
MLD2P4
User’s and Reference Guide

A guide for the MultiLevel Domain Decomposition
Parallel Preconditioners Package based on PSBLAS

Pasqua D’Ambra
IAC-CNR, Naples, Italy

Daniela di Serafino
University of Campania “Luigi Vanvitelli”, Caserta, Italy

Salvatore Filippone
Cranfield University, Cranfield, United Kingdom

Software version: 2.2
July 31, 2018

This page intentionally left blank

i

Abstract

MLD2P4 (MultiLevel Domain Decomposition Parallel Preconditioners
Package based on PSBLAS) is a package of parallel algebraic multilevel precon-
ditioners. The first release of MLD2P4 made available multilevel additive and hybrid
Schwarz preconditioners, as well as one-level additive Schwarz preconditioners. The
package has been extended to include further multilevel cycles and smoothers widely
used in multigrid methods. In the multilevel case, a purely algebraic approach is ap-
plied to generate coarse-level corrections, so that no geometric background is needed
concerning the matrix to be preconditioned. The matrix is assumed to be square, real
or complex.

MLD2P4 has been designed to provide scalable and easy-to-use preconditioners in
the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms) com-
putational framework and can be used in conjuction with the Krylov solvers available in
this framework. MLD2P4 enables the user to easily specify different features of an al-
gebraic multilevel preconditioner, thus allowing to search for the “best” preconditioner
for the problem at hand.

The package employs object-oriented design techniques in Fortran 2003, with inter-
faces to additional third party libraries such as MUMPS, UMFPACK, SuperLU, and
SuperLU Dist, which can be exploited in building multilevel preconditioners. The par-
allel implementation is based on a Single Program Multiple Data (SPMD) paradigm;
the inter-process communication is based on MPI and is managed mainly through PS-
BLAS.

This guide provides a brief description of the functionalities and the user interface
of MLD2P4.

This page intentionally left blank

iii

Contents

Abstract i

1 General Overview 1

2 Code Distribution 3

3 Configuring and Building MLD2P4 4
3.1 Prerequisites . 4
3.2 Optional third party libraries . 5
3.3 Configuration options . 5
3.4 Bug reporting . 10
3.5 Example and test programs . 10

4 Multigrid Background 11
4.1 AMG preconditioners . 12
4.2 Smoothed Aggregation . 12
4.3 Smoothers and coarsest-level solvers . 14

5 Getting Started 16
5.1 Examples . 18

6 User Interface 21
6.1 Method init . 22
6.2 Method set . 23
6.3 Method hierarchy build . 33
6.4 Method smoothers build . 34
6.5 Method build . 35
6.6 Method apply . 36
6.7 Method free . 37
6.8 Method descr . 38
6.9 Auxiliary Methods . 38

6.9.1 Method: dump . 38
6.9.2 Method: clone . 38
6.9.3 Method: sizeof . 39
6.9.4 Method: allocate wrk . 39
6.9.5 Method: free wrk . 39

7 Adding new smoother and solver objects to MLD2P4 41

8 Error Handling 43

A License 44

References 45

This page intentionally left blank

1 General Overview 1

1 General Overview

The MultiLevel Domain Decomposition Parallel Preconditioners Package
based on PSBLAS (MLD2P4) provides parallel Algebraic MultiGrid (AMG) and
Domain Decomposition preconditioners (see, e.g., [3, 24, 22]), to be used in the iterative
solution of linear systems,

Ax = b, (1)

where A is a square, real or complex, sparse matrix. The name of the package comes
from its original implementation, containing multilevel additive and hybrid Schwarz
preconditioners, as well as one-level additive Schwarz preconditioners. The current
version extends the original plan by including multilevel cycles and smoothers widely
used in multigrid methods.

The multilevel preconditioners implemented in MLD2P4 are obtained by combining
AMG cycles with smoothers and coarsest-level solvers. The V-, W-, and K-cycles [3, 20]
are available, which allow to define almost all the preconditioners in the package, in-
cluding the multilevel hybrid Schwarz ones; a specific cycle is implemented to obtain
multilevel additive Schwarz preconditioners. The Jacobi, hybrid forward/backward
Gauss-Seidel, block-Jacobi, and additive Schwarz methods are available as smoothers.
An algebraic approach is used to generate a hierarchy of coarse-level matrices and oper-
ators, without explicitly using any information on the geometry of the original problem,
e.g., the discretization of a PDE. To this end, the smoothed aggregation technique [2, 26]
is applied. Either exact or approximate solvers can be used on the coarsest-level sys-
tem. Specifically, different sparse LU factorizations from external packages, and native
incomplete LU factorizations and Jacobi, hybrid Gauss-Seidel, and block-Jacobi solvers
are available. All smoothers can be also exploited as one-level preconditioners.

MLD2P4 is written in Fortran 2003, following an object-oriented design through the
exploitation of features such as abstract data type creation, type extension, functional
overloading, and dynamic memory management. The parallel implementation is based
on a Single Program Multiple Data (SPMD) paradigm. Single and double precision
implementations of MLD2P4 are available for both the real and the complex case,
which can be used through a single interface.

MLD2P4 has been designed to implement scalable and easy-to-use multilevel precon-
ditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational frame-
work [15, 14]. PSBLAS provides basic linear algebra operators and data management
facilities for distributed sparse matrices, as well as parallel Krylov solvers which can
be used with the MLD2P4 preconditioners. The choice of PSBLAS has been mainly
motivated by the need of having a portable and efficient software infrastructure im-
plementing “de facto” standard parallel sparse linear algebra kernels, to pursue goals
such as performance, portability, modularity ed extensibility in the development of the
preconditioner package. On the other hand, the implementation of MLD2P4 has led
to some revisions and extentions of the original PSBLAS kernels. The inter-process
comunication required by MLD2P4 is encapsulated in the PSBLAS routines; there-
fore, MLD2P4 can be run on any parallel machine where PSBLAS implementations are

2 MLD2P4 User’s and Reference Guide

available.
MLD2P4 has a layered and modular software architecture where three main layers

can be identified. The lower layer consists of the PSBLAS kernels, the middle one
implements the construction and application phases of the preconditioners, and the
upper one provides a uniform interface to all the preconditioners. This architecture
allows for different levels of use of the package: few black-box routines at the upper
layer allow all users to easily build and apply any preconditioner available in MLD2P4;
facilities are also available allowing expert users to extend the set of smoothers and
solvers for building new versions of the preconditioners (see Section 7).

We note that the user interface of MLD2P4 2.1 has been extended with respect to
the previous versions in order to separate the construction of the multilevel hierarchy
from the construction of the smoothers and solvers, and to allow for more flexibility at
each level. The software architecture described in [8] has significantly evolved too, in
order to fully exploit the Fortran 2003 features implemented in PSBLAS 3. However,
compatibility with previous versions has been preserved.

This guide is organized as follows. General information on the distribution of the
source code is reported in Section 2, while details on the configuration and installation
of the package are given in Section 3. A short description of the preconditioners im-
plemented in MLD2P4 is provided in Section 4, to help the users in choosing among
them. The basics for building and applying the preconditioners with the Krylov solvers
implemented in PSBLAS are reported in Section 5, where the Fortran codes of a few
sample programs are also shown. A reference guide for the user interface routines is
provided in Section 6. Information on the extension of the package through the addition
of new smoothers and solvers is reported in Section 7. The error handling mechanism
used by the package is briefly described in Section 8. The copyright terms concerning
the distribution and modification of MLD2P4 are reported in Appendix A.

2 Code Distribution 3

2 Code Distribution

MLD2P4 is available from the web site

https://github.com/sfilippone/mld2p4-2

where contact points for further information can be also found.
The software is available under a modified BSD license, as specified in Appendix A;

please note that some of the optional third party libraries may be licensed under a
different and more stringent license, most notably the GPL, and this should be taken
into account when treating derived works.

The library defines a version string with the constant

mld_version_string_

whose current value is 2.1.0.

Contributors

Contributors to version 2:

• Salvatore Filippone, Cranfield University, UK;

• Pasqua D’Ambra, IAC-CNR, Naples, IT;

• Daniela di Serafino, University of Campania “L. Vanvitelli”, Caserta, IT;

• Ambra Abdullahi Hassan, University of Rome “Tor Vergata”, IT.

Contributors to version 1:

• Salvatore Filippone;

• Pasqua D’Ambra;

• Daniela di Serafino;

• Alfredo Buttari, CNRS-IRIT, Toulouse, F.

4 MLD2P4 User’s and Reference Guide

3 Configuring and Building MLD2P4

In order to build MLD2P4 it is necessary to set up a Makefile with appropriate system-
dependent variables; this is done by means of the configure script. The distribution
also includes the autoconf and automake sources employed to generate the script, but
usually this is not needed to build the software.

MLD2P4 is implemented almost entirely in Fortran 2003, with some interfaces to
external libraries in C; the Fortran compiler must support the Fortran 2003 standard
plus the extension MOLD= feature, which enhances the usability of ALLOCATE. Many
compilers do this; in particular, this is supported by the GNU Fortran compiler, for
which we recommend to use at least version 4.8. The software defines data types and
interfaces for real and complex data, in both single and double precision.

Building MLD2P4 requires some base libraries (see Section 3.1); interfaces to op-
tional third-party libraries, which extend the functionalities of MLD2P4 (see Sec-
tion 3.2), are also available. Many Linux distributions (e.g., Ubuntu, Fedora, CentOS)
provide precompiled packages for the prerequisite and optional software. In many cases
these packages are split between a runtime part and a “developer” part; in order to
build MLD2P4 you need both. A description of the base and optional software used by
MLD2P4 is given in the next sections.

3.1 Prerequisites

The following base libraries are needed:

BLAS [11, 12, 18] Many vendors provide optimized versions of BLAS; if no vendor
version is available for a given platform, the ATLAS software (math-atlas.
sourceforge.net) may be employed. The reference BLAS from Netlib (www.
netlib.org/blas) are meant to define the standard behaviour of the BLAS in-
terface, so they are not optimized for any particular plaftorm, and should only be
used as a last resort. Note that BLAS computations form a relatively small part
of the MLD2P4/PSBLAS computations; they are however critical when using
preconditioners based on MUMPS, UMFPACK or SuperLU third party libraries.
Note that UMFPACK requires a full LAPACK library; our experience is that con-
figuring ATLAS for building full LAPACK does not work in the correct way. Our
advice is first to download the LAPACK tarfile from www.netlib.org/lapack and
install it independently of ATLAS. In this case, you need to modify the OPTS
and NOOPT definitions for including -fPIC compilation option in the make.inc
file of the LAPACK library.

MPI [17, 23] A version of MPI is available on most high-performance computing sys-
tems.

