\section{User Interface\label{sec:userinterface}} \markboth{\textsc{MLD2P4 User's and Reference Guide}} {\textsc{\ref{sec:userinterface} User Interface}} The basic user interface of MLD2P4 consists of six routines. The four routines \verb|mld_precinit|, \verb|mld_precset|, \verb|mld_precbld| and \verb|mld_precaply| encapsulate all the functionalities for the setup and the application of any one-level and multi-level preconditioner implemented in the package. The routine \verb|mld_precfree| deallocates the preconditioner data structure, while \verb|mld_precdescr| prints a description of the preconditioner setup by the user. For each routine, the same user interface is overloaded with respect to the real/complex case and the single/double precision; arguments with appropriate data types must be passed to the routine, i.e. \begin{itemize} \item the sparse matrix data structure, containing the matrix to be preconditioned, must be of type \verb|mld_|\emph{x}\verb|spmat_type| with \emph{x} = \verb|s| for real single precision, \emph{x} = \verb|d| for real double precision, \emph{x} = \verb|c| for complex single precision, \emph{x} = \verb|z| for complex double precision; \item the preconditioner data structure must be of type \verb|mld_|\emph{x}\verb|prec_type|, with \emph{x} = \verb|s|, \verb|d|, \verb|c|, \verb|z|, according to the sparse matrix data structure; \item the arrays containing the vectors $v$ and $w$ involved in the preconditioner application $w=M^{-1}v$ must be of type \emph{type}\verb|(|\emph{kind\_parameter}\verb|)|, with \emph{type} = \verb|real|, \verb|complex| and \emph{kind\_parameter} = \verb|kind(1.e0)|, \verb|kind(1.d0)|, according to the sparse matrix and preconditioner data structure; note that the PSBLAS module \verb|psb_base_mod| provides the constants \verb|psb_spk_| = \verb|kind(1.e0)| and \verb|psb_dpk_| = \verb|kind(1.d0)|; \item real parameters defining the preconditioner must be declared according to the precision of the sparse matrix and preconditioner data structures (see Section~\ref{sec:precset}). \end{itemize} A description of each routine is given in the remainder of this section. \subsection{Subroutine mld\_precinit\label{sec:precinit}} \begin{center} \verb|mld_precinit(p,ptype,info)| \\ \verb|mld_precinit(p,ptype,info,nlev)| \\ \end{center} \noindent This routine allocates and initializes the preconditioner data structure, according to the preconditioner type chosen by the user. \subsubsection*{Arguments} \begin{tabular}{p{1.2cm}p{10.5cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|ptype| & \verb|character(len=*), intent(in)|.\\ & The type of preconditioner. Its values are specified in Table~\ref{tab:precinit}.\\ & Note that the strings are case insensitive.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|nlev| & \verb|integer, optional, intent(in)|.\\ & The number of levels of the multilevel preconditioner. If \verb|nlev| is not present and \verb|ptype|=\verb|'ML'|, \verb|'ml'|, then \verb|nlev|=2 is assumed. Otherwise, \verb|nlev| is ignored.\\ \end{tabular} \subsection{Subroutine mld\_precset\label{sec:precset}} \begin{center} \verb|mld_precset(p,what,val,info)|\\ \end{center} \noindent This routine sets the parameters defining the preconditioner. More precisely, the parameter identified by \verb|what| is assigned the value contained in \verb|val|. \subsubsection*{Arguments} \begin{tabular}{p{1.2cm}p{10.5cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|what| & \verb|integer, intent(in)|. \\ & The number identifying the parameter to be set. A mnemonic constant has been associated to each of these numbers, as reported in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}.\\ \verb|val | & \verb|integer| \emph{or} \verb|character(len=*)| \emph{or} \verb|real(psb_spk_)| \emph{or} \verb|real(psb_dpk_)|, \verb|intent(in)|.