!!$ !!$ !!$ MLD2P4 version 2.1 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.4) !!$ !!$ (C) Copyright 2008, 2010, 2012, 2015, 2017 !!$ !!$ Salvatore Filippone Cranfield University !!$ Ambra Abdullahi Hassan University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino University of Campania "L. Vanvitelli", Caserta !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ subroutine mld_c_gs_solver_bld(a,desc_a,sv,upd,info,b,amold,vmold,imold) use psb_base_mod use mld_c_gs_solver, mld_protect_name => mld_c_gs_solver_bld Implicit None ! Arguments type(psb_cspmat_type), intent(in), target :: a Type(psb_desc_type), Intent(in) :: desc_a class(mld_c_gs_solver_type), intent(inout) :: sv character, intent(in) :: upd integer(psb_ipk_), intent(out) :: info type(psb_cspmat_type), intent(in), target, optional :: b class(psb_c_base_sparse_mat), intent(in), optional :: amold class(psb_c_base_vect_type), intent(in), optional :: vmold class(psb_i_base_vect_type), intent(in), optional :: imold ! Local variables integer(psb_ipk_) :: n_row,n_col, nrow_a, nztota integer(psb_ipk_) :: ictxt,np,me,i, err_act, debug_unit, debug_level character(len=20) :: name='c_gs_solver_bld', ch_err info=psb_success_ call psb_erractionsave(err_act) debug_unit = psb_get_debug_unit() debug_level = psb_get_debug_level() ictxt = desc_a%get_context() call psb_info(ictxt, me, np) if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),' start' n_row = desc_a%get_local_rows() if (psb_toupper(upd) == 'F') then nrow_a = a%get_nrows() nztota = a%get_nzeros() !!$ if (present(b)) then !!$ nztota = nztota + b%get_nzeros() !!$ end if if (sv%eps <= dzero) then ! ! This cuts out the off-diagonal part, because it's supposed to ! be handled by the outer Jacobi smoother. ! call a%tril(sv%l,info) call a%triu(sv%u,info,diag=1,jmax=nrow_a) else info = psb_err_missing_override_method_ call psb_errpush(info,name) goto 9999 end if call sv%l%set_asb() call sv%l%trim() call sv%u%set_asb() call sv%u%trim() if (present(amold)) then call sv%l%cscnv(info,mold=amold) call sv%u%cscnv(info,mold=amold) end if end if if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),' end' call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine mld_c_gs_solver_bld