PSBLAS [13, 15] Parallel Sparse BLAS (PSBLAS) is available from github.com/

sfilippone/psblas3; version 3.5.0 (or later) is required. Indeed, all the prereq-
uisites listed so far are also prerequisites of PSBLAS.

math-atlas.sourceforge.net
math-atlas.sourceforge.net
www.netlib.org/blas
www.netlib.org/blas
www.netlib.org/lapack
github.com/sfilippone/psblas3
github.com/sfilippone/psblas3

3 Configuring and Building MLD2P4 5

Please note that the four previous libraries must have Fortran interfaces compatible
with MLD2P4; usually this means that they should all be built with the same compiler
as MLD2P4.

3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these
are optional, but if you enable them some defaults for multilevel preconditioners may
change to reflect their presence.

UMFPACK [9] A sparse LU factorization package included in the SuiteSparse library,
available from faculty.cse.tamu.edu/davis/suitesparse.html; it provides se-
quential factorization and triangular system solution for double precision real and
complex data. We tested version 4.5.4 of SuiteSparse. Note that for configur-
ing SuiteSparse you should provide the right path to the BLAS and LAPACK
libraries in the SuiteSparse_config/SuiteSparse_config.mk file.

MUMPS [1] A sparse LU factorization package available from mumps.enseeiht.fr;
it provides sequential and parallel factorizations and triangular system solution
for single and double precision, real and complex data. We tested versions 4.10.0
and 5.0.1.

SuperLU [10] A sparse LU factorization package available from crd.lbl.gov/~xiaoye/

SuperLU/; it provides sequential factorization and triangular system solution for
single and double precision, real and complex data. We tested versions 4.3 and 5.0.
If you installed BLAS from ATLAS, remember to define the BLASLIB variable
in the make.inc file.

SuperLU Dist [19] A sparse LU factorization package available from the same site
as SuperLU; it provides parallel factorization and triangular system solution for
double precision real and complex data. We tested versions 3.3 and 4.2. If you
installed BLAS from ATLAS, remember to define the BLASLIB variable in the
make.inc file and to add the -std=c99 option to the C compiler options. Note
that this library requires the ParMETIS library for parallel graph partitioning
and fill-reducing matrix ordering, available from glaros.dtc.umn.edu/gkhome/

metis/parmetis/overview.

3.3 Configuration options

In order to build MLD2P4, the first step is to use the configure script in the main
directory to generate the necessary makefile.

As a minimal example consider the following:

./configure --with-psblas=PSB-INSTALL-DIR

faculty.cse.tamu.edu/davis/suitesparse.html
mumps.enseeiht.fr
crd.lbl.gov/~xiaoye/SuperLU/
crd.lbl.gov/~xiaoye/SuperLU/
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

6 MLD2P4 User’s and Reference Guide

which assumes that the various MPI compilers and support libraries are available in
the standard directories on the system, and specifies only the PSBLAS install directory
(note that the latter directory must be specified with an absolute path). The full set
of options may be looked at by issuing the command ./configure --help, which
produces:

‘configure’ configures MLD2P4 2.1.1 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as

VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, --help display this help and exit

--help=short display options specific to this package

--help=recursive display the short help of all the included packages

-V, --version display version information and exit

-q, --quiet, --silent do not print ‘checking ...’ messages

--cache-file=FILE cache test results in FILE [disabled]

-C, --config-cache alias for ‘--cache-file=config.cache’

-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

--prefix=PREFIX install architecture-independent files in PREFIX

[/usr/local]

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]

By default, ‘make install’ will install all the files in

‘/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify

an installation prefix other than ‘/usr/local’ using ‘--prefix’,

for instance ‘--prefix=$HOME’.

For better control, use the options below.

Fine tuning of the installation directories:

--bindir=DIR user executables [EPREFIX/bin]

--sbindir=DIR system admin executables [EPREFIX/sbin]

--libexecdir=DIR program executables [EPREFIX/libexec]

--sysconfdir=DIR read-only single-machine data [PREFIX/etc]

3 Configuring and Building MLD2P4 7

--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]

--localstatedir=DIR modifiable single-machine data [PREFIX/var]

--libdir=DIR object code libraries [EPREFIX/lib]

--includedir=DIR C header files [PREFIX/include]

--oldincludedir=DIR C header files for non-gcc [/usr/include]

--datarootdir=DIR read-only arch.-independent data root [PREFIX/share]

--datadir=DIR read-only architecture-independent data [DATAROOTDIR]

--infodir=DIR info documentation [DATAROOTDIR/info]

--localedir=DIR locale-dependent data [DATAROOTDIR/locale]

--mandir=DIR man documentation [DATAROOTDIR/man]

--docdir=DIR documentation root [DATAROOTDIR/doc/mld2p4]

--htmldir=DIR html documentation [DOCDIR]

--dvidir=DIR dvi documentation [DOCDIR]

--pdfdir=DIR pdf documentation [DOCDIR]

--psdir=DIR ps documentation [DOCDIR]

Program names:

--program-prefix=PREFIX prepend PREFIX to installed program names

--program-suffix=SUFFIX append SUFFIX to installed program names

--program-transform-name=PROGRAM run sed PROGRAM on installed program names

Optional Features:

--disable-option-checking ignore unrecognized --enable/--with options

--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-silent-rules less verbose build output (undo: "make V=1")

--disable-silent-rules verbose build output (undo: "make V=0")

--enable-dependency-tracking

do not reject slow dependency extractors

--disable-dependency-tracking

speeds up one-time build

--enable-serial Specify whether to enable a fake mpi library to run

in serial mode.

--enable-long-integers Specify usage of 64 bits integers.

Optional Packages:

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-psblas=DIR The install directory for PSBLAS, for example,

--with-psblas=/opt/packages/psblas-3.5

--with-psblas-incdir=DIR

Specify the directory for PSBLAS C includes.

--with-psblas-moddir=DIR

Specify the directory for PSBLAS Fortran modules.

8 MLD2P4 User’s and Reference Guide

--with-psblas-libdir=DIR

Specify the directory for PSBLAS library.

--with-ccopt additional [CCOPT] flags to be added: will prepend

to [CCOPT]

--with-fcopt additional [FCOPT] flags to be added: will prepend

to [FCOPT]

--with-libs List additional link flags here. For example,

--with-libs=-lspecial_system_lib or

--with-libs=-L/path/to/libs

--with-clibs additional [CLIBS] flags to be added: will prepend

to [CLIBS]

--with-flibs additional [FLIBS] flags to be added: will prepend

to [FLIBS]

--with-library-path additional [LIBRARYPATH] flags to be added: will

prepend to [LIBRARYPATH]

--with-include-path additional [INCLUDEPATH] flags to be added: will

prepend to [INCLUDEPATH]

--with-module-path additional [MODULE_PATH] flags to be added: will

prepend to [MODULE_PATH]

--with-extra-libs List additional link flags here. For example,

--with-extra-libs=-lspecial_system_lib or

--with-extra-libs=-L/path/to/libs

--with-blas=<lib> use BLAS library <lib>

--with-blasdir=<dir> search for BLAS library in <dir>

--with-lapack=<lib> use LAPACK library <lib>

--with-mumps=LIBNAME Specify the libname for MUMPS. Default: autodetect

with minimum "-lmumps_common -lpord"

--with-mumpsdir=DIR Specify the directory for MUMPS library and

includes. Note: you will need to add auxiliary

libraries with --extra-libs; this depends on how

MUMPS was configured and installed, at a minimum you

will need SCALAPACK and BLAS

--with-mumpsincdir=DIR Specify the directory for MUMPS includes.

--with-mumpsmoddir=DIR Specify the directory for MUMPS Fortran modules.

--with-mumpslibdir=DIR Specify the directory for MUMPS library.

--with-umfpack=LIBNAME Specify the library name for UMFPACK and its support

libraries. Default: "-lumfpack -lamd"

--with-umfpackdir=DIR Specify the directory for UMFPACK library and

includes.

--with-umfpackincdir=DIR

Specify the directory for UMFPACK includes.

--with-umfpacklibdir=DIR

Specify the directory for UMFPACK library.

--with-superlu=LIBNAME Specify the library name for SUPERLU library.

3 Configuring and Building MLD2P4 9

Default: "-lsuperlu"

--with-superludir=DIR Specify the directory for SUPERLU library and

includes.

--with-superluincdir=DIR

Specify the directory for SUPERLU includes.

--with-superlulibdir=DIR

Specify the directory for SUPERLU library.

--with-superludist=LIBNAME

Specify the libname for SUPERLUDIST library.

Requires you also specify SuperLU. Default:

"-lsuperlu_dist"

--with-superludistdir=DIR

Specify the directory for SUPERLUDIST library and

includes.

--with-superludistincdir=DIR

Specify the directory for SUPERLUDIST includes.

--with-superludistlibdir=DIR

Specify the directory for SUPERLUDIST library.

Some influential environment variables:

FC Fortran compiler command

FCFLAGS Fortran compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -l<library>

CC C compiler command

CFLAGS C compiler flags

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>

MPICC MPI C compiler command

MPIFC MPI Fortran compiler command

CPP C preprocessor

Use these variables to override the choices made by ‘configure’ or to help

it to find libraries and programs with nonstandard names/locations.

Report bugs to <https://github.com/sfilippone/mld2p4-2/issues>.

For instance, if a user has built and installed PSBLAS 3.5 under the /opt directory
and is using the SuiteSparse package (which includes UMFPACK), then MLD2P4 might
be configured with:

./configure --with-psblas=/opt/psblas-3.5/ \

--with-umfpackincdir=/usr/include/suitesparse/

10 MLD2P4 User’s and Reference Guide

Once the configure script has completed execution, it will have generated the file
Make.inc which will then be used by all Makefiles in the directory tree; this file will be
copied in the install directory under the name Make.inc.MLD2P4.

To use the MUMPS solver package, the user has to add the appropriate options
to the configure script; by default we are looking for the libraries -ldmumps -lsmumps

-lzmumps -lcmumps -mumps_common -lpord. MUMPS often uses additional pack-
ages such as ScaLAPACK, ParMETIS, SCOTCH, as well as enabling OpenMP; in such
cases it is necessary to add linker options with the --with-extra-libs configure option.

To build the library the user will now enter

make

followed (optionally) by

make install

3.4 Bug reporting

If you find any bugs in our codes, please report them through our issues page on

https://github.com/sfilippone/mld2p4-2/issues

To enable us to track the bug, please provide a log from the failing application, the test
conditions, and ideally a self-contained test program reproducing the issue.

3.5 Example and test programs

The package contains the examples and tests directories; both of them are further
divided into fileread and pdegen subdirectories. Their purpose is as follows:

examples contains a set of simple example programs with a predefined choice of precon-
ditioners, selectable via integer values. These are intended to get an acquaintance
with the multilevel preconditioners available in MLD2P4.

tests contains a set of more sophisticated examples that will allow the user, via the
input files in the runs subdirectories, to experiment with the full range of precon-
ditioners implemented in the package.