\\ & The value of the parameter to be set. The list of allowed values and the corresponding data types is given in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}. When the value is of type \verb|character(len=*)|, it is also treated as case insensitive.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ % %\verb|ilev| & \verb|integer, optional, intent(in)|.\\ % & For the multilevel preconditioner, the level at which the % preconditioner parameter has to be set. % The levels are numbered in increasing % order starting from the finest one, i.e.\ level 1 is the finest level. % If \verb|ilev| is not present, the parameter identified by \verb|what| % is set at all the appropriate levels (see Table~\ref{tab:params}). \end{tabular} \ \\ A variety of (one-level and multi-level) preconditioners can be obtained by a suitable setting of the preconditioner parameters. These parameters can be logically divided into four groups, i.e.\ parameters defining \begin{enumerate} \item the type of multi-level preconditioner; \item the one-level preconditioner used as smoother; \item the aggregation algorithm; \item the coarse-space correction at the coarsest level. \end{enumerate} A list of the parameters that can be set, along with their allowed and default values, is given in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}. For a detailed description of the meaning of the parameters, please refer to Section~\ref{sec:background}. % %Note that the routine allows to set different features of the %preconditioner at each level through the use of \verb|ilev|. %This should be done by users with experience in the field of %multi-level preconditioners. Non-expert users are recommended %to call \verb| mld_precset| without specifying \verb|ilev|. \begin{sidewaystable} \begin{center} \begin{tabular}{|l|l|p{2cm}|l|p{7cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{type of the multi-level preconditioner}}\\ \hline \verb|mld_ml_type_| & \verb|character(len=*)| & \texttt{'ADD'} \ \ \ \texttt{'MULT'} & \texttt{'MULT'} & Basic multi-level framework: additive or multiplicative among the levels (always additive inside a level). \\ \hline \verb|mld_smoother_type_|& \verb|character(len=*)| & \texttt{'DIAG'} \ \ \ \texttt{'BJAC'} \ \ \ \texttt{'AS'} & \texttt{'AS'} & Basic one-level preconditioner (i.e.\ smoother): diagonal, block Jacobi, AS \\ \hline \verb|mld_smoother_pos_| & \verb|character(len=*)| & \texttt{'PRE'} \ \ \ \texttt{'POST'} \ \ \ \texttt{'TWOSIDE'} & \texttt{'POST'} & ``Position'' of the smoother: pre-smoother, post-smoother, pre- and post-smoother. \\ \hline \end{tabular} \end{center} \caption{Parameters defining the type of multi-level preconditioner. \label{tab:p_type}} \end{sidewaystable} \begin{sidewaystable} \begin{center} \begin{tabular}{|l|l|p{3.2cm}|l|p{7cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{basic one-level preconditioner (smoother)}} \\ \hline \verb|mld_sub_ovr_| & \verb|integer| & any integer number $\ge 0$ & 1 & Number of overlap layers. \\ \hline \verb|mld_sub_restr_| & \verb|character(len=*)| & \texttt{'HALO'} \hspace{2.5cm} \texttt{'NONE'} & \texttt{'HALO'} & Type of restriction operator: \texttt{'HALO'} for taking into account the overlap, \texttt{'NONE'} for neglecting it. \\ \hline \verb|mld_sub_prol_| & \verb|character(len=*)| & \texttt{'SUM'} \hspace{2.5cm} \texttt{'NONE'} & \texttt{'NONE'} & Type of prolongator operator: \texttt{'SUM'} for adding the contributions from the overlap, \texttt{'NONE'} for neglecting them. \\ \hline \verb|mld_sub_solve_| & \verb|character(len=*)| & \texttt{'ILU'} \hspace{2.5cm} \texttt{'MILU'} \hspace{2.5cm} \texttt{'ILUT'} \hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm} \texttt{'SLU'} & \texttt{'UMF'} & Local solver: ILU($p$), MILU($p$), ILU($p,t$), LU from UMFPACK, LU from SuperLU (plus triangular solve). \\ \hline \verb|mld_sub_fillin_| & \verb|integer| & Any~int.~num.~$\ge 0$ & 0 & Fill-in level $p$ of the incomplete LU factorizations. \\ \hline \verb|mld_sub_iluthrs_| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~real~num.~$\ge 0$ & \texttt{0.e0} (or \texttt{0.d0}) & Drop tolerance $t$ in the ILU($p,t$) factorization. \\ \hline \verb|mld_sub_ren_| & \verb|character(len=*)| & \texttt{'RENUM\_NONE'} \texttt{'RENUM\_GLOBAL'} %, \texttt{'RENUM_GPS'} & \texttt{'RENUM\_NONE'} & Row and column reordering of the local submatrices: no reordering, reordering according to the global numbering of the rows and columns of the whole matrix. \\ \hline \end{tabular} \end{center} \caption{Parameters defining the one-level preconditioner used as smoother. \label{tab:p_smoother}} \end{sidewaystable} \begin{sidewaystable} \begin{center} \begin{tabular}{|l|l|p{2.3cm}|p{2.6cm}|p{7cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{aggregation algorithm}} \\ \hline \verb|mld_aggr_alg_| & \verb|character(len=*)| & \texttt{'DEC'} & \texttt{'DEC'} & Aggregation algorithm. Currently, only the decoupled aggregation is available. \\ \hline \verb|mld_aggr_kind_| & \verb|character(len=*)| & \texttt{'SMOOTH'} \hspace{2.5cm} \texttt{'RAW'} & \texttt{'SMOOTH'} & Type of aggregation: smoothed or raw, i.e.\ using the tentative prolongator. \\ \hline \verb|mld_aggr_thresh_| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~real~num. $\in [0, 1]$ & \texttt{0.e0} (or \texttt{0.d0}) & The threshold $\theta$ in the aggregation algorithm. \\ \hline \verb|mld_aggr_eig_| & \verb|character(len=*)| & \texttt{'A\_NORMI'} & \texttt{'A\_NORMI'} & Estimate of the maximum eigenvalue of $D^{-1}A$ for the smoothed aggregation. Currently, only the infinity norm of the matrix is available. \\ \hline \verb|mld_aggr_damp_| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~real~num. $>0$ & \texttt{4.e0/3.e0} \hspace{1cm} (or \texttt{4.d0/3.d0}) & The damping parameter $\omega$ in the aggregation algorithm. \\ \hline \end{tabular} \end{center} \caption{Parameters defining the aggregation algorithm. \label{tab:p_aggregation}} \end{sidewaystable} \begin{sidewaystable} \begin{center} \begin{tabular}{|l|l|p{3.2cm}|l|p{7cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{coarse-space correction at the coarsest level}}\\ \hline \verb|mld_coarse_mat_| & \verb|character(len=*)| & \texttt{'DISTR'} \hspace{2.5cm} \texttt{'REPL'} & \texttt{'DISTR'} & Coarsest matrix: distributed among the processors or replicated on each of them. \\ \hline \verb|mld_coarse_solve_| & \verb|character(len=*)| & \texttt{'BJAC'} \hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm} \texttt{'SLU'} \hspace{2.5cm} \texttt{'SLUDIST'} & \texttt{'BJAC'} & Solver used at the coarsest level: block Jacobi, sequential LU from UMFPACK, sequential LU from SuperLU, distributed LU from SuperLU\_Dist. If the coarsest matrix is distributed, only \texttt{'BJAC'} and \texttt{'SLUDIST'} can be chosen; if it is replicated, only \texttt{'BJAC'} or \texttt{'SLUDIST'} can be selected. \\ \hline \verb|mld_coarse_subsolve_| & \verb|character(len=*)| & \texttt{'ILU'} \hspace{2.5cm} \texttt{'MILU'} \hspace{2.5cm} \texttt{'ILUT'} \hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm} \texttt{'SLU'} & \texttt{'UMF'} & Solver for the diagonal blocks of the coarse matrix, in case the block Jacobi solver is chosen as coarsest-level solver: ILU($p$), MILU($p$), ILU($p,t$), LU from UMFPACK, LU from SuperLU, plus triangular solve. \\ \hline \verb|mld_coarse_sweeps_|& \verb|integer| & Any~int.~num.~$> 0$ & \texttt{4} & Number of Block-Jacobi sweeps when 'BJAC' is used as coarsest-level solver. \\ \verb|mld_coarse_fillin_| & \verb|integer| & Any~int.~num.~$\ge 0$ & \texttt{0} & Fill-in level $p$ of the incomplete LU factorizations. \\ \hline \verb|mld_coarse_iluthrs_| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~real.~num.~$\ge 0$ & \texttt{0.d0} (or \texttt{0.e0}) & Drop tolerance $t$ in the ILU($p,t$) factorization. \\ \hline \end{tabular} \end{center} \caption{Parameters defining the coarse-space correction at the coarsest level.\label{tab:p_coarse}} \end{sidewaystable} \clearpage \subsection{Subroutine mld\_precbld\label{sec:precbld}} \begin{center} \verb|mld_precbld(a,desc_a,p,info)|\\ \end{center} \noindent This routine builds the preconditioner according to the requirements made by the user through the routines \verb|mld_precinit| and \verb|mld_precset|. \subsubsection*{Arguments} \begin{tabular}{p{1.2cm}p{10.5cm}} \verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\ & The sparse matrix structure containing the local part of the matrix to be preconditioned. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ \verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\ & The communication descriptor of \verb|a|. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \end{tabular} \clearpage \subsection{Subroutine mld\_precaply\label{sec:precaply}} \begin{center} \verb|mld_precaply(p,x,y,desc_a,info)|\\ \verb|mld_precaply(p,x,y,desc_a,info,trans,work)|\\ \end{center} \noindent This routine computes $y = op(M^{-1})\, x$, where $M$ is a previously built preconditioner, stored into \verb|p|, and $op$ denotes the preconditioner itself or its transpose, according to the value of \verb|trans|. Note that, when MLD2P4 is used with a Krylov solver from PSBLAS, \verb|mld_precaply| is called within the PSBLAS routine \verb|mld_krylov| and hence it is completely transparent to the user. \subsubsection*{Arguments} \begin{tabular}{p{1.2cm}p{10.5cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure, containing the local part of $M$. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|x| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(in)|.\\ & The local part of the vector $x$. Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|y| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(out)|.\\ & The local part of the vector $y$. Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\ & The communication descriptor associated to the matrix to be preconditioned.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|trans| & \verb|character(len=1), optional, intent(in).|\\ & If \verb|trans| = \verb|'N','n'| then $op(M^{-1}) = M^{-1}$; if \verb|trans| = \verb|'T','t'| then $op(M^{-1}) = M^{-T}$ (transpose of $M^{-1})$; if \verb|trans| = \verb|'C','c'| then $op(M^{-1}) = M^{-C}$ (conjugate transpose of $M^{-1})$.\\ \verb|work| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), optional, target|.\\ & Workspace. Its size should be at least \verb|4 * psb_cd_get_local_cols(desc_a)| (see the PSBLAS User's Guide). Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \end{tabular} \subsection{Subroutine mld\_precfree\label{sec:precfree}} \begin{center} \verb|mld_precfree(p,info)|\\ \end{center} \noindent This routine deallocates the preconditioner data structure. \subsubsection*{Arguments} \begin{tabular}{p{1.2cm}p{10.5cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \end{tabular} \subsection{Subroutine mld\_precdescr\label{sec:precdescr}} \begin{center} \verb|mld_precdescr(p,info)|\\ \verb|mld_precdescr(p,info,iout)|\\ \end{center} \noindent This routine prints a description of the preconditioner to the standard output or to a file. \subsubsection*{Arguments} \begin{tabular}{p{1.2cm}p{10.6cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(in)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|iout| & \verb|integer, intent(in), optional|.\\ & The id of the file where the preconditioner description will be printed; the default is the standard output.\\ \end{tabular} %%% Local Variables: %%% mode: latex %%% TeX-master: "userguide" %%% End: