!!$ !!$ !!$ MLD2P4 version 1.1 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 2.3.1) !!$ !!$ (C) Copyright 2008,2009 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari University of Rome Tor Vergata !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_silu0_fact.f90 ! ! Subroutine: mld_silu0_fact ! Version: real ! Contains: mld_silu0_factint, ilu_copyin ! ! This routine computes either the ILU(0) or the MILU(0) factorization of ! the diagonal blocks of a distributed matrix. These factorizations are used ! to build the 'base preconditioner' (block-Jacobi preconditioner/solver, ! Additive Schwarz preconditioner) corresponding to a given level of a ! multilevel preconditioner. ! ! Details on the above factorizations can be found in ! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, ! SIAM, 2003, Chapter 10. ! ! The local matrix is stored into a and blck, as specified in the description ! of the arguments below. The storage format for both the L and U factors is CSR. ! The diagonal of the U factor is stored separately (actually, the inverse of the ! diagonal entries is stored; this is then managed in the solve stage associated ! to the ILU(0)/MILU(0) factorization). ! ! The routine copies and factors "on the fly" from a and blck into l (L factor), ! u (U factor, except its diagonal) and d (diagonal of U). ! ! This implementation of ILU(0)/MILU(0) is faster than the implementation in ! mld_siluk_fct (the latter routine performs the more general ILU(k)/MILU(k)). ! ! ! Arguments: ! ialg - integer, input. ! The type of incomplete factorization to be performed. ! The MILU(0) factorization is computed if ialg = 2 (= mld_milu_n_); ! the ILU(0) factorization otherwise. ! a - type(psb_sspmat_type), input. ! The sparse matrix structure containing the local matrix. ! Note that if the 'base' Additive Schwarz preconditioner ! has overlap greater than 0 and the matrix has not been reordered ! (see mld_as_bld), then a contains only the 'original' local part ! of the distributed matrix, i.e. the rows of the matrix held ! by the calling process according to the initial data distribution. ! l - type(psb_sspmat_type), input/output. ! The L factor in the incomplete factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! u - type(psb_sspmat_type), input/output. ! The U factor (except its diagonal) in the incomplete factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! d - real(psb_spk_), dimension(:), input/output. ! The inverse of the diagonal entries of the U factor in the incomplete ! factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! info - integer, output. ! Error code. ! blck - type(psb_sspmat_type), input, optional, target. ! The sparse matrix structure containing the remote rows of the ! distributed matrix, that have been retrieved by mld_as_bld ! to build an Additive Schwarz base preconditioner with overlap ! greater than 0. If the overlap is 0 or the matrix has been reordered ! (see mld_fact_bld), then blck is empty. ! subroutine mld_silu0_fact(ialg,a,l,u,d,info,blck) use psb_sparse_mod use mld_inner_mod, mld_protect_name => mld_silu0_fact implicit none ! Arguments integer, intent(in) :: ialg type(psb_sspmat_type),intent(in) :: a type(psb_sspmat_type),intent(inout) :: l,u real(psb_spk_), intent(inout) :: d(:) integer, intent(out) :: info type(psb_sspmat_type),intent(in), optional, target :: blck ! Local variables integer :: l1, l2,m,err_act type(psb_sspmat_type), pointer :: blck_ character(len=20) :: name, ch_err name='mld_silu0_fact' info = psb_success_ call psb_erractionsave(err_act) ! ! Point to / allocate memory for the incomplete factorization ! if (present(blck)) then blck_ => blck else allocate(blck_,stat=info) if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='Allocate') goto 9999 end if call psb_nullify_sp(blck_) ! Probably pointless. call psb_sp_all(0,0,blck_,1,info) if(info.ne.0) then info=psb_err_from_subroutine_ ch_err='psb_sp_all' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if blck_%m=0 endif ! ! Compute the ILU(0) or the MILU(0) factorization, depending on ialg ! call mld_silu0_factint(ialg,m,a%m,a,blck_%m,blck_,& & d,l%aspk,l%ia1,l%ia2,u%aspk,u%ia1,u%ia2,l1,l2,info) if(info.ne.0) then info=psb_err_from_subroutine_ ch_err='mld_silu0_factint' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! ! Store information on the L and U sparse matrices ! l%infoa(1) = l1 l%fida = 'CSR' l%descra = 'TLU' u%infoa(1) = l2 u%fida = 'CSR' u%descra = 'TUU' l%m = m l%k = m u%m = m u%k = m ! ! Nullify pointer / deallocate memory ! if (present(blck)) then blck_ => null() else call psb_sp_free(blck_,info) if(info.ne.0) then info=psb_err_from_subroutine_ ch_err='psb_sp_free' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if deallocate(blck_) endif call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return contains ! ! Subroutine: mld_silu0_factint ! Version: real ! Note: internal subroutine of mld_silu0_fact. ! ! This routine computes either the ILU(0) or the MILU(0) factorization of the ! diagonal blocks of a distributed matrix. ! These factorizations are used to build the 'base preconditioner' ! (block-Jacobi preconditioner/solver, Additive Schwarz ! preconditioner) corresponding to a given level of a multilevel preconditioner. ! ! The local matrix is stored into a and b, as specified in the ! description of the arguments below. The storage format for both the L and U ! factors is CSR. The diagonal of the U factor is stored separately (actually, ! the inverse of the diagonal entries is stored; this is then managed in the ! solve stage associated to the ILU(0)/MILU(0) factorization). ! ! The routine copies and factors "on the fly" from the sparse matrix structures a ! and b into the arrays laspk, uaspk, d (L, U without its diagonal, diagonal of U). ! ! ! Arguments: ! ialg - integer, input. ! The type of incomplete factorization to be performed. ! The ILU(0) factorization is computed if ialg = 1 (= mld_ilu_n_), ! the MILU(0) one if ialg = 2 (= mld_milu_n_); other values ! are not allowed. ! m - integer, output. ! The total number of rows of the local matrix to be factorized, ! i.e. ma+mb. ! ma - integer, input ! The number of rows of the local submatrix stored into a. ! a - type(psb_sspmat_type), input. ! The sparse matrix structure containing the local matrix. ! Note that, if the 'base' Additive Schwarz preconditioner ! has overlap greater than 0 and the matrix has not been reordered ! (see mld_fact_bld), then a contains only the 'original' local part ! of the distributed matrix, i.e. the rows of the matrix held ! by the calling process according to the initial data distribution. ! mb - integer, input. ! The number of rows of the local submatrix stored into b. ! b - type(psb_sspmat_type), input. ! The sparse matrix structure containing the remote rows of the ! distributed matrix, that have been retrieved by mld_as_bld ! to build an Additive Schwarz base preconditioner with overlap ! greater than 0. If the overlap is 0 or the matrix has been ! reordered (see mld_fact_bld), then b does not contain any row. ! d - real(psb_spk_), dimension(:), output. ! The inverse of the diagonal entries of the U factor in the ! incomplete factorization. ! laspk - real(psb_spk_), dimension(:), input/output. ! The entries of U are stored according to the CSR format. ! The L factor in the incomplete factorization. ! lia1 - integer, dimension(:), input/output. ! The column indices of the nonzero entries of the L factor, ! according to the CSR storage format. ! lia2 - integer, dimension(:), input/output. ! The indices identifying the first nonzero entry of each row ! of the L factor in laspk, according to the CSR storage format. ! uaspk - real(psb_spk_), dimension(:), input/output. ! The U factor in the incomplete factorization. ! The entries of U are stored according to the CSR format. ! uia1 - integer, dimension(:), input/output. ! The column indices of the nonzero entries of the U factor, ! according to the CSR storage format. ! uia2 - integer, dimension(:), input/output. ! The indices identifying the first nonzero entry of each row ! of the U factor in uaspk, according to the CSR storage format. ! l1 - integer, output. ! The number of nonzero entries in laspk. ! l2 - integer, output. ! The number of nonzero entries in uaspk. ! info - integer, output. ! Error code. ! subroutine mld_silu0_factint(ialg,m,ma,a,mb,b,& & d,laspk,lia1,lia2,uaspk,uia1,uia2,l1,l2,info) implicit none ! Arguments integer, intent(in) :: ialg type(psb_sspmat_type),intent(in) :: a,b integer,intent(inout) :: m,l1,l2,info integer, intent(in) :: ma,mb integer, dimension(:), intent(inout) :: lia1,lia2,uia1,uia2 real(psb_spk_), dimension(:),intent(inout) :: laspk,uaspk,d ! Local variables integer :: i,j,k,l,low1,low2,kk,jj,ll, ktrw,err_act real(psb_spk_) :: dia,temp integer, parameter :: nrb=16 type(psb_sspmat_type) :: trw integer :: int_err(5) character(len=20) :: name, ch_err name='mld_silu0_factint' if(psb_get_errstatus().ne.0) return info=psb_success_ call psb_erractionsave(err_act) select case(ialg) case(mld_ilu_n_,mld_milu_n_) ! Ok case default info=psb_err_input_asize_invalid_i_ call psb_errpush(info,name,i_err=(/1,ialg,0,0,0/)) goto 9999 end select call psb_nullify_sp(trw) trw%m=0 trw%k=0 call psb_sp_all(trw,1,info) if(info.ne.0) then info=psb_err_from_subroutine_ ch_err='psb_sp_all' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if lia2(1) = 1 uia2(1) = 1 l1 = 0 l2 = 0 m = ma+mb ! ! Cycle over the matrix rows ! do i = 1, m d(i) = szero if (i <= ma) then ! ! Copy the i-th local row of the matrix, stored in a, ! into laspk/d(i)/uaspk ! call ilu_copyin(i,ma,a,i,1,m,l1,lia1,laspk,& & d(i),l2,uia1,uaspk,ktrw,trw) else ! ! Copy the i-th local row of the matrix, stored in b ! (as (i-ma)-th row), into laspk/d(i)/uaspk ! call ilu_copyin(i-ma,mb,b,i,1,m,l1,lia1,laspk,& & d(i),l2,uia1,uaspk,ktrw,trw) endif lia2(i+1) = l1 + 1 uia2(i+1) = l2 + 1 dia = d(i) do kk = lia2(i), lia2(i+1) - 1 ! ! Compute entry l(i,k) (lower factor L) of the incomplete ! factorization ! temp = laspk(kk) k = lia1(kk) laspk(kk) = temp*d(k) ! ! Update the rest of row i (lower and upper factors L and U) ! using l(i,k) ! low1 = kk + 1 low2 = uia2(i) ! updateloop: do jj = uia2(k), uia2(k+1) - 1 ! j = uia1(jj) ! if (j < i) then ! ! search l(i,*) (i-th row of L) for a matching index j ! do ll = low1, lia2(i+1) - 1 l = lia1(ll) if (l > j) then low1 = ll exit else if (l == j) then laspk(ll) = laspk(ll) - temp*uaspk(jj) low1 = ll + 1 cycle updateloop end if enddo else if (j == i) then ! ! j=i: update the diagonal ! dia = dia - temp*uaspk(jj) cycle updateloop ! else if (j > i) then ! ! search u(i,*) (i-th row of U) for a matching index j ! do ll = low2, uia2(i+1) - 1 l = uia1(ll) if (l > j) then low2 = ll exit else if (l == j) then uaspk(ll) = uaspk(ll) - temp*uaspk(jj) low2 = ll + 1 cycle updateloop end if enddo end if ! ! If we get here we missed the cycle updateloop, which means ! that this entry does not match; thus we accumulate on the ! diagonal for MILU(0). ! if (ialg == mld_milu_n_) then dia = dia - temp*uaspk(jj) end if enddo updateloop enddo ! ! Check the pivot size ! if (abs(dia) < s_epstol) then ! ! Too small pivot: unstable factorization ! info = psb_err_pivot_too_small_ int_err(1) = i write(ch_err,'(g20.10)') abs(dia) call psb_errpush(info,name,i_err=int_err,a_err=ch_err) goto 9999 else ! ! Compute 1/pivot ! dia = sone/dia end if d(i) = dia ! ! Scale row i of upper triangle ! do kk = uia2(i), uia2(i+1) - 1 uaspk(kk) = uaspk(kk)*dia enddo enddo call psb_sp_free(trw,info) if(info.ne.0) then info=psb_err_from_subroutine_ ch_err='psb_sp_free' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine mld_silu0_factint ! ! Subroutine: ilu_copyin ! Version: real ! Note: internal subroutine of mld_silu0_fact ! ! This routine copies a row of a sparse matrix A, stored in the psb_sspmat_type ! data structure a, into the arrays laspk and uaspk and into the scalar variable ! dia, corresponding to the lower and upper triangles of A and to the diagonal ! entry of the row, respectively. The entries in laspk and uaspk are stored ! according to the CSR format; the corresponding column indices are stored in ! the arrays lia1 and uia1. ! ! If the sparse matrix is in CSR format, a 'straight' copy is performed; ! otherwise psb_sp_getblk is used to extract a block of rows, which is then ! copied into laspk, dia, uaspk row by row, through successive calls to ! ilu_copyin. ! ! The routine is used by mld_silu0_factint in the computation of the ILU(0)/MILU(0) ! factorization of a local sparse matrix. ! ! TODO: modify the routine to allow copying into output L and U that are ! already filled with indices; this would allow computing an ILU(k) pattern, ! then use the ILU(0) internal for subsequent calls with the same pattern. ! ! Arguments: ! i - integer, input. ! The local index of the row to be extracted from the ! sparse matrix structure a. ! m - integer, input. ! The number of rows of the local matrix stored into a. ! a - type(psb_sspmat_type), input. ! The sparse matrix structure containing the row to be copied. ! jd - integer, input. ! The column index of the diagonal entry of the row to be ! copied. ! jmin - integer, input. ! Minimum valid column index. ! jmax - integer, input. ! Maximum valid column index. ! The output matrix will contain a clipped copy taken from ! a(1:m,jmin:jmax). ! l1 - integer, input/output. ! Pointer to the last occupied entry of laspk. ! lia1 - integer, dimension(:), input/output. ! The column indices of the nonzero entries of the lower triangle ! copied in laspk row by row (see mld_silu0_factint), according ! to the CSR storage format. ! laspk - real(psb_spk_), dimension(:), input/output. ! The array where the entries of the row corresponding to the ! lower triangle are copied. ! dia - real(psb_spk_), output. ! The diagonal entry of the copied row. ! l2 - integer, input/output. ! Pointer to the last occupied entry of uaspk. ! uia1 - integer, dimension(:), input/output. ! The column indices of the nonzero entries of the upper triangle ! copied in uaspk row by row (see mld_silu0_factint), according ! to the CSR storage format. ! uaspk - real(psb_spk_), dimension(:), input/output. ! The array where the entries of the row corresponding to the ! upper triangle are copied. ! ktrw - integer, input/output. ! The index identifying the last entry taken from the ! staging buffer trw. See below. ! trw - type(psb_sspmat_type), input/output. ! A staging buffer. If the matrix A is not in CSR format, we use ! the psb_sp_getblk routine and store its output in trw; when we ! need to call psb_sp_getblk we do it for a block of rows, and then ! we consume them from trw in successive calls to this routine, ! until we empty the buffer. Thus we will make a call to psb_sp_getblk ! every nrb calls to copyin. If A is in CSR format it is unused. ! subroutine ilu_copyin(i,m,a,jd,jmin,jmax,l1,lia1,laspk,& & dia,l2,uia1,uaspk,ktrw,trw) use psb_sparse_mod implicit none ! Arguments type(psb_sspmat_type), intent(in) :: a type(psb_sspmat_type), intent(inout) :: trw integer, intent(in) :: i,m,jd,jmin,jmax integer, intent(inout) :: ktrw,l1,l2 integer, intent(inout) :: lia1(:), uia1(:) real(psb_spk_), intent(inout) :: laspk(:), uaspk(:), dia ! Local variables integer :: k,j,info,irb integer, parameter :: nrb=16 character(len=20), parameter :: name='ilu_copyin' character(len=20) :: ch_err if (psb_get_errstatus() /= 0) return info=psb_success_ call psb_erractionsave(err_act) if (psb_toupper(a%fida) == 'CSR') then ! ! Take a fast shortcut if the matrix is stored in CSR format ! do j = a%ia2(i), a%ia2(i+1) - 1 k = a%ia1(j) ! write(0,*)'KKKKK',k if ((k < jd).and.(k >= jmin)) then l1 = l1 + 1 laspk(l1) = a%aspk(j) lia1(l1) = k else if (k == jd) then dia = a%aspk(j) else if ((k > jd).and.(k <= jmax)) then l2 = l2 + 1 uaspk(l2) = a%aspk(j) uia1(l2) = k end if enddo else ! ! Otherwise use psb_sp_getblk, slower but able (in principle) of ! handling any format. In this case, a block of rows is extracted ! instead of a single row, for performance reasons, and these ! rows are copied one by one into laspk, dia, uaspk, through ! successive calls to ilu_copyin. ! if ((mod(i,nrb) == 1).or.(nrb == 1)) then irb = min(m-i+1,nrb) call psb_sp_getblk(i,a,trw,info,lrw=i+irb-1) if(info.ne.0) then info=psb_err_from_subroutine_ ch_err='psb_sp_getblk' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ktrw=1 end if do if (ktrw > trw%infoa(psb_nnz_)) exit if (trw%ia1(ktrw) > i) exit k = trw%ia2(ktrw) if ((k < jd).and.(k >= jmin)) then l1 = l1 + 1 laspk(l1) = trw%aspk(ktrw) lia1(l1) = k else if (k == jd) then dia = trw%aspk(ktrw) else if ((k > jd).and.(k <= jmax)) then l2 = l2 + 1 uaspk(l2) = trw%aspk(ktrw) uia1(l2) = k end if ktrw = ktrw + 1 enddo end if call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine ilu_copyin end subroutine mld_silu0_fact