\section{User Interface\label{sec:userinterface}} \markboth{\textsc{MLD2P4 User's and Reference Guide}} {\textsc{\ref{sec:userinterface} User Interface}} The basic user interface of MLD2P4 consists of six routines. The four routines \verb|mld_| \verb|precinit|, \verb|mld_precset|, \verb|mld_precbld| and \verb|mld_precaply| encapsulate all the functionalities for the setup and the application of any one-level and multi-level preconditioner implemented in the package. The routine \verb|mld_precfree| deallocates the preconditioner data structure, while \verb|mld_precdescr| prints a description of the preconditioner setup by the user. For each routine, the same user interface is overloaded with respect to the real/complex case and the single/double precision; arguments with appropriate data types must be passed to the routine, i.e. \begin{itemize} \item the sparse matrix data structure, containing the matrix to be preconditioned, must be of type \verb|psb_|\emph{x}\verb|spmat_type| with \emph{x} = \verb|s| for real single precision, \emph{x} = \verb|d| for real double precision, \emph{x} = \verb|c| for complex single precision, \emph{x} = \verb|z| for complex double precision; \item the preconditioner data structure must be of type \verb|mld_|\emph{x}\verb|prec_type|, with \emph{x} = \verb|s|, \verb|d|, \verb|c|, \verb|z|, according to the sparse matrix data structure; \item the arrays containing the vectors $v$ and $w$ involved in the preconditioner application $w=M^{-1}v$ must be of type \verb|psb_|\emph{x}\verb|vect_type| with \emph{x} = \verb|s|, \verb|d|, \verb|c|, \verb|z|, in a manner completely analogous to the sparse matrix type; \item real parameters defining the preconditioner must be declared according to the precision of the sparse matrix and preconditioner data structures (see Section~\ref{sec:precset}). \end{itemize} A description of each routine is given in the remainder of this section. \clearpage \subsection{Subroutine mld\_precinit\label{sec:precinit}} \begin{center} \verb|mld_precinit(p,ptype,info)| \\ \verb|mld_precinit(p,ptype,info,nlev)| \\ \end{center} \noindent This routine allocates and initializes the preconditioner data structure, according to the preconditioner type chosen by the user. {\vskip2\baselineskip\noindent\large\bfseries Arguments} \begin{tabular}{p{1.2cm}p{12cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|ptype| & \verb|character(len=*), intent(in)|.\\ & The type of preconditioner. Its values are specified in Table~\ref{tab:precinit}.\\ & Note that the strings are case insensitive.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|nlev| & \verb|integer, optional, intent(in)|.\\ & The number of levels of the multilevel preconditioner. If \verb|nlev| is not present and \verb|ptype|=\verb|'ML'|, \verb|'ml'|, then \verb|nlev|=2 is assumed. Otherwise, \verb|nlev| is ignored.\\ \end{tabular} \clearpage \subsection{Subroutine mld\_precset\label{sec:precset}} \begin{center} \verb|mld_precset(p,what,val,info)|\\ \verb|mld_precset(p,smoother,info)|\\ \verb|mld_precset(p,solver,info)|\\ \end{center} \noindent This routine sets the parameters defining the preconditioner. More precisely, the parameter identified by \verb|what| is assigned the value contained in \verb|val|. The other two forms of this routine are designed to allow extensions of the library by passing new smoothers and solvers to be employed in the preconditioner. {\vskip2\baselineskip\noindent\large\bfseries Arguments} \begin{tabular}{p{1.2cm}p{12cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|what| & \verb|integer, intent(in)|. \\ & The number identifying the parameter to be set. A mnemonic constant has been associated to each of these numbers, as reported in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}.\\ \verb|val | & \verb|integer| \emph{or} \verb|character(len=*)| \emph{or} \verb|real(psb_spk_)| \emph{or} \verb|real(psb_dpk_)|, \verb|intent(in)|.\\ & The value of the parameter to be set. The list of allowed values and the corresponding data types is given in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}. When the value is of type \verb|character(len=*)|, it is also treated as case insensitive.\\ \verb|smoother| & \verb|class(mld_x_base_smoother_type)| \\ & The user-defined new smoother to be employed in the preconditioner.\\ \verb|solver| & \verb|class(mld_x_base_solver_type)| \\ & The user-defined new solver to be employed in the preconditioner.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ % %\verb|ilev| & \verb|integer, optional, intent(in)|.\\ % & For the multilevel preconditioner, the level at which the % preconditioner parameter has to be set. % The levels are numbered in increasing % order starting from the finest one, i.e.\ level 1 is the finest level. % If \verb|ilev| is not present, the parameter identified by \verb|what| % is set at all the appropriate levels (see Table~\ref{tab:params}). \end{tabular} \ \\ A variety of (one-level and multi-level) preconditioners can be obtained by a suitable setting of the preconditioner parameters. These parameters can be logically divided into four groups, i.e.\ parameters defining \begin{enumerate} \item the type of multi-level preconditioner; \item the one-level preconditioner used as smoother; \item the aggregation algorithm; \item the coarse-space correction at the coarsest level. \end{enumerate} A list of the parameters that can be set, along with their allowed and default values, is given in Tables~\ref{tab:p_type}-\ref{tab:p_coarse}. For a detailed description of the meaning of the parameters, please refer to Section~\ref{sec:background}. % The smoother and solver objects are arranged in a hierarchical manner; when specifying a new smoother object, its parameters including the contained solver are set to default values, and when a new solver object is specified its defaults are also set, overriding in both cases any previous settings even if explicitly specified. Therefore if the user specifies a new smoother, and whishes to use a new solver which is not the default one, the call to set the solver must come \emph{after} the call to set the smoother. % \bsideways \begin{center} \begin{tabular}{|l|l|p{2cm}|l|p{7cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{type of the multi-level preconditioner}}\\ \hline \verb|mld_ml_type_| & \verb|character(len=*)| & \texttt{'ADD'} \ \ \ \texttt{'MULT'} & \texttt{'MULT'} & Basic multi-level framework: additive or multiplicative among the levels (always additive inside a level). \\ \hline \verb|mld_smoother_type_|& \verb|character(len=*)| & \texttt{'DIAG'} \ \ \ \texttt{'BJAC'} \ \ \ \texttt{'AS'} & \texttt{'AS'} & Basic predefined one-level preconditioner (i.e.\ smoother): diagonal, block Jacobi, AS. \\ \hline \verb|mld_smoother_pos_| & \verb|character(len=*)| & \texttt{'PRE'} \ \ \ \texttt{'POST'} \ \ \ \texttt{'TWOSIDE'} & \texttt{'POST'} & ``Position'' of the smoother: pre-smoother, post-smoother, pre- and post-smoother. \\ \hline \end{tabular} \end{center} \caption{Parameters defining the type of multi-level preconditioner. \label{tab:p_type}} \esideways \bsideways \begin{center} \begin{tabular}{|l|l|p{3.2cm}|l|p{7cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{basic one-level preconditioner (smoother)}} \\ \hline \verb|mld_sub_ovr_| & \verb|integer| & any~int.~num.~$\ge 0$ & 1 & Number of overlap layers. \\ \hline \verb|mld_sub_restr_| & \verb|character(len=*)| & \texttt{'HALO'} \hspace{2.5cm} \texttt{'NONE'} & \texttt{'HALO'} & Type of restriction operator: \texttt{'HALO'} for taking into account the overlap, \texttt{'NONE'} for neglecting it. \\ \hline \verb|mld_sub_prol_| & \verb|character(len=*)| & \texttt{'SUM'} \hspace{2.5cm} \texttt{'NONE'} & \texttt{'NONE'} & Type of prolongation operator: \texttt{'SUM'} for adding the contributions from the overlap, \texttt{'NONE'} for neglecting them. \\ \hline \verb|mld_sub_solve_| & \verb|character(len=*)| & \texttt{'ILU'} \hspace{2.5cm} \texttt{'MILU'} \hspace{2.5cm} \texttt{'ILUT'} \hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm} \texttt{'SLU'} & \texttt{'ILU'} & Predefined local solver: ILU($p$), MILU($p$), ILU($p,t$), LU from UMFPACK, LU from SuperLU (plus triangular solve). \\ \hline \verb|mld_sub_fillin_| & \verb|integer| & Any~int.~num.~$\ge 0$ & 0 & Fill-in level $p$ of the incomplete LU factorizations. \\ \hline \verb|mld_sub_iluthrs_| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~real~num.~$\ge 0$ & 0 & Drop tolerance $t$ in the ILU($p,t$) factorization. \\ \hline \verb|mld_sub_ren_| & \verb|character(len=*)| & \texttt{'RENUM\_NONE'} \texttt{'RENUM\_GLOBAL'} %, \texttt{'RENUM_GPS'} & \texttt{'RENUM\_NONE'} & Row and column reordering of the local submatrices: no reordering, reordering according to the global numbering of the rows and columns of the whole matrix. \\ \hline \end{tabular} \end{center} \caption{Parameters defining the one-level preconditioner used as smoother. \label{tab:p_smoother}} \esideways \bsideways \begin{center} \begin{tabular}{|l|l|p{2.4cm}|p{2.4cm}|p{7cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{aggregation algorithm}} \\ \hline \verb|mld_coarse_aggr_size_|& \verb|integer| & A positive number & 0, meaning that the size is fixed at \verb|precinit| time & Coarse size threshold. Disregard the original specification of number of levels in \verb|precinit| and continue aggregation until either the global number of variables is below this threshold, or the aggregation does not reduce the size any longer. \\ \hline \verb|mld_aggr_alg_| & \verb|character(len=*)| & \texttt{'DEC'} & \texttt{'DEC'} & Aggregation algorithm. Currently, only the decoupled aggregation is available. \\ \hline \verb|mld_aggr_kind_| & \verb|character(len=*)| & \texttt{'SMOOTHED'} \hspace{2.5cm} \texttt{'NONSMOOTHED'} & \texttt{'SMOOTHED'} & Type of aggregation: smoothed, nonsmoothed (i.e.\ using the tentative prolongator). \\ \hline \verb|mld_aggr_thresh_| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~real~num. $\in [0, 1]$ & 0 & Threshold $\theta$ in the aggregation algorithm. \\ \hline \verb|mld_aggr_omega_alg_| & \verb|character(len=*)| & \texttt{'EIG\_EST'} \hspace{2.5cm} \texttt{'USER\_CHOICE'} & \texttt{'EIG\_EST'} & How the damping parameter $\omega$ in the smoothed aggregation should be computed: either via an estimate of the spectral radius of $D^{-1}A$, or explicily specified by the user. \\ \hline \verb|mld_aggr_eig_| & \verb|character(len=*)| & \texttt{'A\_NORMI'} & \texttt{'A\_NORMI'} & How to estimate the spectral radius of $D^{-1}A$. Currently only the infinity norm estimate is available. \\ \hline \verb|mld_aggr_omega_val_| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~nonnegative~real~num. & $4/(3\rho(D^{-1}A))$ & Damping parameter $\omega$ in the smoothed aggregation algorithm. It must be set by the user if \verb|USER_CHOICE| was specified for \verb|mld_aggr_omega_alg_|, otherwise it is computed by the library, using the selected estimate of the spectral radius $\rho(D^{-1}A)$ of $D^{-1}A$.\\ \hline \end{tabular} \end{center} \caption{Parameters defining the aggregation algorithm. \label{tab:p_aggregation}} \esideways \bsideways \begin{center} \begin{tabular}{|l|l|p{3.2cm}|l|p{7cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{coarse-space correction at the coarsest level}}\\ \hline \verb|mld_coarse_mat_| & \verb|character(len=*)| & \texttt{'DISTR'} \hspace{2.5cm} \texttt{'REPL'} & \texttt{'DISTR'} & Coarsest matrix: distributed among the processors or replicated on each of them. \\ \hline \verb|mld_coarse_solve_| & \verb|character(len=*)| & \texttt{'BJAC'} \hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm} \texttt{'SLU'} \hspace{2.5cm} \texttt{'SLUDIST'} & \texttt{'BJAC'} & Solver used at the coarsest level: block Jacobi, sequential LU from UMFPACK, sequential LU from SuperLU, distributed LU from SuperLU\_Dist. \texttt{'SLUDIST'} requires the coarsest matrix to be distributed, while \texttt{'UMF'} and \texttt{'SLU'} require it to be replicated. \\ \hline \verb|mld_coarse_subsolve_| & \verb|character(len=*)| & \texttt{'ILU'} \hspace{2.5cm} \texttt{'MILU'} \hspace{2.5cm} \texttt{'ILUT'} \hspace{2.5cm} \texttt{'UMF'} \hspace{2.5cm} \texttt{'SLU'} & See note & Solver for the diagonal blocks of the coarse matrix, in case the block Jacobi solver is chosen as coarsest-level solver: ILU($p$), MILU($p$), ILU($p,t$), LU from UMFPACK, LU from SuperLU, plus triangular solve. \\ \hline \verb|mld_coarse_sweeps_|& \verb|integer| & Any~int.~num.~$> 0$ & 4 & Number of Block-Jacobi sweeps when 'BJAC' is used as coarsest-level solver. \\ \hline \verb|mld_coarse_fillin_| & \verb|integer| & Any~int.~num.~$\ge 0$ & 0 & Fill-in level $p$ of the incomplete LU factorizations. \\ \hline \verb|mld_coarse_iluthrs_| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~real.~num.~$\ge 0$ & 0 & Drop tolerance $t$ in the ILU($p,t$) factorization. \\ \hline \multicolumn{5}{|l|}{{\bfseries Note:} defaults for {\texttt mld\_coarse\_subsolve\_} are chosen as }\\ \multicolumn{5}{|l|}{single precision version: 'SLU' if installed, 'ILU' otherwise}\\ \multicolumn{5}{|l|}{double precision version: 'UMF' if installed, else 'SLU' if installed, 'ILU' otherwise}\\ \hline \end{tabular} \end{center} \caption{Parameters defining the coarse-space correction at the coarsest level.\label{tab:p_coarse}} \esideways % \par\noindent{\large\bfseries Note}\par\noindent % The defaults for parameter \verb|mld_coarse_subsolve_| in Table~\ref{tab:p_coarse} are determined % as follows: % \begin{description} % \item[Single precision data:] 'SLU' if installed, 'ILU' otherwise; % \item[Double precision data:] 'UMF' if installed, else 'SLU' if % installed, 'ILU' otherwise; % \end{description} \clearpage \subsection{Subroutine mld\_precbld\label{sec:precbld}} \begin{center} \verb|mld_precbld(a,desc_a,p,info)|\\ \end{center} \noindent This routine builds the preconditioner according to the requirements made by the user through the routines \verb|mld_precinit| and \verb|mld_precset|. {\vskip2\baselineskip\noindent\large\bfseries Arguments} \begin{tabular}{p{1.2cm}p{12cm}} \verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\ & The sparse matrix structure containing the local part of the matrix to be preconditioned. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ \verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\ & The communication descriptor of \verb|a|. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \end{tabular} \clearpage \subsection{Subroutine mld\_precaply\label{sec:precaply}} \begin{center} \verb|mld_precaply(p,x,y,desc_a,info)|\\ \verb|mld_precaply(p,x,y,desc_a,info,trans,work)|\\ \end{center} \noindent This routine computes $y = op(M^{-1})\, x$, where $M$ is a previously built preconditioner, stored into \verb|p|, and $op$ denotes the preconditioner itself or its transpose, according to the value of \verb|trans|. Note that, when MLD2P4 is used with a Krylov solver from PSBLAS, \verb|mld_precaply| is called within the PSBLAS routine \verb|psb_krylov| and hence it is completely transparent to the user. {\vskip2\baselineskip\noindent\large\bfseries Arguments} \begin{tabular}{p{1.2cm}p{12cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure, containing the local part of $M$. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|x| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(in)|.\\ & The local part of the vector $x$. Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|y| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(out)|.\\ & The local part of the vector $y$. Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\ & The communication descriptor associated to the matrix to be preconditioned.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|trans| & \verb|character(len=1), optional, intent(in).|\\ & If \verb|trans| = \verb|'N','n'| then $op(M^{-1}) = M^{-1}$; if \verb|trans| = \verb|'T','t'| then $op(M^{-1}) = M^{-T}$ (transpose of $M^{-1})$; if \verb|trans| = \verb|'C','c'| then $op(M^{-1}) = M^{-C}$ (conjugate transpose of $M^{-1})$.\\ \verb|work| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), optional, target|.\\ & Workspace. Its size should be at least \verb|4 * psb_cd_get_local_| \verb|cols(desc_a)| (see the PSBLAS User's Guide). Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \end{tabular} \clearpage \subsection{Subroutine mld\_precfree\label{sec:precfree}} \begin{center} \verb|mld_precfree(p,info)|\\ \end{center} \noindent This routine deallocates the preconditioner data structure. {\vskip2\baselineskip\noindent\large\bfseries Arguments} \begin{tabular}{p{1.2cm}p{10.5cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \end{tabular} \clearpage \subsection{Subroutine mld\_precdescr\label{sec:precdescr}} \begin{center} \verb|mld_precdescr(p,info)|\\ \verb|mld_precdescr(p,info,iout)|\\ \end{center} \noindent This routine prints a description of the preconditioner to the standard output or to a file. It must be called after \verb|mld_precbld| has been called. {\vskip2\baselineskip\noindent\large\bfseries Arguments} \begin{tabular}{p{1.2cm}p{12cm}} \verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(in)|.\\ & The preconditioner data structure. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|iout| & \verb|integer, intent(in), optional|.\\ & The id of the file where the preconditioner description will be printed; the default is the standard output.\\ \end{tabular} %%% Local Variables: %%% mode: latex %%% TeX-master: "userguide" %%% End: