be used as a last resort. Note that BLAS computations form a relatively small
part of the AMG4PSBLAS/PSBLAS computations; they are however critical
when using preconditioners based on MUMPS, UMFPACK or SuperLU third
party libraries. Note that UMFPACK requires a full LAPACK library; our
experience is that configuring ATLAS for building full LAPACK does not work
in the correct way. Our advice is first to download the LAPACK tarfile from
www.netlib.org/lapack and install it independently of ATLAS. In this case, you
need to modify the OPTS and NOOPT definitions for including -fPIC
compilation option in the make.inc file of the LAPACK library.

MPI [20, 26] A version of MPI is available on most high-performance computing
systems.

PSBLAS [16, 18] Parallel Sparse BLAS (PSBLAS) is available from
psctoolkit.github.io/products/psblas/; version 3.7.0 (or later) is required.
Indeed, all the prerequisites listed so far are also prerequisites of PSBLAS.

http://math-atlas.sourceforge.net
http://www.netlib.org/blas
http://www.netlib.org/lapack
https://psctoolkit.github.io/products/psblas/

3 Configuring and Building AMG4PSBLAS 5

Please note that the four previous libraries must have Fortran interfaces compatible
with AMG4PSBLAS; usually this means that they should all be built with the same
compiler as AMG4PSBLAS.

3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these
are optional, but if you enable them some defaults for multilevel preconditioners may
change to reflect their presence.

UMFPACK [12] A sparse LU factorization package included in the SuiteSparse
library, available from faculty.cse.tamu.edu/davis/suitesparse.html; it
provides sequential factorization and triangular system solution for double
precision real and complex data. We tested version 4.5.4 of SuiteSparse. Note
that for configuring SuiteSparse you should provide the right path to the BLAS
and LAPACK libraries in the SuiteSparse_config/SuiteSparse_config.mk

file.

MUMPS [1] A sparse LU factorization package available from mumps.enseeiht.fr;
it provides sequential and parallel factorizations and triangular system solution
for single and double precision, real and complex data. We tested versions 4.10.0
and 5.0.1.

SuperLU [13] A sparse LU factorization package available from
crd.lbl.gov/~xiaoye/SuperLU/; it provides sequential factorization and
triangular system solution for single and double precision, real and complex
data. We tested versions 4.3 and 5.0. If you installed BLAS from ATLAS,
remember to define the BLASLIB variable in the make.inc file.

SuperLU Dist [22] A sparse LU factorization package available from the same site
as SuperLU; it provides parallel factorization and triangular system solution for
double precision real and complex data. We tested versions 3.3 and 4.2. If you
installed BLAS from ATLAS, remember to define the BLASLIB variable in the
make.inc file and to add the -std=c99 option to the C compiler options. Note
that this library requires the ParMETIS library for parallel graph partitioning
and fill-reducing matrix ordering, available from
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

3.3 Configuration options

In order to build AMG4PSBLAS, the first step is to use the configure script in the
main directory to generate the necessary makefile.
DA RISCRIVERE
As a minimal example consider the following:

./configure --with-psblas=PSB-INSTALL-DIR

faculty.cse.tamu.edu/davis/suitesparse.html
mumps.enseeiht.fr
crd.lbl.gov/~xiaoye/SuperLU/
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

6 AMG4PSBLAS User’s and Reference Guide

which assumes that the various MPI compilers and support libraries are available in
the standard directories on the system, and specifies only the PSBLAS install
directory (note that the latter directory must be specified with an absolute path). The
full set of options may be looked at by issuing the command ./configure --help,
which produces:

‘configure’ configures MLD2P4 2.1.1 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as

VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, --help display this help and exit

--help=short display options specific to this package

--help=recursive display the short help of all the included packages

-V, --version display version information and exit

-q, --quiet, --silent do not print ‘checking ...’ messages

--cache-file=FILE cache test results in FILE [disabled]

-C, --config-cache alias for ‘--cache-file=config.cache’

-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

--prefix=PREFIX install architecture-independent files in PREFIX

[/usr/local]

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]

By default, ‘make install’ will install all the files in

‘/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify

an installation prefix other than ‘/usr/local’ using ‘--prefix’,

for instance ‘--prefix=$HOME’.

For better control, use the options below.

Fine tuning of the installation directories:

--bindir=DIR user executables [EPREFIX/bin]

--sbindir=DIR system admin executables [EPREFIX/sbin]

--libexecdir=DIR program executables [EPREFIX/libexec]

--sysconfdir=DIR read-only single-machine data [PREFIX/etc]

3 Configuring and Building AMG4PSBLAS 7

--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]

--localstatedir=DIR modifiable single-machine data [PREFIX/var]

--libdir=DIR object code libraries [EPREFIX/lib]

--includedir=DIR C header files [PREFIX/include]

--oldincludedir=DIR C header files for non-gcc [/usr/include]

--datarootdir=DIR read-only arch.-independent data root [PREFIX/share]

--datadir=DIR read-only architecture-independent data [DATAROOTDIR]

--infodir=DIR info documentation [DATAROOTDIR/info]

--localedir=DIR locale-dependent data [DATAROOTDIR/locale]

--mandir=DIR man documentation [DATAROOTDIR/man]

--docdir=DIR documentation root [DATAROOTDIR/doc/mld2p4]

--htmldir=DIR html documentation [DOCDIR]

--dvidir=DIR dvi documentation [DOCDIR]

--pdfdir=DIR pdf documentation [DOCDIR]

--psdir=DIR ps documentation [DOCDIR]

Program names:

--program-prefix=PREFIX prepend PREFIX to installed program names

--program-suffix=SUFFIX append SUFFIX to installed program names

--program-transform-name=PROGRAM run sed PROGRAM on installed program names

Optional Features:

--disable-option-checking ignore unrecognized --enable/--with options

--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-silent-rules less verbose build output (undo: "make V=1")

--disable-silent-rules verbose build output (undo: "make V=0")

--enable-dependency-tracking

do not reject slow dependency extractors

--disable-dependency-tracking

speeds up one-time build

--enable-serial Specify whether to enable a fake mpi library to run

in serial mode.

--enable-long-integers Specify usage of 64 bits integers.

Optional Packages:

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-psblas=DIR The install directory for PSBLAS, for example,

--with-psblas=/opt/packages/psblas-3.5

--with-psblas-incdir=DIR

Specify the directory for PSBLAS C includes.

--with-psblas-moddir=DIR

Specify the directory for PSBLAS Fortran modules.

8 AMG4PSBLAS User’s and Reference Guide

--with-psblas-libdir=DIR

Specify the directory for PSBLAS library.

--with-ccopt additional [CCOPT] flags to be added: will prepend

to [CCOPT]

--with-fcopt additional [FCOPT] flags to be added: will prepend

to [FCOPT]

--with-libs List additional link flags here. For example,

--with-libs=-lspecial_system_lib or

--with-libs=-L/path/to/libs

--with-clibs additional [CLIBS] flags to be added: will prepend

to [CLIBS]

--with-flibs additional [FLIBS] flags to be added: will prepend

to [FLIBS]

--with-library-path additional [LIBRARYPATH] flags to be added: will

prepend to [LIBRARYPATH]

--with-include-path additional [INCLUDEPATH] flags to be added: will

prepend to [INCLUDEPATH]

--with-module-path additional [MODULE_PATH] flags to be added: will

prepend to [MODULE_PATH]

--with-extra-libs List additional link flags here. For example,

--with-extra-libs=-lspecial_system_lib or

--with-extra-libs=-L/path/to/libs

--with-blas=<lib> use BLAS library <lib>

--with-blasdir=<dir> search for BLAS library in <dir>

--with-lapack=<lib> use LAPACK library <lib>

--with-mumps=LIBNAME Specify the libname for MUMPS. Default: autodetect

with minimum "-lmumps_common -lpord"

--with-mumpsdir=DIR Specify the directory for MUMPS library and

includes. Note: you will need to add auxiliary

libraries with --extra-libs; this depends on how

MUMPS was configured and installed, at a minimum you

will need SCALAPACK and BLAS

--with-mumpsincdir=DIR Specify the directory for MUMPS includes.

--with-mumpsmoddir=DIR Specify the directory for MUMPS Fortran modules.

--with-mumpslibdir=DIR Specify the directory for MUMPS library.

--with-umfpack=LIBNAME Specify the library name for UMFPACK and its support

libraries. Default: "-lumfpack -lamd"

--with-umfpackdir=DIR Specify the directory for UMFPACK library and

includes.

--with-umfpackincdir=DIR

Specify the directory for UMFPACK includes.

--with-umfpacklibdir=DIR

Specify the directory for UMFPACK library.

--with-superlu=LIBNAME Specify the library name for SUPERLU library.

3 Configuring and Building AMG4PSBLAS 9

Default: "-lsuperlu"

--with-superludir=DIR Specify the directory for SUPERLU library and

includes.

--with-superluincdir=DIR

Specify the directory for SUPERLU includes.

--with-superlulibdir=DIR

Specify the directory for SUPERLU library.

--with-superludist=LIBNAME

Specify the libname for SUPERLUDIST library.

Requires you also specify SuperLU. Default:

"-lsuperlu_dist"

--with-superludistdir=DIR

Specify the directory for SUPERLUDIST library and

includes.

--with-superludistincdir=DIR

Specify the directory for SUPERLUDIST includes.

--with-superludistlibdir=DIR

Specify the directory for SUPERLUDIST library.

Some influential environment variables:

FC Fortran compiler command

FCFLAGS Fortran compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -l<library>

CC C compiler command

CFLAGS C compiler flags

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>

MPICC MPI C compiler command

MPIFC MPI Fortran compiler command

CPP C preprocessor

Use these variables to override the choices made by ‘configure’ or to help

it to find libraries and programs with nonstandard names/locations.

Report bugs to <https://github.com/sfilippone/mld2p4-2/issues>.

For instance, if a user has built and installed PSBLAS 3.7 under the /opt directory
and is using the SuiteSparse package (which includes UMFPACK), then MLD2P4
might be configured with:

./configure --with-psblas=/opt/psblas-3.5/ \

--with-umfpackincdir=/usr/include/suitesparse/

10 AMG4PSBLAS User’s and Reference Guide

Once the configure script has completed execution, it will have generated the file
Make.inc which will then be used by all Makefiles in the directory tree; this file will
be copied in the install directory under the name Make.inc.MLD2P4.
To use the MUMPS solver package, the user has to add the appropriate options to the
configure script; by default we are looking for the libraries -ldmumps -lsmumps

-lzmumps -lcmumps -mumps_common -lpord. MUMPS often uses additional
packages such as ScaLAPACK, ParMETIS, SCOTCH, as well as enabling OpenMP;
in such cases it is necessary to add linker options with the --with-extra-libs

configure option.
To build the library the user will now enter

make

followed (optionally) by

make install

3.4 Bug reporting

If you find any bugs in our codes, please report them through our issues page on

https://github.com/psctoolkit/amg4psblas/issues

To enable us to track the bug, please provide a log from the failing application, the
test conditions, and ideally a self-contained test program reproducing the issue.

3.5 Example and test programs

The package contains the examples and tests directories; both of them are further
divided into fileread and pdegen subdirectories. Their purpose is as follows:

examples contains a set of simple example programs with a predefined choice of
preconditioners, selectable via integer values. These are intended to get an
acquaintance with the multilevel preconditioners available in AMG4PSBLAS.

tests contains a set of more sophisticated examples that will allow the user, via the
input files in the runs subdirectories, to experiment with the full range of
preconditioners implemented in the package.

The fileread directories contain sample programs that read sparse matrices from
files, according to the Matrix Market or the Harwell-Boeing storage format; the
pdegen programs generate matrices in full parallel mode from the discretization of a
sample partial differential equation.

https://github.com/psctoolkit/amg4psblas/issues

4 Getting Started 11

4 Getting Started

We describe the basics for building and applying AMG4PSBLAS one-level and
multilevel (i.e., AMG) preconditioners with the Krylov solvers included in PSBLAS
[16]. The following steps are required:

1. Declare the preconditioner data structure. It is a derived data type, amg_xprec_
type, where x may be s, d, c or z, according to the basic data type of the sparse
matrix (s = real single precision; d = real double precision; c = complex single
precision; z = complex double precision). This data structure is accessed by the
user only through the AMG4PSBLAS routines, following an object-oriented
approach.

2. Allocate and initialize the preconditioner data structure, according to a
preconditioner type chosen by the user. This is performed by the routine init,
which also sets defaults for each preconditioner type selected by the user. The
preconditioner types and the defaults associated with them are given in Table 1,
where the strings used by init to identify the preconditioner types are also
given. Note that these strings are valid also if uppercase letters are substituted
by corresponding lowercase ones.

3. Modify the selected preconditioner type, by properly setting preconditioner
parameters. This is performed by the routine set. This routine must be called
only if the user wants to modify the default values of the parameters associated
with the selected preconditioner type, to obtain a variant of that preconditioner.
Examples of use of set are given in Section 4.1; a complete list of all the
preconditioner parameters and their allowed and default values is provided in
Section 5, Tables 2-8.

4. Build the preconditioner for a given matrix. If the selected preconditioner is
multilevel, then two steps must be performed, as specified next.

4.1 Build the AMG hierarchy for a given matrix. This is performed by the
routine hierarchy_build.

4.2 Build the preconditioner for a given matrix. This is performed by the
routine smoothers_build.

If the selected preconditioner is one-level, it is built in a single step, performed
by the routine bld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is performed
by the method apply. When using the PSBLAS Krylov solvers, this step is
completely transparent to the user, since apply is called by the PSBLAS routine
implementing the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine free.
This step is complementary to step 1 and should be performed when the
preconditioner is no more used.

12 AMG4PSBLAS User’s and Reference Guide

All the previous routines are available as methods of the preconditioner object. A
detailed description of them is given in Section 5. Examples showing the basic use of
AMG4PSBLAS are reported in Section 4.1.

type string default preconditioner

No preconditioner ’NONE’ Considered to use the PSBLAS Krylov solvers
with no preconditioner.

Diagonal ’DIAG’,
’JACOBI’,
’L1-JACOBI’

Diagonal preconditioner. For any zero diagonal
entry of the matrix to be preconditioned, the
corresponding entry of the preconditioner is set
to 1.

Gauss-Seidel ’GS’,
’L1-GS’

Hybrid Gauss-Seidel (forward), that is, global
block Jacobi with Gauss-Seidel as local solver.

Symmetrized Gauss-Seidel ’FBGS’,
’L1-FBGS’

Symmetrized hybrid Gauss-Seidel, that is, for-
ward Gauss-Seidel followed by backward Gauss-
Seidel.

Block Jacobi ’BJAC’,
’L1-BJAC’

Block-Jacobi with ILU(0) on the local blocks.

Additive Schwarz ’AS’ Additive Schwarz (AS), with overlap 1 and
ILU(0) on the local blocks.

Multilevel ’ML’ V-cycle with one hybrid forward Gauss-Seidel
(GS) sweep as pre-smoother and one hybrid
backward GS sweep as post-smoother, decou-
pled smoothed aggregation as coarsening al-
gorithm, and LU (plus triangular solve) as
coarsest-level solver. See the default values in
Tables 2-8 for further details of the precondi-
tioner.

Table 1: Preconditioner types, corresponding strings and default choices.

Note that the module amg_prec_mod, containing the definition of the preconditioner
data type and the interfaces to the routines of AMG4PSBLAS, must be used in any
program calling such routines. The modules psb_base_mod, for the sparse matrix and
communication descriptor data types, and psb_krylov_mod, for interfacing with the
Krylov solvers, must be also used (see Section 4.1).
Remark 1. Coarsest-level solvers based on the LU factorization, such as those
implemented in UMFPACK, MUMPS, SuperLU, and SuperLU Dist, usually lead to
smaller numbers of preconditioned Krylov iterations than inexact solvers, when the
linear system comes from a standard discretization of basic scalar elliptic PDE
problems. However, this does not necessarily correspond to the shortest execution
time on parallel computers.

4 Getting Started 13

4.1 Examples

The code reported in Figure 1 shows how to set and apply the default multilevel
preconditioner available in the real double precision version of AMG4PSBLAS (see
Table 1). This preconditioner is chosen by simply specifying ’ML’ as the second
argument of P%init (a call to P%set is not needed) and is applied with the CG solver
provided by PSBLAS (the matrix of the system to be solved is assumed to be positive
definite). As previously observed, the modules psb_base_mod, amg_prec_mod and
psb_krylov_mod must be used by the example program.

The part of the code concerning the reading and assembling of the sparse matrix and
the right-hand side vector, performed through the PSBLAS routines for sparse matrix
and vector management, is not reported here for brevity; the statements concerning
the deallocation of the PSBLAS data structure are neglected too. The complete code
can be found in the example program file amg_dexample_ml.f90, in the directory
examples/fileread of the AMG4PSBLAS implementation (see Section 3.5). A
sample test problem along with the relevant input data is available in
examples/fileread/runs. For details on the use of the PSBLAS routines, see the
PSBLAS User’s Guide [16].

The setup and application of the default multilevel preconditioner for the real single
precision and the complex, single and double precision, versions are obtained with
straightforward modifications of the previous example (see Section 5 for details). If
these versions are installed, the corresponding codes are available in
examples/fileread/.

Different versions of the multilevel preconditioner can be obtained by changing the
default values of the preconditioner parameters. The code reported in Figure 2 shows
how to set a V-cycle preconditioner which applies 1 block-Jacobi sweep as pre- and
post-smoother, and solves the coarsest-level system with 8 block-Jacobi sweeps. Note
that the ILU(0) factorization (plus triangular solve) is used as local solver for the
block-Jacobi sweeps, since this is the default associated with block-Jacobi and set
by P%init. Furthermore, specifying block-Jacobi as coarsest-level solver implies that
the coarsest-level matrix is distributed among the processes. Figure 3 shows how to
set a W-cycle preconditioner using the Coarsening based on Compatible Weighted
Matching. It applies 2 hybrid Gauss-Seidel sweeps as pre- and post-smoother, and
solves the coarsest-level system with the multifrontal LU factorization implemented in
MUMPS. It is specified that the coarsest-level matrix is distributed, since MUMPS
can be used on both replicated and distributed matrices, and by default it is used on
replicated ones. The code fragments shown in Figures 2 and 3 are included in the
example program file amg_dexample_ml.f90 too. DA CORREGGERE NEL
CODICE ESEMPIO 3

Finally, Figure 4 shows the setup of a one-level additive Schwarz preconditioner, i.e.,
RAS with overlap 2. Note also that a Krylov method different from CG must be used
to solve the preconditioned system, since the preconditione in nonsymmetric. The
corresponding example program is available in the file amg_dexample_1lev.f90.

For all the previous preconditioners, example programs where the sparse matrix and

14 AMG4PSBLAS User’s and Reference Guide

use psb_base_mod

use amg_prec_mod

use psb_krylov_mod

... ...

!

! sparse matrix

type(psb_dspmat_type) :: A

! sparse matrix descriptor

type(psb_desc_type) :: desc_A

! preconditioner

type(amg_dprec_type) :: P

! right-hand side and solution vectors

type(psb_d_vect_type) :: b, x

... ...

!

! initialize the parallel environment

call psb_init(ictxt)

call psb_info(ictxt,iam,np)

... ...

!

! read and assemble the spd matrix A and the right-hand side b

! using PSBLAS routines for sparse matrix / vector management

... ...

!

! initialize the default multilevel preconditioner, i.e. V-cycle

! with basic smoothed aggregation, 1 hybrid forward/backward

! GS sweep as pre/post-smoother and UMFPACK as coarsest-level

! solver

call P%init(’ML’,info)

!

! build the preconditioner

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

!

! set the solver parameters and the initial guess

... ...

!

! solve Ax=b with preconditioned CG

call psb_krylov(’CG’,A,P,b,x,tol,desc_A,info)

... ...

!

! deallocate the preconditioner

call P%free(info)

!

! deallocate other data structures

... ...

!

! exit the parallel environment

call psb_exit(ictxt)

stop

Figure 1: setup and application of the default multilevel preconditioner (example 1).

4 Getting Started 15

the right-hand side are generated by discretizing a PDE with Dirichlet boundary
conditions are also available in the directory examples/pdegen.

... ...

! build a V-cycle preconditioner with 1 block-Jacobi sweep (with

! ILU(0) on the blocks) as pre- and post-smoother, and 8 block-Jacobi

! sweeps (with ILU(0) on the blocks) as coarsest-level solver

call P%init(’ML’,info)

call_P%set(’SMOOTHER_TYPE’,’BJAC’,info)

call P%set(’COARSE_SOLVE’,’BJAC’,info)

call P%set(’COARSE_SWEEPS’,8,info)

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

... ...

Figure 2: setup of a multilevel preconditioner based on the default decoupled coarsening

... ...

! build a W-cycle preconditioner with 2 hybrid Gauss-Seidel sweeps

! as pre- and post-smoother, a distributed coarsest

! matrix, and MUMPS as coarsest-level solver

call P%init(’ML’,info)

call P%set(’PAR_AGGR_ALG’,’COUPLED’,info)

call P%set(’ML_CYCLE’,’WCYCLE’,info)

call P%set(’SMOOTHER_TYPE’,’FBGS’,info)

call P%set(’SMOOTHER_SWEEPS’,2,info)

call P%set(’COARSE_SOLVE’,’MUMPS’,info)

call P%set(’COARSE_MAT’,’DIST’,info)

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

... ...

Figure 3: setup of a multilevel preconditioner based on the coupled coarsening based
on weighted matching

... ...

! set RAS with overlap 2 and ILU(0) on the local blocks

call P%init(’AS’,info)

call P%set(’SUB_OVR’,2,info)

call P%bld(A,desc_A,info)

... ...

! solve Ax=b with preconditioned BiCGSTAB

call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)

Figure 4: setup of a one-level Schwarz preconditioner.

16 AMG4PSBLAS User’s and Reference Guide

5 User Interface

The basic user interface of AMG4PBLAS consists of eight methods. The six methods
init, set, build, hierarchy_build, smoothers_build and apply encapsulate all the
functionalities for the setup and the application of any multilevel and one-level
preconditioner implemented in the package. The method free deallocates the
preconditioner data structure, while descr prints a description of the preconditioner
setup by the user. For backward compatibility, methods are also accessible as
stand-alone subroutines.
For each method, the same user interface is overloaded with respect to the real/
complex case and the single/double precision; arguments with appropriate data types
must be passed to the method, i.e.,

• the sparse matrix data structure, containing the matrix to be preconditioned,
must be of type psb_xspmat_type with x = s for real single precision, x = d for
real double precision, x = c for complex single precision, x = z for complex
double precision;

• the preconditioner data structure must be of type amg_xprec_type, with x = s,
d, c, z, according to the sparse matrix data structure;

• the arrays containing the vectors v and w involved in the preconditioner
application w = B−1v must be of type psb_xvect_type with x = s, d, c, z, in a
manner completely analogous to the sparse matrix type;

• real parameters defining the preconditioner must be declared according to the
precision of the sparse matrix and preconditioner data structures (see
Section 5.2).

A description of each method is given in the remainder of this section.

5 User Interface 17

5.1 Method init

call p%init(icontx,ptype,info)

This method allocates and initializes the preconditioner p, according to the
preconditioner type chosen by the user.

Arguments

icontxt integer, intent(in).
The communication context.

ptype character(len=*), intent(in).
The type of preconditioner. Its values are specified in Table 1.
Note that the strings are case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

18 AMG4PSBLAS User’s and Reference Guide

5.2 Method set

call p%set(what,val,info [,ilev, ilmax, pos, idx])

This method sets the parameters defining the preconditioner p. More precisely, the
parameter identified by what is assigned the value contained in val.

Arguments

what character(len=*).
The parameter to be set. It can be specified through its name; the string
is case-insensitive. See Tables 2-8.

val integer or character(len=*) or real(psb_spk_) or
real(psb_dpk_), intent(in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Tables 2-8. When the value is of
type character(len=*), it is also treated as case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

ilev integer, optional, intent(in).
For the multilevel preconditioner, the level at which the preconditioner
parameter has to be set. The levels are numbered in increasing order
starting from the finest one, i.e., level 1 is the finest level. If ilev is not
present, the parameter identified by what is set at all the appropriate
levels (see Tables 2-8).

ilmax integer, optional, intent(in).
For the multilevel preconditioner, when both ilev and ilmax are
present, the settings are applied at all levels ilev:ilmax. When ilev

is present but ilmax is not, then the default is ilmax=ilev. The levels
are numbered in increasing order starting from the finest one, i.e., level
1 is the finest level.

pos charater(len=*), optional, intent(in).
Whether the other arguments apply only to the pre-smoother (’PRE’) or
to the post-smoother (’POST’). If pos is not present, the other arguments
are applied to both smoothers. If the preconditioner is one-level or the
parameter identified by what does not concern the smoothers, pos is
ignored.

idx integer, optional, intent(in).
An auxiliary input argument that can be passed to the underlying ob-
jects.

However, in this case the optional arguments ilev, ilmax, pos and idx cannot be
used.
A variety of preconditioners can be obtained by a suitable setting of the
preconditioner parameters. These parameters can be logically divided into four
groups, i.e., parameters defining

5 User Interface 19

1. the type of multilevel cycle and how many cycles must be applied;

2. the coarsening algorithm;

3. the coarse-space correction at the coarsest level (for multilevel preconditioners
only);

4. the smoother of the multilevel preconditioners, or the one-level preconditioner.

A list of the parameters that can be set, along with their allowed and default values,
is given in Tables 2-8.
Remark 2. A smoother is usually obtained by combining two objects: a smoother
(SMOOTHER_TYPE) and a local solver (SUB_SOLVE), as specified in Tables 7-8. For
example, the block-Jacobi smoother using ILU(0) on the blocks is obtained by
combining the block-Jacobi smoother object with the ILU(0) solver object. Similarly,
the hybrid Gauss-Seidel smoother (see Note in Table 7) is obtained by combining the
block-Jacobi smoother object with a single sweep of the Gauss-Seidel solver object,
while the point-Jacobi smoother is the result of combining the block-Jacobi smoother
object with a single sweep of the point-Jacobi solver object. However, for simplicity,
shortcuts are provided to set point-Jacobi, hybrid (forward) Gauss-Seidel, and hybrid
backward Gauss-Seidel, i.e., the previous smoothers can be defined by setting only
SMOOTHER_TYPE to appropriate values (see Tables 7), i.e., without setting SUB_SOLVE

too.

The smoother and solver objects are arranged in a hierarchical manner. When
specifying a smoother object, its parameters, including the local solver, are set to
their default values, and when a solver object is specified, its defaults are also set,
overriding in both cases any previous settings even if explicitly specified. Therefore if
the user sets a smoother, and wishes to use a solver different from the default one, the
call to set the solver must come after the call to set the smoother.

Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi
coarsest-level solvers, and shortcuts are available in this case too (see Table 5).
Remark 3. In general, a coarsest-level solver cannot be used with both the replicated
and distributed coarsest-matrix layout; therefore, setting the solver after the layout
may change the layout. Similarly, setting the layout after the solver may change the
solver.

More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be
replicated, while SuperLU Dist requires it to be distributed. In these cases, setting
the coarsest-level solver implies that the layout is redefined according to the solver,
ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel and
block-Jacobi can be applied to replicated and distributed matrices, thus their choice
does not modify any previously specified layout. It is worth noting that, when the
matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers
reduce to the corresponding local solver objects (see Remark 2). For the point-Jacobi
and Gauss-Seidel solvers, these objects correspond to a single point-Jacobi sweep and
a single Gauss-Seidel sweep, respectively, which are very poor solvers.

20 AMG4PSBLAS User’s and Reference Guide

On the other hand, the distributed layout can be used with any solver but
UMFPACK and SuperLU; therefore, if any of these two solvers has already been
selected, the coarsest-level solver is changed to block-Jacobi, with the previously
chosen solver applied to the local blocks. Likewise, the replicated layout can be used
with any solver but SuperLu Dist; therefore, if SuperLu Dist has been previously set,
the coarsest-level solver is changed to the default sequential solver.
Remark 4. The argument idx can be used to allow finer control for those solvers; for
instance, by specifying the keyword MUMPS_IPAR_ENTRY and an appropriate value for
idx, it is possible to set any entry in the MUMPS integer control array. See also
Sec. 6.

5 User Interface 21

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
M
L
_
C
Y
C
L
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
V
C
Y
C
L
E
’

’
W
C
Y
C
L
E
’

’
K
C
Y
C
L
E
’

’
A
D
D
’

’
V
C
Y
C
L
E
’

M
u

lt
il

ev
el

cy
cl

e:
V

-c
y
cl

e,
W

-c
y
cl

e,
K

-c
y
cl

e,
an

d
ad

d
it

iv
e

co
m

p
os

it
io

n
.

’
O
U
T
E
R
_
S
W
E
E
P
S
’

i
n
t
e
g
e
r

A
n
y

in
te

ge
r

n
u

m
b

er
≥

1
1

N
u

m
b

er
of

m
u

lt
il

ev
el

cy
cl

es
.

T
a
b

le
2:

P
a
ra

m
et

er
s

d
efi

n
in

g
th

e
m

u
lt

il
ev

el
cy

cl
e

an
d

th
e

n
u

m
b

er
of

cy
cl

es
to

b
e

ap
p

li
ed

.

22 AMG4PSBLAS User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
M
I
N
_
C
O
A
R
S
E
_
S
I
Z
E
_
P
E
R
_
P
R
O
C
E
S
S
’

i
n
t
e
g
e
r

A
n
y

n
u

m
b

er
>

0
200

C
oarse

size
th

resh
old

p
er

p
ro

cess.
T

h
e

aggregation
stop

s
if

th
e

glob
al

n
u

m
b

er
of

variab
les

of
th

e
com

p
u
ted

coarsest
m

atrix
is

low
er

th
an

or
eq

u
al

to
th

is
th

resh
old

m
u

ltip
lied

b
y

th
e

n
u

m
b

er
of

p
ro

cesses.

’
M
I
N
_
C
O
A
R
S
E
_
S
I
Z
E
’

i
n
t
e
g
e
r

A
n
y

n
u

m
b

er
>

0
-1

C
oarse

size
th

resh
old

.
T

h
e

aggrega-
tion

stop
s

if
th

e
glob

al
n
u

m
b

er
of

vari-
ab

les
of

th
e

com
p

u
ted

coarsest
m

atrix
is

low
er

th
an

or
eq

u
al

to
th

is
th

resh
-

old
(see

N
ote).

If
n

egative,
it

is
ign

ored
in

fav
ou

r
of

th
e

d
efau

lt
for

’
M
I
N
_
C
O
A
R
S
E
_
S
I
Z
E
_
P
E
R
_
P
R
O
C
E
S
S
’
.

’
M
I
N
_
C
R
_
R
A
T
I
O
’

r
e
a
l

A
n
y

n
u

m
b

er
>

1
1.5

M
in

im
u

m
coarsen

in
g

ratio.
T

h
e

aggrega-
tion

stop
s

if
th

e
ratio

b
etw

een
th

e
glob

al
m

atrix
d

im
en

sion
s

at
tw

o
con

secu
tive

lev
-

els
is

low
er

th
an

or
eq

u
al

to
th

is
th

resh
old

(see
N

ote).

’
M
A
X
_
L
E
V
S
’

i
n
t
e
g
e
r

A
n
y

in
teger

n
u

m
b

er
>

1
20

M
ax

im
u

m
n
u

m
b

er
of

levels.
T

h
e

aggrega-
tion

stop
s

if
th

e
n
u

m
b

er
of

levels
reach

es
th

is
valu

e
(see

N
ote).

’
P
A
R
_
A
G
G
R
_
A
L
G
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
D
E
C
’
,

’
S
Y
M
D
E
C
’
,

’
C
O
U
P
L
E
D
’

’
D
E
C
’

P
arallel

aggregation
algorith

m
.

th
e
S
Y
M
D
E
C

op
tion

ap
p

lies
d

ecou
p

led
ag-

gregation
to

th
e

sp
arsity

p
attern

of
A

+
A

T
.

’
A
G
G
R
_
T
Y
P
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
S
O
C
1
’

’
S
O
C
1
’
,

’
S
O
C
2
’
,

’
M
A
T
C
H
B
O
X
P
’

T
y
p

e
of

aggregation
algorith

m
:

cu
rren

tly,
for

th
e

d
ecou

p
led

aggregation
w

e
im

p
le-

m
en

t
tw

o
m

easu
res

of
stren

gth
of

con
n

ec-
tion

,
th

e
on

e
b
y

V
an

ěk
,
M

an
d

el
an

d
B

rez-
in

a
[29],

an
d

th
e

on
e

b
y

G
ratton

et
al

[19].
T

h
e

cou
p

led
aggregation

is
b

ased
on

a
p

arallel
version

of
th

e
h

alf-ap
p

rox
im

ate
m

atch
in

g
im

p
lem

en
ted

in
th

e
M

atch
B

ox
-

P
softw

are
p

ackage
A

G
G

IU
N

G
E

R
E

L
IN

K
A

L
P

A
C

K
A

G
E

?

’
A
G
G
R
_
S
I
Z
E
’

i
n
t
e
g
e
r

A
n
y

in
teger

n
u

m
b

er
p

ow
er

of
2

an
d
>

2

4
M

ax
im

u
m

size
of

aggregates
w

h
en

th
e

cou
p

led
aggregation

b
ased

on
m

atch
in

g
is

ap
p

lied
.

F
or

aggressive
coarsen

in
g

w
ith

size
of

aggregate
larger

th
an

8
w

e
recom

-
m

en
d

th
e

u
se

of
sm

o
oth

ed
p

rolon
gators.

M
O

D
IF

IC
A

R
E

C
O

D
IC

E

’
A
G
G
R
_
P
R
O
L
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
S
M
O
O
T
H
E
D
’
,

’
U
N
S
M
O
O
T
H
E
D
’

’
S
M
O
O
T
H
E
D
’

P
rolon

gator
u

sed
b
y

th
e

aggregation
al-

gorith
m

:
sm

o
oth

ed
or

u
n

sm
o
oth

ed
(i.e.,

ten
tative

p
rolon

gator).

N
o
te

.
T

h
e

ag
g
regation

algo
rith

m
stop

s
w

h
en

at
least

on
e

of
th

e
follow

in
g

criteria
is

m
et:

th
e

coarse
size

th
resh

old
,

th
e

coarse
size

th
resh

old
p

er
p

ro
cess,

th
e

m
in

im
u

m
coarsen

in
g

ra
tio

,
or

th
e

m
ax

im
u

m
n
u

m
b

er
of

levels
is

reach
ed

.
T

h
erefore,

th
e

actu
al

n
u

m
b

er
of

lev
els

m
ay

b
e

sm
a
ller

th
a
n

th
e

sp
ecifi

ed
m

a
x
im

u
m

n
u

m
b

er
of

lev
els.

T
ab

le
3
:

P
aram

eters
d

efi
n

in
g

th
e

aggregation
algorith

m
.

5 User Interface 23

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
A
G
G
R
_
O
R
D
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
N
A
T
U
R
A
L
’

’
D
E
G
R
E
E
’

’
N
A
T
U
R
A
L
’

In
it

ia
l

or
d

er
in

g
of

in
d

ic
es

fo
r

th
e

d
e-

co
u

p
le

d
ag

gr
eg

at
io

n
al

go
ri

th
m

:
ei

th
er

n
at

u
ra

l
or

d
er

in
g

or
so

rt
ed

b
y

d
es

ce
n

d
-

in
g

d
eg

re
es

of
th

e
n

o
d

es
in

th
e

m
at

ri
x

gr
ap

h
.

’
A
G
G
R
_
T
H
R
E
S
H
’

r
e
a
l
(

ki
n

d
pa

ra
m

et
er
)

A
n
y

re
al

n
u

m
b

er
∈

[0
,1

]
0.

01
T

h
e

th
re

sh
ol

d
θ

in
th

e
d

ec
ou

p
le

d
ag

gr
e-

ga
ti

on
al

go
ri

th
m

,
se

e
(?

?
)

in
S

ec
ti

on
?
?
.

S
ee

al
so

th
e

n
ot

e
at

th
e

b
ot

to
m

of
th

is
ta

b
le

.

’
A
G
G
R
_
F
I
L
T
E
R
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
F
I
L
T
E
R
’

’
N
O
F
I
L
T
E
R
’

’
N
O
F
I
L
T
E
R
’

M
at

ri
x

u
se

d
in

co
m

p
u

ti
n

g
th

e
sm

o
ot

h
ed

p
ro

lo
n

ga
to

r:
fi

lt
er

ed
or

u
n

fi
lt

er
ed

(s
ee

(?
?
)

in
S

ec
ti

on
?
?
).

N
o
te

.
D

iff
er

en
t

th
re

sh
o
ld

s
at

d
iff

er
en

t
le

ve
ls

,
su

ch
as

th
os

e
u

se
d

in
[2

9,
S
ec

ti
on

5.
1]

,
ca

n
b

e
ea

si
ly

se
t

b
y

in
vo

k
in

g
th

e
ro

u
-

ti
n

e
s
e
t

w
it

h
th

e
p

ar
a
m

et
er

i
l
e
v
.

T
a
b

le
4:

P
a
ra

m
et

er
s

d
efi

n
in

g
th

e
ag

gr
eg

at
io

n
al

go
ri

th
m

(c
on

ti
n
u

ed
).

24 AMG4PSBLAS User’s and Reference Guide
w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
C
O
A
R
S
E
_
M
A
T
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
D
I
S
T
’

’
R
E
P
L
’

’
R
E
P
L
’

C
oarsest

m
atrix

layou
t:

d
istrib

u
ted

am
on

g
th

e
p

ro-
cesses

or
rep

licated
on

each
of

th
em

.

’
C
O
A
R
S
E
_
S
O
L
V
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
M
U
M
P
S
’

’
U
M
F
’

’
S
L
U
’

’
S
L
U
D
I
S
T
’

’
J
A
C
O
B
I
’

’
G
S
’

’
B
J
A
C
’

’
P
C
G
’

S
ee

N
ote.

S
olver

u
sed

at
th

e
coarsest

lev
el:

seq
u

en
tial

L
U

from
M

U
M

P
S

,
U

M
F

P
A

C
K

,
or

S
u

p
erL

U
(p

lu
s

tri-
an

gu
lar

solve);
d

istrib
u

ted
L

U
from

M
U

M
P

S
or

S
u

p
erL

U
D

ist
(p

lu
s

trian
gu

lar
solve);

p
oin

t-J
acob

i,
h
y
b

rid
G

au
ss-S

eid
el

or
b

lo
ck

-J
acob

i
an

d
related

`
1 -

version
s;

p
re

c
o
n

d
itio

n
e
d

C
o
n

ju
g
a
te

G
ra

d
ie

n
t

c
o
u

p
le

d
w

ith
th

e
b

lo
ck

-J
a
c
o
b
i
p

re
c
o
n

d
itio

n
e
r

w
ith

IL
U

(0
)

o
n

th
e

b
lo

ck
s.

N
ote

th
at

U
M
F

an
d
S
L
U

req
u

ire
th

e
coarsest

m
atrix

to
b

e
rep

licated
,
S
L
U
D
I
S
T
,
J
A
C
O
B
I
,
G
S
,
B
J
A
C

an
d
P
C
G

req
u

ire
it

to
b

e
d

istrib
u

ted
,
M
U
M
P
S

can
b

e
u

sed
w

ith
eith

er
a

rep
licated

or
a

d
istrib

u
ted

m
atrix

.
W

h
en

an
y

of
th

e
p

rev
iou

s
solvers

is
sp

ecifi
ed

,
th

e
m

atrix
layou

t
is

set
to

a
d

efau
lt

valu
e

w
h

ich
allow

s
th

e
u

se
of

th
e

solver
(see

R
em

ark
3,

p
.

24).
N

ote
also

th
at

U
M

F
P

A
C

K
an

d
S
u

p
erL

U
D

ist
are

availab
le

on
ly

in
d

ou
b

le
p

recision
.

’
C
O
A
R
S
E
_
S
U
B
S
O
L
V
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
I
L
U
’

’
I
L
U
T
’

’
M
I
L
U
’

’
M
U
M
P
S
’

’
S
L
U
’

’
U
M
F
’

S
ee

N
ote.

S
olver

for
th

e
d

iagon
al

b
lo

ck
s

of
th

e
coarse

m
atrix

,
in

case
th

e
b

lo
ck

J
acob

i
solver

is
ch

osen
as

coarsest-
level

solver:
IL

U
(p

),
IL

U
(p
,t),

M
IL

U
(p

),
L

U
from

M
U

M
P

S
,

S
u

p
erL

U
or

U
M

F
P

A
C

K
(p

lu
s

trian
gu

lar
solve).

A
g
g
iu

n
g
e
re

S
p

a
rse

A
p

p
ro

ssim
a
te

p
e
r

G
P

U
?

N
ote

th
at

U
M

F
P

A
C

K
an

d
S

u
p

erL
U

D
ist

are
availab

le
on

ly
in

d
ou

b
le

p
recision

.

N
o
te

.
D

efa
u

lts
fo

r
C
O
A
R
S
E
S
O
L
V
E

a
n

d
C
O
A
R
S
E
S
U
B
S
O
L
V
E

are
ch

osen
in

th
e

follow
in

g
ord

er:
sin

g
le

p
recisio

n
version

–
M
U
M
P
S

if
in

sta
lled

,
th

en
S
L
U

if
in

stalled
,
I
L
U

oth
erw

ise;
d

o
u

b
le

p
recision

versio
n

–
U
M
F

if
in

stalled
,

th
en

M
U
M
P
S

if
in

stalled
,

th
en

S
L
U

if
in

stalled
,
I
L
U

oth
erw

ise.

T
ab

le
5
:

P
aram

eters
d

efi
n

in
g

th
e

coarse-sp
ace

correction
at

th
e

coarsest
level.

5 User Interface 25

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
C
O
A
R
S
E
_
S
W
E
E
P
S
’

i
n
t
e
g
e
r

A
n
y

in
te

ge
r

n
u

m
b

er
>

0
10

N
u

m
b

er
of

sw
ee

p
s

w
h

en
J
A
C
O
B
I
,
G
S

or
B
J
A
C

is
ch

os
en

as
co

ar
se

st
-l

ev
el

so
lv

er
.

A
g
g
iu

n
g
e
re

c
ri

te
ri

o
d

i
a
rr

e
st

o
d

e
l

P
C

G
?

’
C
O
A
R
S
E
_
F
I
L
L
I
N
’

i
n
t
e
g
e
r

A
n
y

in
te

ge
r

n
u

m
b

er
≥

0
0

F
il

l-
in

le
ve

l
p

of
th

e
IL

U
fa

ct
or

iz
at

io
n

s.

’
C
O
A
R
S
E
_
I
L
U
T
H
R
S
’

r
e
a
l
(

ki
n

d
pa

ra
m

et
er
)

A
n
y

re
al

n
u

m
b

er
≥

0
0

D
ro

p
to

le
ra

n
ce

t
in

th
e

IL
U

(p
,t

)
fa

ct
or

iz
a-

ti
on

.

T
ab

le
6
:

P
ar

am
et

er
s

d
efi

n
in

g
th

e
co

ar
se

-s
p

ac
e

co
rr

ec
ti

on
at

th
e

co
ar

se
st

le
ve

l
(c

on
ti

n
u

ed
).

26 AMG4PSBLAS User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
S
M
O
O
T
H
E
R
_
T
Y
P
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
J
A
C
O
B
I
’

’
G
S
’

’
B
G
S
’

’
B
J
A
C
’

’
A
S
’

’
F
B
G
S
’

T
y
p

e
of

sm
o
oth

er
u

sed
in

th
e

m
u
lti-

level
p
recon

d
ition

er:
p

oin
t-J

acob
i,

h
y
b

rid
(forw

ard
)

G
au

ss-S
eid

el,
h
y
b

rid
b

ack
w

ard
G

au
ss-S

eid
el,

b
lo

ck
-J

acob
i,
`
1 -v

e
rsio

n
s?

an
d

A
d

d
itive

S
ch

w
arz.

It
is

ign
ored

b
y

on
e-level

p
recon

d
ition

ers.
’
S
U
B
_
S
O
L
V
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
J
A
C
O
B
I
’

’
G
S
’

’
B
G
S
’

’
I
L
U
’

’
I
L
U
T
’

’
M
I
L
U
’

’
M
U
M
P
S
’

’
S
L
U
’

’
U
M
F
’

G
S

a
n

d
B
G
S

fo
r

p
re-

a
n

d
p

o
st-sm

o
o
th

ers
o
f

m
u

l-
tilevel

p
reco

n
d

itio
n

ers,
resp

ectively
I
L
U

fo
r

b
lo

ck
-J

a
co

b
i

a
n

d
A

d
d

itive
S

ch
w

a
rz

o
n

e-level
p

reco
n

d
itio

n
-

ers
`
1 -v

e
rsio

n
s?

T
h

e
lo

cal
solver

to
b

e
u

sed
w

ith
th

e
sm

o
oth

er
or

on
e-lev

el
p

recon
d

ition
er

(see
R

em
ark

2,
p

age
24):

p
oin

t-J
acob

i,
h
y
b

rid
(forw

ard
)

G
au

ss-S
eid

el,
h
y
b

rid
b

ack
w

ard
G

au
ss-S

eid
el,

IL
U

(p
),

IL
U

(p
,t),

M
IL

U
(p

),
L

U
from

M
U

M
P

S
,

S
u

p
erL

U
or

U
M

F
-

P
A

C
K

(p
lu

s
trian

gu
lar

solve).
S

ee
N

ote
for

d
etails

on
h
y
b

rid
G

au
ss-S

eid
el.

’
S
M
O
O
T
H
E
R
_
S
W
E
E
P
S
’

i
n
t
e
g
e
r

A
n
y

in
teg

er
n
u

m
b

er
≥

0
1

N
u

m
b

er
of

sw
eep

s
of

th
e

sm
o
oth

er
or

on
e-

level
p

recon
d

ition
er.

In
th

e
m

u
ltilevel

case,
n

o
p

re-sm
oth

er
or

p
ost-sm

o
oth

er
is

u
sed

if
th

is
p

aram
eter

is
set

to
0

togeth
er

w
ith

p
o
s
=
’
P
R
E
’

or
p
o
s
=
’
P
O
S
T
,

resp
ectively.

’
S
U
B
_
O
V
R
’

i
n
t
e
g
e
r

A
n
y

in
teg

er
n
u

m
b

er
≥

0
1

N
u

m
b

er
of

overlap
layers,

for
A

d
d

itive
S

ch
w

arz
on

ly.

T
a
b

le
7:

P
a
ra

m
eters

d
efi

n
in

g
th

e
sm

o
oth

er
or

th
e

d
etails

of
th

e
on

e-lev
el

p
recon

d
ition

er.

5 User Interface 27

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
S
U
B
_
R
E
S
T
R
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
H
A
L
O
’

’
N
O
N
E
’

’
H
A
L
O
’

T
y
p

e
o
f

re
st

ri
ct

io
n

o
p

er
a
to

r,
fo

r
A

d
d

it
iv

e
S

ch
w

a
rz

o
n

ly
:
H
A
L
O

fo
r

ta
k
in

g
in

to
a
cc

o
u

n
t

th
e

ov
er

la
p

,
N
O
N
E

fo
r

n
eg

le
ct

in
g

it
.

N
o
te

th
a
t
H
A
L
O

m
u

st
b

e
ch

o
se

n
fo

r
th

e
cl

a
ss

i-
ca

l
A

d
d

d
it

iv
e

S
ch

w
a
rz

sm
o
o
th

er
a
n

d
it

s
R

A
S

va
ri

a
n
t.

’
S
U
B
_
P
R
O
L
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
S
U
M
’

’
N
O
N
E
’

’
N
O
N
E
’

T
y
p

e
o
f

p
ro

lo
n

g
a
ti

o
n

o
p

er
a
to

r,
fo

r
A

d
d

it
iv

e
S

ch
w

a
rz

o
n

ly
:
S
U
M

fo
r

a
d

d
in

g
th

e
co

n
tr

ib
u

ti
o
n

s
fr

o
m

th
e

ov
er

la
p

,
N
O
N
E

fo
r

n
eg

le
ct

in
g

th
em

.
N

o
te

th
a
t
S
U
M

m
u

st
b

e
ch

o
se

n
fo

r
th

e
cl

a
ss

ic
a
l

A
d

d
it

iv
e

S
ch

w
a
rz

sm
o
o
th

er
,

a
n

d
N
O
N
E

fo
r

it
s

R
A

S
va

ri
a
n
t.

’
S
U
B
_
F
I
L
L
I
N
’

i
n
t
e
g
e
r

A
n
y

in
te

g
er

n
u

m
b

er
≥

0
0

F
il

l-
in

le
ve

l
p

o
f

th
e

in
co

m
p

le
te

L
U

fa
ct

o
ri

za
-

ti
o
n

s.
’
S
U
B
_
I
L
U
T
H
R
S
’

r
e
a
l
(

ki
n

d
pa

ra
m

et
er
)

A
n
y

re
a
l

n
u

m
-

b
er
≥

0
0

D
ro

p
to

le
ra

n
ce
t

in
th

e
IL

U
(p
,t

)
fa

ct
o
ri

za
ti

o
n

.

’
M
U
M
P
S
_
L
O
C
_
G
L
O
B
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

L
O
C
A
L
S
O
L
V
E
R
’

G
L
O
B
A
L
S
O
L
V
E
R
’

G
L
O
B
A
L
S
O
L
V
E
R
’

W
h

et
h

er
M

U
M

P
S

sh
o
u

ld
b

e
u

se
d

a
s

a
d

is
-

tr
ib

u
te

d
so

lv
er

,
o
r

a
s

a
se

ri
a
l

so
lv

er
a
ct

in
g

o
n

ly
o
n

th
e

p
a
rt

o
f

th
e

m
a
tr

ix
lo

ca
l

to
ea

ch
p

ro
ce

ss
.

’
M
U
M
P
S
_
I
P
A
R
_
E
N
T
R
Y
’
i
n
t
e
g
e
r

A
n
y

in
te

g
er

n
u

m
b

er
0

S
et

a
n

en
tr

y
in

th
e

M
U

M
P

S
in

te
g
er

co
n
tr

o
l

a
rr

ay
,
a
s

ch
o
se

n
v
ia

th
e
i
d
x

o
p

ti
o
n

a
l
a
rg

u
m

en
t.

’
M
U
M
P
S
_
R
P
A
R
_
E
N
T
R
Y
’
r
e
a
l

A
n
y

re
a
l

n
u

m
-

b
er

0
S

et
a
n

en
tr

y
in

th
e

M
U

M
P

S
re

a
l

co
n
tr

o
l

a
rr

ay
,

a
s

ch
o
se

n
v
ia

th
e
i
d
x

o
p

ti
o
n

a
l

a
rg

u
m

en
t.

T
a
b

le
8:

P
a
ra

m
et

er
s

d
efi

n
in

g
th

e
sm

o
ot

h
er

or
th

e
d

et
ai

ls
of

th
e

on
e-

le
v
el

p
re

co
n

d
it

io
n

er
(c

on
ti

n
u

ed
).

28 AMG4PSBLAS User’s and Reference Guide

5.3 Method hierarchy build

call p%hierarchy_build(a,desc_a,info)

This method builds the hierarchy of matrices and restriction/prolongation operators
for the multilevel preconditioner p, according to the requirements made by the user
through the methods init and set.

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS under
use. See the PSBLAS User’s Guide for details [16].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [16].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

5 User Interface 29

5.4 Method smoothers build

call p%smoothers_build(a,desc_a,p,info[,amold,vmold,imold])

This method builds the smoothers and the coarsest-level solvers for the multilevel
preconditioner p, according to the requirements made by the user through the
methods init and set, and based on the aggregation hierarchy produced by a
previous call to hierarchy_build (see Section 5.3).

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS under
use. See the PSBLAS User’s Guide for details [16].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [16].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class(psb_x_base_sparse_mat), intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See
the PSBLAS User’s Guide for details [16].

vmold class(psb_x_base_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

imold class(psb_i_base_vect_type), intent(in), optional.
The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

30 AMG4PSBLAS User’s and Reference Guide

5.5 Method build

call p%build(a,desc_a,info[,amold,vmold,imold])

This method builds the preconditioner p according to the requirements made by the
user through the methods init and set (see Sections 5.3 and 5.4 for multilevel
preconditioners). It is mostly provided for backward compatibility; indeed, it is
internally implemented by invoking the two previous methods hierarchy_build and
smoothers_build, whose nomenclature would however be somewhat unnatural when
dealing with simple one-level preconditioners.

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS under
use. See the PSBLAS User’s Guide for details [16].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [16].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class(psb_x_base_sparse_mat), intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See
the PSBLAS User’s Guide for details [16].

vmold class(psb_x_base_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

imold class(psb_i_base_vect_type), intent(in), optional.
The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

The method can be used to build multilevel preconditioners too.

5 User Interface 31

5.6 Method apply

call p%apply(x,y,desc_a,info [,trans,work])

This method computes y = op(B−1)x, where B is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its transpose, according to
the value of trans. Note that, when AMG4PSBLAS is used with a Krylov solver from
PSBLAS, p%apply is called within the PSBLAS method psb_krylov and hence it is
completely transparent to the user.

Arguments

x type(kind parameter), dimension(:), intent(in).
The local part of the vector x. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

y type(kind parameter), dimension(:), intent(out).
The local part of the vector y. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

trans character(len=1), optional, intent(in).

If trans = ’N’,’n’ then op(B−1) = B−1; if trans = ’T’,’t’ then
op(B−1) = B−T (transpose ofB−1); if trans = ’C’,’c’ then op(B−1) =
B−C (conjugate transpose of B−1).

work type(kind parameter), dimension(:), optional, target.
Workspace. Its size should be at least 4 * psb_cd_get_local_

cols(desc_a) (see the PSBLAS User’s Guide). Note that type and
kind parameter must be chosen according to the real/complex, sin-
gle/double precision version of AMG4PSBLAS under use.

32 AMG4PSBLAS User’s and Reference Guide

5.7 Method free

call p%free(p,info)

This method deallocates the preconditioner data structure p.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

5 User Interface 33

5.8 Method descr

call p%descr(info, [iout])

This method prints a description of the preconditioner p to the standard output or to
a file. It must be called after hierachy_build and smoothers_build, or build, have
been called.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

iout integer, intent(in), optional.
The id of the file where the preconditioner description will be printed;
the default is the standard output.

5.9 Auxiliary Methods

Various functionalities are implemented as additional methods of the preconditioner
object.

5.9.1 Method: dump

call p%dump(info[,istart,iend,prefix,head,ac,rp,smoother,solver,global_num])

Dump on file.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class(psb_x_base_sparse_mat), intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See
the PSBLAS User’s Guide for details [16].

5.9.2 Method: clone

call p%clone(pout,info)

Create a (deep) copy of the preconditioner object.

Arguments

34 AMG4PSBLAS User’s and Reference Guide

pout type(amg_xprec_type), intent(out).
The copy of the preconditioner data structure. Note that x must be
chosen according to the real/complex, single/double precision version of
AMG4PSBLAS under use.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

5.9.3 Method: sizeof

sz = p%sizeof()

Return memory footprint in bytes.

5.9.4 Method: allocate wrk

call p%allocate_wrk(info[, vmold])

Allocate internal work vectors. Each application of the preconditioner uses a number
of work vectors which are allocated internally as necessary; therefore allocation and
deallocation of memory occurs multiple times during the execution of a Krylov
method. In most cases this strategy is perfectly acceptable, but on some platforms,
most notably GPUs, memory allocation is a slow operation, and the default behaviour
would lead to a slowdown. This method allows to trade space for time by
preallocating the internal workspace outside of the invocation of a Krylov method.
When using GPUs or other specialized devices, the vmold argument is also necessary
to ensure the internal work vectors are of the appropriate dynamic type to exploit the
accelerator hardware; when allocation occurs internally this is taken care of based on
the dynamic type of the x argument to the apply method.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

vmold class(psb_x_base_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

5.9.5 Method: free wrk

call p%free_wrk(info)

Deallocate internal work vectors.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

5 User Interface 35

6 Adding new smoother and solver objects to
AMG4PSBLAS

Developers can add completely new smoother and/or solver classes derived from the
base objects in the library (see Remark 2 in Section 5.2), without recompiling the
library itself.
To do so, it is necessary first to select the base type to be extended. In our experience,
it is quite likely that the new application needs only the definition of a “solver”
object, which is almost always acting only on the local part of the distributed matrix.
The parallel actions required to connect the various solver objects are most often
already provided by the block-Jacobi or the additive Schwarz smoothers. To define a
new solver, the developer will then have to define its components and methods,
perhaps taking one of the predefined solvers as a starting point, if possible.
Once the new smoother/solver class has been developed, to use it in the context of the
multilevel preconditioners it is necessary to:

• declare in the application program a variable of the new type;

• pass that variable as the argument to the set routine as in the following:

call p%set(smoother,info [,ilev,ilmax,pos])

call p%set(solver,info [,ilev,ilmax,pos])

• link the code implementing the various methods into the application executable.

The new solver object is then dynamically included in the preconditioner structure,
and acts as a mold to which the preconditioner will conform, even though the
AMG4PSBLAS library has not been modified to account for this new development.
It is possible to define new values for the keyword WHAT in the set routine; if the
library code does not recognize a keyword, it passes it down the composition hierarchy
(levels containing smoothers containing in turn solvers), so that it can be eventually
caught by the new solver. By the same token, any keyword/value pair that does not
pertain to a given smoother should be passed down to the contained solver, and any
keyword/value pair that does not pertain to a given solver is by default ignored.
An example is provided in the source code distribution under the folder
tests/newslv. In this example we are implementing a new incomplete factorization
variant (which is simply the ILU(0) factorization under a new name). Because of the
specifics of this case, it is possible to reuse the basic structure of the ILU solver, with
its L/D/U components and the methods needed to apply the solver; only a few
methods, such as the description and most importantly the build, need to be
ovverridden (rewritten).
The interfaces for the calls shown above are defined using

smoother class(amg_x_base_smoother_type)

The user-defined new smoother to be employed in the preconditioner.
solver class(amg_x_base_solver_type)

The user-defined new solver to be employed in the preconditioner.

36 AMG4PSBLAS User’s and Reference Guide

The other arguments are defined in the way described in Sec. 5.2. As an example, in
the tests/newslv code we define a new object of type amg_d_tlu_solver_type, and
we pass it as follows:

! sparse matrix and preconditioner

type(psb_dspmat_type) :: a

type(amg_dprec_type) :: prec

type(amg_d_tlu_solver_type) :: tlusv

......

!

! prepare the preconditioner: an ML with defaults, but with TLU solver at

! intermediate levels. All other parameters are at default values.

!

call prec%init(’ML’, info)

call prec%hierarchy_build(a,desc_a,info)

nlv = prec%get_nlevs()

call prec%set(tlusv, info,ilev=1,ilmax=max(1,nlv-1))

call prec%smoothers_build(a,desc_a,info)

7 Error handling 37

7 Error Handling

The error handling in AMG4PSBLAS is based on the PSBLAS error handling. Error
conditions are signaled via an integer argument info; whenever an error condition is
detected, an error trace stack is built by the library up to the top-level, user-callable
routine. This routine will then decide, according to the user preferences, whether the
error should be handled by terminating the program or by returning the error
condition to the user code, which will then take action, and whether an error message
should be printed. These options may be set by using the PSBLAS error handling
routines; for further details see the PSBLAS User’s Guide [16].

38 AMG4PSBLAS User’s and Reference Guide

A License

AMG4PSBLAS is freely distributable under the following copyright terms:

AMG4PSBLAS version 1.0

Algebraic MultiGrid Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 3.7)

(C) Copyright 2021

Pasqua D’Ambra IAC-CNR, IT

Fabio Durastante University of Pisa and IAC-CNR, IT

Salvatore Filippone University of Rome Tor-Vergata and IAC-CNR, IT

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may

not be used to endorse or promote products derived from this

software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

A License 39

AMG4PSBLAS is an evolution of MLD2P4, whose license we reproduce here to abide
by its terms:

MLD2P4 version 2.2

MultiLevel Domain Decomposition Parallel Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 3.5)

(C) Copyright 2008-2018

Salvatore Filippone

Pasqua D’Ambra

Daniela di Serafino

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may

not be used to endorse or promote products derived from this

software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

40 MLD2P4 User’s and Reference Guide

References

[1] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L’Excellent,
C. Weisbecker, Improving multifrontal methods by means of block low-rank
representations, SIAM Journal on Scientific Computing, volume 37 (3), 2015,
A1452–A1474. See also http://mumps.enseeiht.fr.

[2] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a Two-Level
Schwarz Method, Computing, 63, 1999, 233–263.

[3] W. L. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial, Second
Edition, SIAM, 2000.

[4] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending PSBLAS to Build
Parallel Schwarz Preconditioners, in J. Dongarra, K. Madsen, J. Wasniewski,
editors, Proceedings of PARA 04 Workshop on State of the Art in Scientific
Computing, Lecture Notes in Computer Science, Springer, 2005, 593–602.

[5] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a package of
high-performance preconditioners for scientific and engineering applications,
Applicable Algebra in Engineering, Communications and Computing, 18 (3)
2007, 223–239.

[6] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for General
Sparse Linear Systems, SIAM Journal on Scientific Computing, 21 (2), 1999,
792–797.

[7] U.. V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halappanavar, and
A. Pothen, Distributed-memory parallel algorithms for matching and coloring, in
PCO11 New Trends in Parallel Computing and Optimization, IEEE International
Symposium on Parallel and Distributed Processing Workshops, IEEE CS, 2011.

[8] P. D’Ambra, S. Filippone, D. di Serafino, On the Development of PSBLAS-based
Parallel Two-level Schwarz Preconditioners, Applied Numerical Mathematics,
Elsevier Science, 57 (11-12), 2007, 1181-1196.

[9] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of Parallel
Multilevel Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM
Trans. Math. Softw., 37(3), 2010, art. 30.

[10] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a Package of
High-Performance Preconditioners for Scientific and Engineering Applications,
Appl. Algebra Engrg. Comm. Comput., 18(3), 2007, 223–239.

[11] P. D’Ambra, F Durastante, S. Filippone, AMG preconditioners for Linear Solvers
towards Extreme Scale, 2020, arXiv:2006.16147v3.

https://arxiv.org/abs/2006.16147v3arXiv:2006.16147v2

References 41

[12] T. A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal
Method with a Column Pre-ordering Strategy, ACM Transactions on
Mathematical Software, 30, 2004, 196–199. (See also
http://www.cise.ufl.edu/~davis/)

[13] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu, A
supernodal approach to sparse partial pivoting, SIAM Journal on Matrix Analysis
and Applications, 20 (3), 1999, 720–755.

[14] J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, A set of Level 3 Basic
Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 16
(1) 1990, 1–17.

[15] J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An extended set of
FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software, 14 (1) 1988, 1–17.

[16] S. Filippone, A. Buttari, PSBLAS 3.5.0 User’s Guide. A Reference Guide for the
Parallel Sparse BLAS Library, 2012, available from
https://github.com/sfilippone/psblas3/tree/master/docs.

[17] S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matrix
Computations in Fortran 2003. ACM Transactions on on Mathematical Software,
38 (4), 2012, art. 23.

[18] S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra
Computation on Sparse Matrices, ACM Transactions on Mathematical Software,
26 (4), 2000, 527–550.

[19] S. Gratton, P. Henon, P. Jiranek and X. Vasseur, Reducing complexity of
algebraic multigrid by aggregation, Numerical Lin. Algebra with Applications,
2016, 23:501-518

[20] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions, MIT
Press, 1998.

[21] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear Algebra
Subprograms for FORTRAN usage, ACM Transactions on Mathematical
Software, 5 (3), 1979, 308–323.

[22] X. S. Li, J. W. Demmel, SuperLU DIST: A Scalable Distributed-memory Sparse
Direct Solver for Unsymmetric Linear Systems, ACM Transactions on
Mathematical Software, 29 (2), 2003, 110–140.

[23] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numerical
Linear Algebra with Applications, 15 (5), 2008, 473–487.

42 MLD2P4 User’s and Reference Guide

[24] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, 2003.

[25] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations, Cambridge University Press,
1996.

[26] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference. Volume 1 - The MPI Core, second edition, MIT Press, 1998.

[27] K. Stüben, An Introduction to Algebraic Multigrid, in A. Schüller,
U. Trottenberg, C. Oosterlee, Multigrid, Academic Press, 2001.

[28] R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation
Strategies on Massively Parallel Machines, in J. Donnelley, editor, Proceedings of
SuperComputing 2000, Dallas, 2000.

[29] P. Vaněk, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed Aggregation
for Second and Fourth Order Elliptic Problems, Computing, 56 (3) 1996, 179–196.

[30] P. D’Ambra and P. S. Vassilevski, Adaptive AMG with coarsening based on
compatible weighted matching, Computing and Visualization in Science, 16,
(2013) 59–76.

[31] P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package
for bootstrap AMG based on graph weighted matching, ACM Transactions on
Mathematical Software, 44, (2018) 39:1–39:25.

	AMG4PSBLAS User's and Reference Guide
	Abstract
	1 General Overview
	2 Code Distribution
	3 Configuring and Building AMG4PSBLAS
	3.1 Prerequisites
	3.2 Optional third party libraries
	3.3 Configuration options
	3.4 Bug reporting
	3.5 Example and test programs

	4 Getting Started
	4.1 Examples

	5 User Interface
	5.1 Method init
	5.2 Method set
	5.3 Method hierarchy_build
	5.4 Method smoothers_build
	5.5 Method build
	5.6 Method apply
	5.7 Method free
	5.8 Method descr
	5.9 Auxiliary Methods
	5.9.1 Method: dump
	5.9.2 Method: clone
	5.9.3 Method: sizeof
	5.9.4 Method: allocate_wrk
	5.9.5 Method: free_wrk

	6 Adding new smoother and solver objects to AMG4PSBLAS
	7 Error Handling
	A License
	References