The fileread directories contain sample programs that read sparse matrices from
files, according to the Matrix Market or the Harwell-Boeing storage format; the pdegen

programs generate matrices in full parallel mode from the discretization of a sample
partial differential equation.

https://github.com/sfilippone/mld2p4-2/issues

4 Multigrid Background 11

4 Multigrid Background

Multigrid preconditioners, coupled with Krylov iterative solvers, are widely used in
the parallel solution of large and sparse linear systems, because of their optimality in
the solution of linear systems arising from the discretization of scalar elliptic Partial
Differential Equations (PDEs) on regular grids. Optimality, also known as algorithmic
scalability, is the property of having a computational cost per iteration that depends
linearly on the problem size, and a convergence rate that is independent of the problem
size.

Multigrid preconditioners are based on a recursive application of a two-grid process
consisting of smoother iterations and a coarse-space (or coarse-level) correction. The
smoothers may be either basic iterative methods, such as the Jacobi and Gauss-Seidel
ones, or more complex subspace-correction methods, such as the Schwarz ones. The
coarse-space correction consists of solving, in an appropriately chosen coarse space, the
residual equation associated with the approximate solution computed by the smoother,
and of using the solution of this equation to correct the previous approximation. The
transfer of information between the original (fine) space and the coarse one is per-
formed by using suitable restriction and prolongation operators. The construction of
the coarse space and the corresponding transfer operators is carried out by applying
a so-called coarsening algorithm to the system matrix. Two main approaches can be
used to perform coarsening: the geometric approach, which exploits the knowledge of
some physical grid associated with the matrix and requires the user to define transfer
operators from the fine to the coarse level and vice versa, and the algebraic approach,
which builds the coarse-space correction and the associate transfer operators using only
matrix information. The first approach may be difficult when the system comes from
discretizations on complex geometries; furthermore, ad hoc one-level smoothers may be
required to get an efficient interplay between fine and coarse levels, e.g., when matrices
with highly varying coefficients are considered. The second approach performs a fully
automatic coarsening and enforces the interplay between fine and coarse level by suit-
ably choosing the coarse space and the coarse-to-fine interpolation (see, e.g., [3, 24, 22]
for details.)

MLD2P4 uses a pure algebraic approach, based on the smoothed aggregation algo-
rithm [2, 26], for building the sequence of coarse matrices and transfer operators, start-
ing from the original one. A decoupled version of this algorithm is implemented, where
the smoothed aggregation is applied locally to each submatrix [25]. A brief description
of the AMG preconditioners implemented in MLD2P4 is given in Sections 4.1-4.3. For
further details the reader is referred to [4, 5, 7, 8].

We note that optimal multigrid preconditioners do not necessarily correspond to
minimum execution times in a parallel setting. Indeed, to obtain effective parallel
multigrid preconditioners, a tradeoff between the optimality and the cost of building
and applying the smoothers and the coarse-space corrections must be achieved. Effective
parallel preconditioners require algorithmic scalability to be coupled with implementa-
tion scalability, i.e., a computational cost per iteration which remains (almost) constant
as the number of parallel processors increases.

12 MLD2P4 User’s and Reference Guide

4.1 AMG preconditioners

In order to describe the AMG preconditioners available in MLD2P4, we consider a
linear system

Ax = b, (2)

where A = (aij) ∈ Rn×n is a nonsingular sparse matrix; for ease of presentation we
assume A has a symmetric sparsity pattern.

Let us consider as finest index space the set of row (column) indices of A, i.e.,
Ω = {1, 2, . . . , n}. Any algebraic multilevel preconditioners implemented in MLD2P4
generates a hierarchy of index spaces and a corresponding hierarchy of matrices,

Ω1 ≡ Ω ⊃ Ω2 ⊃ . . . ⊃ Ωnlev, A1 ≡ A,A2, . . . , Anlev,

by using the information contained in A, without assuming any knowledge of the geom-
etry of the problem from which A originates. A vector space Rnk is associated with Ωk,
where nk is the size of Ωk. For all k < nlev, a restriction operator and a prolongation
one are built, which connect two levels k and k + 1:

P k ∈ Rnk×nk+1 , Rk ∈ Rnk+1×nk ;

the matrix Ak+1 is computed by using the previous operators according to the Galerkin
approach, i.e.,

Ak+1 = RkAkP k.

In the current implementation of MLD2P4 we have Rk = (P k)T A smoother with
iteration matrix Mk is set up at each level k < nlev, and a solver is set up at the
coarsest level, so that they are ready for application (for example, setting up a solver
based on the LU factorization means computing and storing the L and U factors). The
construction of the hierarchy of AMG components described so far corresponds to the
so-called build phase of the preconditioner.

The components produced in the build phase may be combined in several ways to
obtain different multilevel preconditioners; this is done in the application phase, i.e., in
the computation of a vector of type w = B−1v, where B denotes the preconditioner,
usually within an iteration of a Krylov solver [21]. An example of such a combination,
known as V-cycle, is given in Figure 1. In this case, a single iteration of the same
smoother is used before and after the the recursive call to the V-cycle (i.e., in the pre-
smoothing and post-smoothing phases); however, different choices can be performed.
Other cycles can be defined; in MLD2P4, we implemented the standard V-cycle and
W-cycle [3], and a version of the K-cycle described in [20].

4.2 Smoothed Aggregation

In order to define the prolongator P k, used to compute the coarse-level matrix Ak+1,
MLD2P4 uses the smoothed aggregation algorithm described in [2, 26]. The basic idea
of this algorithm is to build a coarse set of indices Ωk+1 by suitably grouping the indices
of Ωk into disjoint subsets (aggregates), and to define the coarse-to-fine space transfer

4 Multigrid Background 13

procedure V-cycle
(
k,Ak, bk, uk

)
if (k 6= nlev) then

uk = uk +Mk
(
bk −Akuk

)
bk+1 = Rk+1

(
bk −Akuk

)
uk+1 = V-cycle

(
k + 1, Ak+1, bk+1, 0

)
uk = uk + P k+1uk+1

uk = uk +Mk
(
bk −Akuk

)
else

uk =
(
Ak
)−1

bk

endif

return uk

end

Figure 1: Application phase of a V-cycle preconditioner.

operator P k by applying a suitable smoother to a simple piecewise constant prolongation
operator, with the aim of improving the quality of the coarse-space correction.

Three main steps can be identified in the smoothed aggregation procedure:

1. aggregation of the indices of Ωk to obtain Ωk+1;

2. construction of the prolongator P k;

3. application of P k and Rk = (P k)T to build Ak+1.

In order to perform the coarsening step, the smoothed aggregation algorithm de-
scribed in [26] is used. In this algorithm, each index j ∈ Ωk+1 corresponds to an
aggregate Ωk

j of Ωk, consisting of a suitably chosen index i ∈ Ωk and indices that are
(usually) contained in a strongly-coupled neighborood of i, i.e.,

Ωk
j ⊂ N k

i (θ) =

{
r ∈ Ωk : |akir| > θ

√
|akiiakrr|

}
∪ {i} , (3)

for a given threshold θ ∈ [0, 1] (see [26] for the details). Since this algorithm has a
sequential nature, a decoupled version of it is applied, where each processor indepen-
dently executes the algorithm on the set of indices assigned to it in the initial data
distribution. This version is embarrassingly parallel, since it does not require any data
communication. On the other hand, it may produce some nonuniform aggregates and
is strongly dependent on the number of processors and on the initial partitioning of the
matrix A. Nevertheless, this parallel algorithm has been chosen for MLD2P4, since it
has been shown to produce good results in practice [5, 7, 25].

14 MLD2P4 User’s and Reference Guide

The prolongator P k is built starting from a tentative prolongator P̄ k ∈ Rnk×nk+1 ,
defined as

P̄ k = (p̄kij), p̄kij =

{
1 if i ∈ Ωk

j ,

0 otherwise,
(4)

where Ωk
j is the aggregate of Ωk corresponding to the index j ∈ Ωk+1. P k is obtained

by applying to P̄ k a smoother Sk ∈ Rnk×nk :

P k = SkP̄ k,

in order to remove nonsmooth components from the range of the prolongator, and hence
to improve the convergence properties of the multilevel method [2, 24]. A simple choice
for Sk is the damped Jacobi smoother:

Sk = I − ωk(Dk)−1Ak
F ,

where Dk is the diagonal matrix with the same diagonal entries as Ak, Ak
F = (ākij) is

the filtered matrix defined as

ākij =

{
akij if j ∈ N k

i (θ),

0 otherwise,
(j 6= i), ākii = akii −

∑
j 6=i

(akij − ākij), (5)

and ωk is an approximation of 4/(3ρk), where ρk is the spectral radius of (Dk)−1Ak
F [2].

In MLD2P4 this approximation is obtained by using ‖Ak
F ‖∞ as an estimate of ρk. Note

that for systems coming from uniformly elliptic problems, filtering the matrix Ak has
little or no effect, and Ak can be used instead of Ak

F . The latter choice is the default in
MLD2P4.

4.3 Smoothers and coarsest-level solvers

The smoothers implemented in MLD2P4 include the Jacobi and block-Jacobi methods,
a hybrid version of the forward and backward Gauss-Seidel methods, and the additive
Schwarz (AS) ones (see, e.g., [21, 22]).

The hybrid Gauss-Seidel version is considered because the original Gauss-Seidel
method is inherently sequential. At each iteration of the hybrid version, each parallel
process uses the most recent values of its own local variables and the values of the
non-local variables computed at the previous iteration, obtained by exchanging data
with other processes before the beginning of the current iteration.

In the AS methods, the index space Ωk is divided into mk subsets Ωk
i of size nk,i,

possibly overlapping. For each i we consider the restriction operator Rk
i ∈ Rnk,i×nk

that maps a vector xk to the vector xki made of the components of xk with indices in
Ωk
i , and the prolongation operator P k

i = (Rk
i)T . These operators are then used to build

Ak
i = Rk

iA
kP k

i , which is the restriction of Ak to the index space Ωk
i . The classical AS

preconditioner Mk
AS is defined as

(Mk
AS)−1 =

mk∑
i=1

P k
i (Ak

i)−1Rk
i ,

4 Multigrid Background 15

where Ak
i is supposed to be nonsingular. We observe that an approximate inverse of Ak

i

is usually considered instead of (Ak
i)−1. The setup of Mk

AS during the multilevel build
phase involves

• the definition of the index subspaces Ωk
i and of the corresponding operators Rk

i

(and P k
i);

• the computation of the submatrices Ak
i ;

• the computation of their inverses (usually approximated through some form of
incomplete factorization).

The computation of zk = Mk
ASw

k, with wk ∈ Rnk , during the multilevel application
phase, requires

• the restriction of wk to the subspaces Rnk,i , i.e. wk
i = Rk

iw
k;

• the computation of the vectors zki = (Ak
i)−1wk

i ;

• the prolongation and the sum of the previous vectors, i.e. zk =
∑mk

i=1 P
k
i z

k
i .

Variants of the classical AS method, which use modifications of the restriction and pro-
longation operators, are also implemented in MLD2P4. Among them, the Restricted AS
(RAS) preconditioner usually outperforms the classical AS preconditioner in terms of
convergence rate and of computation and communication time on parallel distributed-
memory computers, and is therefore the most widely used among the AS precondition-
ers [6].

Direct solvers based on sparse LU factorizations, implemented in the third-party
libraries reported in Section 3.2, can be applied as coarsest-level solvers by MLD2P4.
Native inexact solvers based on incomplete LU factorizations, as well as Jacobi, hybrid
(forward) Gauss-Seidel, and block Jacobi preconditioners are also available. Direct
solvers usually lead to more effective preconditioners in terms of algorithmic scalability;
however, this does not guarantee parallel efficiency.

16 MLD2P4 User’s and Reference Guide

5 Getting Started

We describe the basics for building and applying MLD2P4 one-level and multilevel (i.e.,
AMG) preconditioners with the Krylov solvers included in PSBLAS [13]. The following
steps are required:

1. Declare the preconditioner data structure. It is a derived data type, mld_xprec_
type, where x may be s, d, c or z, according to the basic data type of the sparse
matrix (s = real single precision; d = real double precision; c = complex single
precision; z = complex double precision). This data structure is accessed by the
user only through the MLD2P4 routines, following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, according to a precon-
ditioner type chosen by the user. This is performed by the routine init, which
also sets defaults for each preconditioner type selected by the user. The precondi-
tioner types and the defaults associated with them are given in Table 1, where the
strings used by init to identify the preconditioner types are also given. Note that
these strings are valid also if uppercase letters are substituted by corresponding
lowercase ones.

3. Modify the selected preconditioner type, by properly setting preconditioner param-
eters. This is performed by the routine set. This routine must be called only if
the user wants to modify the default values of the parameters associated with the
selected preconditioner type, to obtain a variant of that preconditioner. Examples
of use of set are given in Section 5.1; a complete list of all the preconditioner pa-
rameters and their allowed and default values is provided in Section 6, Tables 2-8.

4. Build the preconditioner for a given matrix. If the selected preconditioner is
multilevel, then two steps must be performed, as specified next.

4.1 Build the aggregation hierarchy for a given matrix. This is performed by the
routine hierarchy_build.

4.2 Build the preconditioner for a given matrix. This is performed by the routine
smoothers_build.

If the selected preconditioner is one-level, it is built in a single step, performed by
the routine bld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is performed
by the method apply. When using the PSBLAS Krylov solvers, this step is
completely transparent to the user, since apply is called by the PSBLAS routine
implementing the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine free.
This step is complementary to step 1 and should be performed when the precon-
ditioner is no more used.

5 Getting Started 17

All the previous routines are available as methods of the preconditioner object. A
detailed description of them is given in Section 6. Examples showing the basic use of
MLD2P4 are reported in Section 5.1.

type string default preconditioner

No preconditioner ’NONE’ Considered to use the PSBLAS Krylov solvers
with no preconditioner.

Diagonal ’DIAG’ or
’JACOBI’

Diagonal preconditioner. For any zero diagonal
entry of the matrix to be preconditioned, the cor-
responding entry of the preconditioner is set to 1.

Gauss-Seidel ’GS’ Hybrid Gauss-Seidel (forward), that is, global
block Jacobi with Gauss-Seidel as local solver.

Symmetrized Gauss-Seidel ’FBGS’ Symmetrized hybrid Gauss-Seidel,that is, for-
ward Gauss-Seidel followed by backward Gauss-
Seidel.

Block Jacobi ’BJAC’ Block-Jacobi with ILU(0) on the local blocks.

Additive Schwarz ’AS’ Additive Schwarz (AS), with overlap 1 and
ILU(0) on the local blocks.

Multilevel ’ML’ V-cycle with one hybrid forward Gauss-Seidel
(GS) sweep as pre-smoother and one hybrid back-
ward GS sweep as post-smoother, basic smoothed
aggregation as coarsening algorithm, and LU
(plus triangular solve) as coarsest-level solver.
See the default values in Tables 2-8 for further
details of the preconditioner.

Table 1: Preconditioner types, corresponding strings and default choices.

Note that the module mld_prec_mod, containing the definition of the preconditioner
data type and the interfaces to the routines of MLD2P4, must be used in any program
calling such routines. The modules psb_base_mod, for the sparse matrix and commu-
nication descriptor data types, and psb_krylov_mod, for interfacing with the Krylov
solvers, must be also used (see Section 5.1).

Remark 1. Coarsest-level solvers based on the LU factorization, such as those
implemented in UMFPACK, MUMPS, SuperLU, and SuperLU Dist, usually lead to
smaller numbers of preconditioned Krylov iterations than inexact solvers, when the
linear system comes from a standard discretization of basic scalar elliptic PDE problems.
However, this does not necessarily correspond to the smallest execution time on parallel
computers.

18 MLD2P4 User’s and Reference Guide

5.1 Examples

The code reported in Figure 2 shows how to set and apply the default multilevel precon-
ditioner available in the real double precision version of MLD2P4 (see Table 1). This
preconditioner is chosen by simply specifying ’ML’ as the second argument of P%init
(a call to P%set is not needed) and is applied with the CG solver provided by PSBLAS
(the matrix of the system to be solved is assumed to be positive definite). As previ-
ously observed, the modules psb_base_mod, mld_prec_mod and psb_krylov_mod must
be used by the example program.

The part of the code concerning the reading and assembling of the sparse matrix
and the right-hand side vector, performed through the PSBLAS routines for sparse
matrix and vector management, is not reported here for brevity; the statements con-
cerning the deallocation of the PSBLAS data structure are neglected too. The complete
code can be found in the example program file mld_dexample_ml.f90, in the directory
examples/fileread of the MLD2P4 implementation (see Section 3.5). A sample test
problem along with the relevant input data is available in examples/fileread/runs.
For details on the use of the PSBLAS routines, see the PSBLAS User’s Guide [13].

The setup and application of the default multilevel preconditioner for the real single
precision and the complex, single and double precision, versions are obtained with
straightforward modifications of the previous example (see Section 6 for details). If these
versions are installed, the corresponding codes are available in examples/fileread/.

Different versions of the multilevel preconditioner can be obtained by changing the
default values of the preconditioner parameters. The code reported in Figure 3 shows
how to set a V-cycle preconditioner which applies 1 block-Jacobi sweep as pre- and
post-smoother, and solves the coarsest-level system with 8 block-Jacobi sweeps. Note
that the ILU(0) factorization (plus triangular solve) is used as local solver for the block-
Jacobi sweeps, since this is the default associated with block-Jacobi and set by P%init.
Furthermore, specifying block-Jacobi as coarsest-level solver implies that the coarsest-
level matrix is distributed among the processes. Figure 4 shows how to set a W-cycle
preconditioner which applies 2 hybrid Gauss-Seidel sweeps as pre- and post-smoother,
and solves the coarsest-level system with the multifrontal LU factorization implemented
in MUMPS. It is specified that the coarsest-level matrix is distributed, since MUMPS
can be used on both replicated and distributed matrices, and by default it is used on
replicated ones. The code fragments shown in Figures 3 and 4 are included in the
example program file mld_dexample_ml.f90 too.

Finally, Figure 5 shows the setup of a one-level additive Schwarz preconditioner,
i.e., RAS with overlap 2. Note also that a Krylov method different from CG must be
used to solve the preconditioned system, since the preconditione in nonsymmetric. The
corresponding example program is available in the file mld_dexample_1lev.f90.

For all the previous preconditioners, example programs where the sparse matrix
and the right-hand side are generated by discretizing a PDE with Dirichlet boundary
conditions are also available in the directory examples/pdegen.

5 Getting Started 19

use psb_base_mod

use mld_prec_mod

use psb_krylov_mod

... ...

!

! sparse matrix

type(psb_dspmat_type) :: A

! sparse matrix descriptor

type(psb_desc_type) :: desc_A

! preconditioner

type(mld_dprec_type) :: P

! right-hand side and solution vectors

type(psb_d_vect_type) :: b, x

... ...

!

! initialize the parallel environment

call psb_init(ictxt)

call psb_info(ictxt,iam,np)

... ...

!

! read and assemble the spd matrix A and the right-hand side b

! using PSBLAS routines for sparse matrix / vector management

... ...

!

! initialize the default multilevel preconditioner, i.e. V-cycle

! with basic smoothed aggregation, 1 hybrid forward/backward

! GS sweep as pre/post-smoother and UMFPACK as coarsest-level

! solver

call P%init(’ML’,info)

!

! build the preconditioner

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

!

! set the solver parameters and the initial guess

... ...

!

! solve Ax=b with preconditioned CG

call psb_krylov(’CG’,A,P,b,x,tol,desc_A,info)

... ...

!

! deallocate the preconditioner

call P%free(info)

!

! deallocate other data structures

... ...

!

! exit the parallel environment

call psb_exit(ictxt)

stop

Figure 2: setup and application of the default multilevel preconditioner (example 1).

20 MLD2P4 User’s and Reference Guide

... ...

! build a V-cycle preconditioner with 1 block-Jacobi sweep (with

! ILU(0) on the blocks) as pre- and post-smoother, and 8 block-Jacobi

! sweeps (with ILU(0) on the blocks) as coarsest-level solver

call P%init(’ML’,info)

call_P%set(’SMOOTHER_TYPE’,’BJAC’,info)

call P%set(’COARSE_SOLVE’,’BJAC’,info)

call P%set(’COARSE_SWEEPS’,8,info)

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

... ...

Figure 3: setup of a multilevel preconditioner

... ...

! build a W-cycle preconditioner with 2 hybrid Gauss-Seidel sweeps

! as pre- and post-smoother, a distributed coarsest

! matrix, and MUMPS as coarsest-level solver

call P%init(’ML’,info)

call P%set(’ML_CYCLE’,’WCYCLE’,info)

call P%set(’SMOOTHER_TYPE’,’FBGS’,info)

call P%set(’SMOOTHER_SWEEPS’,2,info)

call P%set(’COARSE_SOLVE’,’MUMPS’,info)

call P%set(’COARSE_MAT’,’DIST’,info)

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

... ...

Figure 4: setup of a multilevel preconditioner

... ...

! set RAS with overlap 2 and ILU(0) on the local blocks

call P%init(’AS’,info)

call P%set(’SUB_OVR’,2,info)

call P%bld(A,desc_A,info)

... ...

! solve Ax=b with preconditioned BiCGSTAB

call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)

Figure 5: setup of a one-level Schwarz preconditioner.

6 User Interface 21

6 User Interface

The basic user interface of MLD2P4 consists of eight methods. The six methods init,
set, build, hierarchy_build, smoothers_build and apply encapsulate all the func-
tionalities for the setup and the application of any multilevel and one-level precondi-
tioner implemented in the package. The method free deallocates the preconditioner
data structure, while descr prints a description of the preconditioner setup by the user.
For backward compatibility, methods are also accessible as stand-alone subroutines.

For each method, the same user interface is overloaded with respect to the real/
complex case and the single/double precision; arguments with appropriate data types
must be passed to the method, i.e.,

• the sparse matrix data structure, containing the matrix to be preconditioned,
must be of type psb_xspmat_type with x = s for real single precision, x = d

for real double precision, x = c for complex single precision, x = z for complex
double precision;

• the preconditioner data structure must be of type mld_xprec_type, with x = s,
d, c, z, according to the sparse matrix data structure;

• the arrays containing the vectors v and w involved in the preconditioner applica-
tion w = B−1v must be of type psb_xvect_type with x = s, d, c, z, in a manner
completely analogous to the sparse matrix type;

• real parameters defining the preconditioner must be declared according to the
precision of the sparse matrix and preconditioner data structures (see Section 6.2).

A description of each method is given in the remainder of this section.

22 MLD2P4 User’s and Reference Guide

6.1 Method init

call p%init(icontx,ptype,info)

This method allocates and initializes the preconditioner p, according to the precondi-
tioner type chosen by the user.

Arguments

icontxt integer, intent(in).
The communication context.

ptype character(len=*), intent(in).
The type of preconditioner. Its values are specified in Table 1.
Note that the strings are case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

For compatibility with the previous versions of MLD2P4, this method can be also
invoked as follows:

call mld_precinit(p,ptype,info)

6 User Interface 23

6.2 Method set

call p%set(what,val,info [,ilev, ilmax, pos, idx])

This method sets the parameters defining the preconditioner p. More precisely, the
parameter identified by what is assigned the value contained in val.

Arguments

what character(len=*).
The parameter to be set. It can be specified through its name; the string
is case-insensitive. See Tables 2-8.

val integer or character(len=*) or real(psb_spk_) or
real(psb_dpk_), intent(in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Tables 2-8. When the value is of
type character(len=*), it is also treated as case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

ilev integer, optional, intent(in).
For the multilevel preconditioner, the level at which the preconditioner
parameter has to be set. The levels are numbered in increasing order
starting from the finest one, i.e., level 1 is the finest level. If ilev is not
present, the parameter identified by what is set at all the appropriate
levels (see Tables 2-8).

ilmax integer, optional, intent(in).
For the multilevel preconditioner, when both ilev and ilmax are
present, the settings are applied at all levels ilev:ilmax. When ilev

is present but ilmax is not, then the default is ilmax=ilev. The levels
are numbered in increasing order starting from the finest one, i.e., level
1 is the finest level.

pos charater(len=*), optional, intent(in).
Whether the other arguments apply only to the pre-smoother (’PRE’) or
to the post-smoother (’POST’). If pos is not present, the other arguments
are applied to both smoothers. If the preconditioner is one-level or the
parameter identified by what does not concern the smoothers, pos is
ignored.

idx integer, optional, intent(in).
An auxiliary input argument that can be passed to the underlying ob-
jects.

For compatibility with the previous versions of MLD2P4, this method can be also
invoked as follows:

call mld_precset(p,what,val,info)

24 MLD2P4 User’s and Reference Guide

However, in this case the optional arguments ilev, ilmax, pos and idx cannot be used.

A variety of preconditioners can be obtained by a suitable setting of the precon-
ditioner parameters. These parameters can be logically divided into four groups, i.e.,
parameters defining

1. the type of multilevel cycle and how many cycles must be applied;

2. the aggregation algorithm;

3. the coarse-space correction at the coarsest level (for multilevel preconditioners
only);

4. the smoother of the multilevel preconditioners, or the one-level preconditioner.

A list of the parameters that can be set, along with their allowed and default values,
is given in Tables 2-8. For a description of the meaning of the parameters, please refer
also to Section 4.

Remark 2. A smoother is usually obtained by combining two objects: a smoother
(SMOOTHER_TYPE) and a local solver (SUB_SOLVE), as specified in Tables 7-8. For ex-
ample, the block-Jacobi smoother using ILU(0) on the blocks is obtained by combining
the block-Jacobi smoother object with the ILU(0) solver object. Similarly, the hybrid
Gauss-Seidel smoother (see Note in Table 7) is obtained by combining the block-Jacobi
smoother object with a single sweep of the Gauss-Seidel solver object, while the point-
Jacobi smoother is the result of combining the block-Jacobi smoother object with a
single sweep of the pointwise-Jacobi solver object. However, for simplicity, shortcuts
are provided to set point-Jacobi, hybrid (forward) Gauss-Seidel, and hybrid backward
Gauss-Seidel, i.e., the previous smoothers can be defined by setting only SMOOTHER_TYPE

to appropriate values (see Tables 7), i.e., without setting SUB_SOLVE too.
The smoother and solver objects are arranged in a hierarchical manner. When

specifying a smoother object, its parameters, including the local solver, are set to their
default values, and when a solver object is specified, its defaults are also set, overriding
in both cases any previous settings even if explicitly specified. Therefore if the user sets
a smoother, and wishes to use a solver different from the default one, the call to set the
solver must come after the call to set the smoother.

Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi
coarsest-level solvers, and shortcuts are available in this case too (see Table 5).

Remark 3. In general, a coarsest-level solver cannot be used with both the repli-
cated and distributed coarsest-matrix layout; therefore, setting the solver after the
layout may change the layout. Similarly, setting the layout after the solver may change
the solver.

More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be
replicated, while SuperLU Dist requires it to be distributed. In these cases, setting
the coarsest-level solver implies that the layout is redefined according to the solver,

6 User Interface 25

ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel and
block-Jacobi can be applied to replicated and distributed matrices, thus their choice
does not modify any previously specified layout. It is worth noting that, when the
matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers
reduce to the corresponding local solver objects (see Remark 2). For the point-Jacobi
and Gauss-Seidel solvers, these objects correspond to a single point-Jacobi sweep and
a single Gauss-Seidel sweep, respectively, which are very poor solvers.

On the other hand, the distributed layout can be used with any solver but UMF-
PACK and SuperLU; therefore, if any of these two solvers has already been selected,
the coarsest-level solver is changed to block-Jacobi, with the previously chosen solver
applied to the local blocks. Likewise, the replicated layout can be used with any solver
but SuperLu Dist; therefore, if SuperLu Dist has been previously set, the coarsest-level
solver is changed to the default sequential solver.

Remark 4. The argument idx can be used to allow finer control for those solvers;
for instance, by specifying the keyword MUMPS_IPAR_ENTRY and an appropriate value
for idx, it is possible to set any entry in the MUMPS integer control array. See also
Sec. 7.

26 MLD2P4 User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
M
L
_
C
Y
C
L
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
V
C
Y
C
L
E
’

’
W
C
Y
C
L
E
’

’
K
C
Y
C
L
E
’

’
M
U
L
T
’

’
A
D
D
’

’
V
C
Y
C
L
E
’

M
u

ltilevel
cy

cle:
V

-cy
cle,

W
-cy

cle,
K

-cy
cle,

h
y
b

rid
M

u
ltip

licative
S

ch
w

arz,
an

d
A

d
d

i-
tive

S
ch

w
arz.

N
ote

th
at

h
y
b

rid
M

u
ltip

licative
S

ch
w

arz
is

eq
u

ivalen
t

to
V

-cy
cle

an
d

is
in

clu
d

ed
for

com
p

atib
ility

w
ith

p
rev

iou
s

v
ersion

s
of

M
L

D
2P

4.

’
O
U
T
E
R
_
S
W
E
E
P
S
’

i
n
t
e
g
e
r

A
n
y

in
teger

n
u

m
b

er
≥

1
1

N
u

m
b

er
of

m
u

ltilevel
cy

cles.

T
a
b

le
2:

P
a
ra

m
eters

d
efi

n
in

g
th

e
m

u
ltilevel

cy
cle

an
d

th
e

n
u

m
b

er
of

cy
cles

to
b

e
ap

p
lied

.

6 User Interface 27
w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
M
I
N
_
C
O
A
R
S
E
_
S
I
Z
E
’

i
n
t
e
g
e
r

A
n
y

n
u

m
b

er
>

0
b4

0
3√
n
c,

w
h

er
e
n

is
th

e
d

im
en

si
on

of
th

e
m

at
ri

x
at

th
e

fi
n

es
t

le
ve

l

C
oa

rs
e

si
ze

th
re

sh
ol

d
.

T
h

e
ag

gr
eg

at
io

n
st

op
s

if
th

e
gl

ob
al

n
u

m
b

er
of

va
ri

ab
le

s
of

th
e

co
m

p
u

te
d

co
ar

se
st

m
at

ri
x

is
lo

w
er

th
an

or
eq

u
al

to
th

is
th

re
sh

ol
d

(s
ee

N
ot

e)
.

’
M
I
N
_
C
R
_
R
A
T
I
O
’

r
e
a
l

A
n
y

n
u

m
b

er
>

1
1.

5
M

in
im

u
m

co
ar

se
n

in
g

ra
ti

o.
T

h
e

ag
gr

eg
a-

ti
on

st
op

s
if

th
e

ra
ti

o
b

et
w

ee
n

th
e

m
a-

tr
ix

d
im

en
si

on
s

at
tw

o
co

n
se

cu
ti

ve
le

v
el

s
is

lo
w

er
th

an
or

eq
u

al
to

th
is

th
re

sh
ol

d
(s

ee
N

ot
e)

.

’
M
A
X
_
L
E
V
S
’

i
n
t
e
g
e
r

A
n
y

in
te

ge
r

n
u

m
b

er
>

1
20

M
ax

im
u

m
n
u

m
b

er
of

le
ve

ls
.

T
h

e
ag

gr
eg

a-
ti

on
st

op
s

if
th

e
n
u

m
b

er
of

le
v
el

s
re

ac
h

es
th

is
va

lu
e

(s
ee

N
ot

e)
.

’
P
A
R
_
A
G
G
R
_
A
L
G
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
D
E
C
’
,

’
S
Y
M
D
E
C
’

’
D
E
C
’

P
ar

al
le

l
ag

gr
eg

at
io

n
al

go
ri

th
m

.
C

u
rr

en
tl

y,
on

ly
th

e
d

ec
ou

p
le

d
ag

gr
eg

a-
ti

on
(D
E
C
)

is
av

ai
la

b
le

;
th

e
S
Y
M
D
E
C

op
-

ti
on

ap
p

li
es

d
ec

ou
p

le
d

ag
gr

eg
at

io
n

to
th

e
sp

ar
si

ty
p
at

te
rn

of
A

+
A

T
.

’
A
G
G
R
_
T
Y
P
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
S
O
C
1
’

’
S
O
C
1
’
,
’
S
O
C
2
’

T
y
p

e
of

ag
gr

eg
at

io
n

al
go

ri
th

m
:

cu
rr

en
tl

y,
w

e
im

p
le

m
en

t
to

m
ea

su
re

s
of

st
re

n
gt

h
of

co
n

n
ec

ti
on

,
th

e
on

e
b
y

V
an

ěk
,

M
an

d
el

an
d

B
re

zi
n

a
[2

6]
,

an
d

th
e

on
e

b
y

G
ra

t-
to

n
et

al
[1

6]
.

’
A
G
G
R
_
P
R
O
L
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
S
M
O
O
T
H
E
D
’
,

’
U
N
S
M
O
O
T
H
E
D
’

’
S
M
O
O
T
H
E
D
’

P
ro

lo
n

ga
to

r
u

se
d

b
y

th
e

ag
gr

eg
at

io
n

al
-

go
ri

th
m

:
sm

o
ot

h
ed

or
u

n
sm

o
ot

h
ed

(i
.e

.,
te

n
ta

ti
ve

p
ro

lo
n

ga
to

r)
.

N
o
te

.
T

h
e

ag
g
re

ga
ti

on
al

go
ri

th
m

st
op

s
w

h
en

at
le

as
t

on
e

of
th

e
fo

ll
ow

in
g

cr
it

er
ia

is
m

et
:

th
e

co
ar

se
si

ze
th

re
sh

ol
d

,
th

e
m

in
im

u
m

co
ar

se
n

in
g

ra
ti

o
,

or
th

e
m

ax
im

u
m

n
u
m

b
er

of
le

ve
ls

is
re

ac
h

ed
.

T
h

er
ef

or
e,

th
e

ac
tu

al
n
u

m
b

er
of

le
v
el

s
m

ay
b

e
sm

a
ll

er
th

a
n

th
e

sp
ec

ifi
ed

m
a
x
im

u
m

n
u

m
b

er
of

le
v
el

s.

T
ab

le
3
:

P
ar

am
et

er
s

d
efi

n
in

g
th

e
ag

gr
eg

at
io

n
al

go
ri

th
m

.

28 MLD2P4 User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
A
G
G
R
_
O
R
D
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
N
A
T
U
R
A
L
’

’
D
E
G
R
E
E
’

’
N
A
T
U
R
A
L
’

In
itial

ord
erin

g
of

in
d

ices
for

th
e

aggre-
gation

algorith
m

:
eith

er
n

atu
ral

ord
er-

in
g

or
sorted

b
y

d
escen

d
in

g
d
egrees

of
th

e
n

o
d

es
in

th
e

m
atrix

grap
h

.

’
A
G
G
R
_
T
H
R
E
S
H
’

r
e
a
l
(

kin
d

pa
ra

m
eter

)
A

n
y

real
n
u

m
b

er∈
[0,1]

0.01
T

h
e

th
resh

old
θ

in
th

e
aggregation

al-
gorith

m
,

see
(3)

in
S

ection
4.2.

S
ee

also
th

e
n

ote
at

th
e

b
ottom

of
th

is
tab

le.

’
A
G
G
R
_
F
I
L
T
E
R
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
F
I
L
T
E
R
’

’
N
O
F
I
L
T
E
R
’

’
N
O
F
I
L
T
E
R
’

M
atrix

u
sed

in
com

p
u

tin
g

th
e

sm
o
oth

ed
p

rolon
gator:

fi
ltered

or
u

n
fi

ltered
(see

(5)
in

S
ection

4.2).

N
o
te

.
D

iff
eren

t
th

resh
o
ld

s
at

d
iff

eren
t

levels,
su

ch
as

th
ose

u
sed

in
[26,

S
ection

5.1],
can

b
e

easily
set

b
y

in
vok

in
g

th
e

rou
-

tin
e
s
e
t

w
ith

th
e

p
a
ra

m
eter

i
l
e
v
.

T
a
b

le
4:

P
a
ra

m
eters

d
efi

n
in

g
th

e
aggregation

algorith
m

(con
tin

u
ed

).

6 User Interface 29
w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
C
O
A
R
S
E
_
M
A
T
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
D
I
S
T
’

’
R
E
P
L
’

’
R
E
P
L
’

C
oa

rs
es

t
m

at
ri

x
la

yo
u

t:
d

is
tr

ib
u

te
d

am
on

g
th

e
p

ro
-

ce
ss

es
or

re
p

li
ca

te
d

on
ea

ch
of

th
em

.

’
C
O
A
R
S
E
_
S
O
L
V
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
M
U
M
P
S
’

’
U
M
F
’

’
S
L
U
’

’
S
L
U
D
I
S
T
’

’
J
A
C
O
B
I
’

’
G
S
’

’
B
J
A
C
’

S
ee

N
ot

e.
S

ol
ve

r
u

se
d

at
th

e
co

ar
se

st
le

v
el

:
se

q
u

en
ti

al
L

U
fr

om
M

U
M

P
S

,
U

M
F

P
A

C
K

,
or

S
u

p
er

L
U

(p
lu

s
tr

i-
an

gu
la

r
so

lv
e)

;
d

is
tr

ib
u
te

d
L

U
fr

om
M

U
M

P
S

or
S

u
p

er
L

U
D

is
t

(p
lu

s
tr

ia
n

gu
la

r
so

lv
e)

;
p

oi
n
t-

J
ac

ob
i,

h
y
b

ri
d

G
au

ss
-S

ei
d

el
or

b
lo

ck
-J

ac
ob

i.
N

ot
e

th
at

U
M
F

an
d
S
L
U

re
q
u

ir
e

th
e

co
ar

se
st

m
at

ri
x

to
b

e
re

p
li

ca
te

d
,
S
L
U
D
I
S
T
,
J
A
C
O
B
I
,
G
S

an
d
B
J
A
C

re
-

q
u

ir
e

it
to

b
e

d
is

tr
ib

u
te

d
,

an
d
M
U
M
P
S

ca
n

b
e

u
se

d
w

it
h

ei
th

er
a

re
p

li
ca

te
d

or
a

d
is

tr
ib

u
te

d
m

at
ri

x
.

W
h

en
an

y
of

th
e

p
re

v
io

u
s

so
lv

er
s

is
sp

ec
ifi

ed
,

th
e

m
at

ri
x

la
yo

u
t

is
se

t
to

a
d

ef
au

lt
va

lu
e

w
h

ic
h

al
lo

w
s

th
e

u
se

of
th

e
so

lv
er

(s
ee

R
em

ar
k

3,
p

.
24

).
N

ot
e

al
so

th
at

U
M

F
P

A
C

K
an

d
S

u
p

er
L

U
D

is
t

ar
e

av
ai

l-
ab

le
on

ly
in

d
ou

b
le

p
re

ci
si

on
.

’
C
O
A
R
S
E
_
S
U
B
S
O
L
V
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
I
L
U
’

’
I
L
U
T
’

’
M
I
L
U
’

’
M
U
M
P
S
’

’
S
L
U
’

’
U
M
F
’

S
ee

N
ot

e.
S

ol
ve

r
fo

r
th

e
d

ia
go

n
al

b
lo

ck
s

of
th

e
co

ar
se

m
at

ri
x
,

in
ca

se
th

e
b

lo
ck

J
ac

ob
i

so
lv

er
is

ch
os

en
as

co
ar

se
st

-
le

ve
l

so
lv

er
:

IL
U

(p
),

IL
U

(p
,t

),
M

IL
U

(p
),

L
U

fr
om

M
U

M
P

S
,

S
u

p
er

L
U

or
U

M
F

P
A

C
K

(p
lu

s
tr

ia
n

gu
la

r
so

lv
e)

.
N

ot
e

th
at

U
M

F
P

A
C

K
an

d
S

u
p

er
L

U
D

is
t

ar
e

av
ai

la
b

le
on

ly
in

d
ou

b
le

p
re

ci
si

on
.

N
o
te

.
D

ef
a
u

lt
s

fo
r
C
O
A
R
S
E
S
O
L
V
E

a
n

d
C
O
A
R
S
E
S
U
B
S
O
L
V
E

ar
e

ch
os

en
in

th
e

fo
ll

ow
in

g
or

d
er

:
si

n
g
le

p
re

ci
si

o
n

ve
rs

io
n

–
M
U
M
P
S

if
in

st
a
ll

ed
,

th
en

S
L
U

if
in

st
al

le
d

,
I
L
U

ot
h

er
w

is
e;

d
o
u

b
le

p
re

ci
si

on
ve

rs
io

n
–
U
M
F

if
in

st
al

le
d

,
th

en
M
U
M
P
S

if
in

st
al

le
d

,
th

en
S
L
U

if
in

st
al

le
d

,
I
L
U

ot
h

er
w

is
e.

T
a
b

le
5:

P
a
ra

m
et

er
s

d
efi

n
in

g
th

e
co

ar
se

-s
p

ac
e

co
rr

ec
ti

on
at

th
e

co
ar

se
st

le
ve

l.

30 MLD2P4 User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
C
O
A
R
S
E
_
S
W
E
E
P
S
’

i
n
t
e
g
e
r

A
n
y

in
teger

n
u

m
b

er
>

0
10

N
u

m
b

er
of

sw
eep

s
w

h
en

J
A
C
O
B
I
,
G
S

or
B
J
A
C

is
ch

osen
as

coarsest-lev
el

solver.

’
C
O
A
R
S
E
_
F
I
L
L
I
N
’

i
n
t
e
g
e
r

A
n
y

in
teger

n
u

m
b

er
≥

0
0

F
ill-in

level
p

of
th

e
IL

U
factorization

s.

’
C
O
A
R
S
E
_
I
L
U
T
H
R
S
’

r
e
a
l
(

kin
d

pa
ra

m
eter

)
A

n
y

real
n
u

m
b

er
≥

0
0

D
rop

toleran
ce

t
in

th
e

IL
U

(p
,t)

factoriza-
tion

.

T
a
b

le
6:

P
a
ra

m
eters

d
efi

n
in

g
th

e
coarse-sp

ace
correction

at
th

e
coarsest

level
(con

tin
u

ed
).

6 User Interface 31

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
S
M
O
O
T
H
E
R
_
T
Y
P
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
J
A
C
O
B
I
’

’
G
S
’

’
B
G
S
’

’
B
J
A
C
’

’
A
S
’

’
F
B
G
S
’

T
y
p

e
o
f

sm
o
o
th

er
u

se
d

in
th

e
m

u
lt

i-
le

ve
l

p
re

co
n

d
it

io
n

er
:

p
o
in

t-
J
a
co

b
i,

h
y
b

ri
d

(f
o
rw

a
rd

)
G

a
u

ss
-S

ei
d

el
,

h
y
b

ri
d

b
a
ck

w
a
rd

G
a
u

ss
-S

ei
d

el
,

b
lo

ck
-J

a
co

b
i,

a
n

d
A

d
d

it
iv

e
S

ch
w

a
rz

.
It

is
ig

n
o
re

d
b
y

o
n

e-
le

ve
l

p
re

co
n

d
it

io
n

er
s.

’
S
U
B
_
S
O
L
V
E
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
J
A
C
O
B
I
’

’
G
S
’

’
B
G
S
’

’
I
L
U
’

’
I
L
U
T
’

’
M
I
L
U
’

’
M
U
M
P
S
’

’
S
L
U
’

’
U
M
F
’

G
S

a
n

d
B
G
S

fo
r

p
re

-
a
n

d
p

o
st

-s
m

o
o
th

er
s

o
f

m
u

l-
ti

le
ve

l
p

re
co

n
d
it

io
n

er
s,

re
sp

ec
ti

ve
ly

I
L
U

fo
r

b
lo

ck
-J

a
co

b
i

a
n

d
A

d
d

it
iv

e
S

ch
w

a
rz

o
n

e-
le

ve
l

p
re

co
n

d
it

io
n

-
er

s

T
h

e
lo

ca
l

so
lv

er
to

b
e

u
se

d
w

it
h

th
e

sm
o
o
th

er
o
r

o
n

e-
le

v
el

p
re

co
n

d
it

io
n

er
(s

ee
R

em
a
rk

2
,

p
a
g
e

2
4
):

p
o
in

t-
J
a
co

b
i,

h
y
b

ri
d

(f
o
rw

a
rd

)
G

a
u

ss
-S

ei
d

el
,

h
y
b

ri
d

b
a
ck

w
a
rd

G
a
u

ss
-S

ei
d

el
,

IL
U

(p
),

IL
U

(p
,t

),
M

IL
U

(p
),

L
U

fr
o
m

M
U

M
P

S
,

S
u

p
er

L
U

o
r

U
M

F
-

P
A

C
K

(p
lu

s
tr

ia
n

g
u

la
r

so
lv

e)
.

S
ee

N
o
te

fo
r

d
et

a
il

s
o
n

h
y
b

ri
d

G
a
u

ss
-S

ei
d

el
.

’
S
M
O
O
T
H
E
R
_
S
W
E
E
P
S
’

i
n
t
e
g
e
r

A
n
y

in
te

g
er

n
u

m
b

er
≥

0
1

N
u

m
b

er
o
f

sw
ee

p
s

o
f

th
e

sm
o
o
th

er
o
r

o
n

e-
le

ve
l
p

re
co

n
d

it
io

n
er

.
In

th
e

m
u

lt
il

ev
el

ca
se

,
n

o
p

re
-s

m
o
th

er
o
r

p
o
st

-s
m

o
o
th

er
is

u
se

d
if

th
is

p
a
ra

m
et

er
is

se
t

to
0

to
g
et

h
er

w
it

h
p
o
s
=
’
P
R
E
’

o
r
p
o
s
=
’
P
O
S
T
,

re
sp

ec
ti

ve
ly

.
’
S
U
B
_
O
V
R
’

i
n
t
e
g
e
r

A
n
y

in
te

g
er

n
u

m
b

er
≥

0
1

N
u

m
b

er
o
f

ov
er

la
p

la
ye

rs
,

fo
r

A
d

d
it

iv
e

S
ch

w
a
rz

o
n

ly
.

T
a
b

le
7:

P
a
ra

m
et

er
s

d
efi

n
in

g
th

e
sm

o
ot

h
er

or
th

e
d

et
ai

ls
of

th
e

on
e-

le
ve

l
p

re
co

n
d

it
io

n
er

.

32 MLD2P4 User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

’
S
U
B
_
R
E
S
T
R
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
H
A
L
O
’

’
N
O
N
E
’

’
H
A
L
O
’

T
y
p

e
of

restriction
op

erator,
for

A
d

d
itive

S
ch

w
arz

on
ly

:
H
A
L
O

for
tak

in
g

in
to

accou
n
t

th
e

overlap
,
N
O
N
E

for
n

eglectin
g

it.
N

ote
th

at
H
A
L
O

m
u

st
b

e
ch

osen
for

th
e

classi-
ca

l
A

d
d

d
itive

S
ch

w
arz

sm
o
oth

er
an

d
its

R
A

S
va

rian
t.

’
S
U
B
_
P
R
O
L
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
S
U
M
’

’
N
O
N
E
’

’
N
O
N
E
’

T
y
p

e
of

p
rolon

gation
op

erator,
for

A
d

d
itiv

e
S

ch
w

arz
on

ly
:
S
U
M

for
ad

d
in

g
th

e
con

trib
u

tion
s

fro
m

th
e

overlap
,
N
O
N
E

for
n

eglectin
g

th
em

.
N

ote
th

at
S
U
M

m
u

st
b

e
ch

osen
for

th
e

classical
A

d
d

itive
S
ch

w
arz

sm
o
oth

er,
an

d
N
O
N
E

for
its

R
A

S
varian

t.
’
S
U
B
_
F
I
L
L
I
N
’

i
n
t
e
g
e
r

A
n
y

in
teg

er
n
u

m
b

er
≥

0
0

F
ill-in

level
p

of
th

e
in

com
p

lete
L

U
factoriza-

tio
n

s.
’
S
U
B
_
I
L
U
T
H
R
S
’

r
e
a
l
(

kin
d

pa
ra

m
eter

)
A

n
y

rea
l

n
u

m
-

b
er
≥

0
0

D
rop

toleran
ce
t

in
th

e
IL

U
(p
,t)

factorization
.

’
M
U
M
P
S
_
L
O
C
_
G
L
O
B
’

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

L
O
C
A
L
S
O
L
V
E
R
’

G
L
O
B
A
L
S
O
L
V
E
R
’

G
L
O
B
A
L
S
O
L
V
E
R
’

W
h

eth
er

M
U

M
P

S
sh

ou
ld

b
e

u
sed

as
a

d
is-

trib
u

ted
solver,

or
as

a
serial

solv
er

actin
g

on
ly

o
n

th
e

p
art

of
th

e
m

atrix
lo

cal
to

each
p

ro
cess.

’
M
U
M
P
S
_
I
P
A
R
_
E
N
T
R
Y
’
i
n
t
e
g
e
r

A
n
y

in
teg

er
n
u

m
b

er
0

S
et

an
en

try
in

th
e

M
U

M
P

S
in

teger
con

trol
a
rray,

as
ch

osen
v
ia

th
e
i
d
x

op
tion

al
argu

m
en

t.
’
M
U
M
P
S
_
R
P
A
R
_
E
N
T
R
Y
’
r
e
a
l

A
n
y

rea
l

n
u

m
-

b
er

0
S

et
an

en
try

in
th

e
M

U
M

P
S

real
con

trol
array,

a
s

ch
osen

v
ia

th
e
i
d
x

op
tion

al
argu

m
en

t.

T
a
b

le
8:

P
a
ra

m
eters

d
efi

n
in

g
th

e
sm

o
oth

er
or

th
e

d
etails

of
th

e
on

e-level
p

recon
d

ition
er

(con
tin

u
ed

).

6 User Interface 33

6.3 Method hierarchy build

call p%hierarchy_build(a,desc_a,info)

This method builds the hierarchy of matrices and restriction/prolongation operators
for the multilevel preconditioner p, according to the requirements made by the user
through the methods init and set.

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [13].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [13].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

34 MLD2P4 User’s and Reference Guide

6.4 Method smoothers build

call p%smoothers_build(a,desc_a,p,info[,amold,vmold,imold])

This method builds the smoothers and the coarsest-level solvers for the multilevel pre-
conditioner p, according to the requirements made by the user through the methods
init and set, and based on the aggregation hierarchy produced by a previous call to
hierarchy_build (see Section 6.3).

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [13].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [13].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

amold class(psb_x_base_sparse_mat), intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See
the PSBLAS User’s Guide for details [13].

vmold class(psb_x_base_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

imold class(psb_i_base_vect_type), intent(in), optional.
The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

6 User Interface 35

6.5 Method build

call p%build(a,desc_a,info[,amold,vmold,imold])

This method builds the preconditioner p according to the requirements made by the user
through the methods init and set (see Sections 6.3 and 6.4 for multilevel precondi-
tioners). It is mostly provided for backward compatibility; indeed, it is internally imple-
mented by invoking the two previous methods hierarchy_build and smoothers_build,
whose nomenclature would however be somewhat unnatural when dealing with simple
one-level preconditioners.

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [13].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [13].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

amold class(psb_x_base_sparse_mat), intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See
the PSBLAS User’s Guide for details [13].

vmold class(psb_x_base_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

imold class(psb_i_base_vect_type), intent(in), optional.
The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

For compatibility with the previous versions of MLD2P4, this method can be also
invoked as follows:

call mld_precbld(p,what,val,info[,amold,vmold,imold])

The method can be used to build multilevel preconditioners too.

36 MLD2P4 User’s and Reference Guide

6.6 Method apply

call p%apply(x,y,desc_a,info [,trans,work])

This method computes y = op(B−1)x, where B is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its transpose, according to the
value of trans. Note that, when MLD2P4 is used with a Krylov solver from PSBLAS,
p%apply is called within the PSBLAS method psb_krylov and hence it is completely
transparent to the user.

Arguments

x type(kind parameter), dimension(:), intent(in).
The local part of the vector x. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version
of MLD2P4 under use.

y type(kind parameter), dimension(:), intent(out).
The local part of the vector y. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version
of MLD2P4 under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

trans character(len=1), optional, intent(in).

If trans = ’N’,’n’ then op(B−1) = B−1; if trans = ’T’,’t’ then
op(B−1) = B−T (transpose ofB−1); if trans = ’C’,’c’ then op(B−1) =
B−C (conjugate transpose of B−1).

work type(kind parameter), dimension(:), optional, target.
Workspace. Its size should be at least 4 * psb_cd_get_local_

cols(desc_a) (see the PSBLAS User’s Guide). Note that type and
kind parameter must be chosen according to the real/complex, sin-
gle/double precision version of MLD2P4 under use.

For compatibility with the previous versions of MLD2P4, this method can be also
invoked as follows:

call mld_precaply(p,what,val,info)

6 User Interface 37

6.7 Method free

call p%free(p,info)

This method deallocates the preconditioner data structure p.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

For compatibility with the previous versions of MLD2P4, this method can be also
invoked as follows:

call mld_precfree(p,info)

38 MLD2P4 User’s and Reference Guide

6.8 Method descr

call p%descr(info, [iout])

This method prints a description of the preconditioner p to the standard output or to
a file. It must be called after hierachy_build and smoothers_build, or build, have
been called.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

iout integer, intent(in), optional.
The id of the file where the preconditioner description will be printed;
the default is the standard output.

For compatibility with the previous versions of MLD2P4, this method can be also
invoked as follows:

call mld_precdescr(p,info [,iout])

6.9 Auxiliary Methods

Various functionalities are implemented as additional methods of the preconditioner
object.

6.9.1 Method: dump

call p%dump(info[,istart,iend,prefix,head,ac,rp,smoother,solver,global_num])

Dump on file.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

amold class(psb_x_base_sparse_mat), intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See
the PSBLAS User’s Guide for details [13].

6.9.2 Method: clone

call p%clone(pout,info)

6 User Interface 39

Create a (deep) copy of the preconditioner object.

Arguments

pout type(mld_xprec_type), intent(out).
The copy of the preconditioner data structure. Note that x must be
chosen according to the real/complex, single/double precision version of
MLD2P4 under use.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

6.9.3 Method: sizeof

sz = p%sizeof()

Return memory footprint in bytes.

6.9.4 Method: allocate wrk

call p%allocate_wrk(info[, vmold])

Allocate internal work vectors. Each application of the preconditioner uses a number
of work vectors which are allocated internally as necessary; therefore allocation and
deallocation of memory occurs multiple times during the execution of a Krylov method.
In most cases this strategy is perfectly acceptable, but on some platforms, most notably
GPUs, memory allocation is a slow operation, and the default behaviour would lead to
a slowdown. This method allows to trade space for time by preallocating the internal
workspace outside of the invocation of a Krylov method. When using GPUs or other
specialized devices, the vmold argument is also necessary to ensure the internal work
vectors are of the appropriate dynamic type to exploit the accelerator hardware; when
allocation occurs internally this is taken care of based on the dynamic type of the x

argument to the apply method.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

vmold class(psb_x_base_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

6.9.5 Method: free wrk

call p%free_wrk(info)

40 MLD2P4 User’s and Reference Guide

Deallocate internal work vectors.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

6 User Interface 41

7 Adding new smoother and solver objects to MLD2P4

Developers can add completely new smoother and/or solver classes derived from the
base objects in the library (see Remark 2 in Section 6.2), without recompiling the library
itself.

To do so, it is necessary first to select the base type to be extended. In our experi-
ence, it is quite likely that the new application needs only the definition of a “solver”
object, which is almost always acting only on the local part of the distributed matrix.
The parallel actions required to connect the various solver objects are most often al-
ready provided by the block-Jacobi or the additive Schwarz smoothers. To define a new
solver, the developer will then have to define its components and methods, perhaps
taking one of the predefined solvers as a starting point, if possible.

Once the new smoother/solver class has been developed, to use it in the context of
the multilevel preconditioners it is necessary to:

• declare in the application program a variable of the new type;

• pass that variable as the argument to the set routine as in the following:

call p%set(smoother,info [,ilev,ilmax,pos])

call p%set(solver,info [,ilev,ilmax,pos])

• link the code implementing the various methods into the application executable.

The new solver object is then dynamically included in the preconditioner structure,
and acts as a mold to which the preconditioner will conform, even though the MLD2P4
library has not been modified to account for this new development.

It is possible to define new values for the keyword WHAT in the set routine; if the
library code does not recognize a keyword, it passes it down the composition hierarchy
(levels containing smoothers containing in turn solvers), so that it can be eventually
caught by the new solver. By the same token, any keyword/value pair that does not
pertain to a given smoother should be passed down to the contained solver, and any
keyword/value pair that does not pertain to a given solver is by default ignored.

An example is provided in the source code distribution under the folder tests/newslv.
In this example we are implementing a new incomplete factorization variant (which is
simply the ILU(0) factorization under a new name). Because of the specifics of this
case, it is possible to reuse the basic structure of the ILU solver, with its L/D/U com-
ponents and the methods needed to apply the solver; only a few methods, such as the
description and most importantly the build, need to be ovverridden (rewritten).

The interfaces for the calls shown above are defined using

smoother class(mld_x_base_smoother_type)

The user-defined new smoother to be employed in the preconditioner.
solver class(mld_x_base_solver_type)

The user-defined new solver to be employed in the preconditioner.

42 MLD2P4 User’s and Reference Guide

The other arguments are defined in the way described in Sec. 6.2. As an example, in
the tests/newslv code we define a new object of type mld_d_tlu_solver_type, and
we pass it as follows:

! sparse matrix and preconditioner

type(psb_dspmat_type) :: a

type(mld_dprec_type) :: prec

type(mld_d_tlu_solver_type) :: tlusv

......

!

! prepare the preconditioner: an ML with defaults, but with TLU solver at

! intermediate levels. All other parameters are at default values.

!

call prec%init(’ML’, info)

call prec%hierarchy_build(a,desc_a,info)

nlv = prec%get_nlevs()

call prec%set(tlusv, info,ilev=1,ilmax=max(1,nlv-1))

call prec%smoothers_build(a,desc_a,info)

8 Error handling 43

8 Error Handling

The error handling in MLD2P4 is based on the PSBLAS error handling. Error condi-
tions are signaled via an integer argument info; whenever an error condition is detected,
an error trace stack is built by the library up to the top-level, user-callable routine. This
routine will then decide, according to the user preferences, whether the error should
be handled by terminating the program or by returning the error condition to the user
code, which will then take action, and whether an error message should be printed.
These options may be set by using the PSBLAS error handling routines; for further
details see the PSBLAS User’s Guide [13].

44 MLD2P4 User’s and Reference Guide

A License

The MLD2P4 is freely distributable under the following copyright terms:

MLD2P4 version 2.1

MultiLevel Domain Decomposition Parallel Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 3.5)

(C) Copyright 2008, 2010, 2012, 2015, 2017

Salvatore Filippone Cranfield University, Cranfield, UK

Pasqua D’Ambra IAC-CNR, Naples, IT

Daniela di Serafino University of Campania L. Vanvitelli, Caserta, IT

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may

not be used to endorse or promote products derived from this

software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

References 45

References

[1] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L’Excellent, C. Weisbecker,
Improving multifrontal methods by means of block low-rank representations, SIAM
Journal on Scientific Computing, volume 37 (3), 2015, A1452–A1474. See also
http://mumps.enseeiht.fr.

[2] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a Two-Level Schwarz
Method, Computing, 63, 1999, 233–263.

[3] W. L. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial, Second Edi-
tion, SIAM, 2000.

[4] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending PSBLAS to Build
Parallel Schwarz Preconditioners, in J. Dongarra, K. Madsen, J. Wasniewski, edi-
tors, Proceedings of PARA 04 Workshop on State of the Art in Scientific Comput-
ing, Lecture Notes in Computer Science, Springer, 2005, 593–602.

[5] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a package of
high-performance preconditioners for scientific and engineering applications, Ap-
plicable Algebra in Engineering, Communications and Computing, 18 (3) 2007,
223–239.

[6] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for General
Sparse Linear Systems, SIAM Journal on Scientific Computing, 21 (2), 1999, 792–
797.

[7] P. D’Ambra, S. Filippone, D. di Serafino, On the Development of PSBLAS-based
Parallel Two-level Schwarz Preconditioners, Applied Numerical Mathematics, El-
sevier Science, 57 (11-12), 2007, 1181-1196.

[8] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of Parallel Multi-
level Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM Trans.
Math. Softw., 37(3), 2010, art. 30.

[9] T. A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal
Method with a Column Pre-ordering Strategy, ACM Transactions on Mathematical
Software, 30, 2004, 196–199. (See also http://www.cise.ufl.edu/~davis/)

[10] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu, A supern-
odal approach to sparse partial pivoting, SIAM Journal on Matrix Analysis and
Applications, 20 (3), 1999, 720–755.

[11] J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, A set of Level 3 Basic
Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 16 (1)
1990, 1–17.

46 MLD2P4 User’s and Reference Guide

[12] J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An extended set of
FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Mathemat-
ical Software, 14 (1) 1988, 1–17.

[13] S. Filippone, A. Buttari, PSBLAS 3.5.0 User’s Guide. A Reference
Guide for the Parallel Sparse BLAS Library, 2012, available from
https://github.com/sfilippone/psblas3/tree/master/docs.

[14] S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matrix Computa-
tions in Fortran 2003. ACM Transactions on on Mathematical Software, 38 (4),
2012, art. 23.

[15] S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra Com-
putation on Sparse Matrices, ACM Transactions on Mathematical Software, 26 (4),
2000, 527–550.

[16] S. Gratton, P. Henon, P. Jiranek and X. Vasseur, Reducing complexity of algebraic
multigrid by aggregation, Numerical Lin. Algebra with Applications, 2016, 23:501-
518

[17] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions, MIT
Press, 1998.

[18] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear Algebra Sub-
programs for FORTRAN usage, ACM Transactions on Mathematical Software, 5
(3), 1979, 308–323.

[19] X. S. Li, J. W. Demmel, SuperLU DIST: A Scalable Distributed-memory Sparse
Direct Solver for Unsymmetric Linear Systems, ACM Transactions on Mathemat-
ical Software, 29 (2), 2003, 110–140.

[20] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numerical
Linear Algebra with Applications, 15 (5), 2008, 473–487.

[21] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, 2003.

[22] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations, Cambridge University Press,
1996.

[23] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference. Volume 1 - The MPI Core, second edition, MIT Press, 1998.

[24] K. Stüben, An Introduction to Algebraic Multigrid, in A. Schüller, U. Trottenberg,
C. Oosterlee, Multigrid, Academic Press, 2001.

References 47

[25] R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation
Strategies on Massively Parallel Machines, in J. Donnelley, editor, Proceedings of
SuperComputing 2000, Dallas, 2000.

[26] P. Vaněk, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed Aggregation for
Second and Fourth Order Elliptic Problems, Computing, 56 (3) 1996, 179–196.

	MLD2P4 User's and Reference Guide
	Abstract
	1 General Overview
	2 Code Distribution
	3 Configuring and Building MLD2P4
	3.1 Prerequisites
	3.2 Optional third party libraries
	3.3 Configuration options
	3.4 Bug reporting
	3.5 Example and test programs

	4 Multigrid Background
	4.1 AMG preconditioners
	4.2 Smoothed Aggregation
	4.3 Smoothers and coarsest-level solvers

	5 Getting Started
	5.1 Examples

	6 User Interface
	6.1 Method init
	6.2 Method set
	6.3 Method hierarchy_build
	6.4 Method smoothers_build
	6.5 Method build
	6.6 Method apply
	6.7 Method free
	6.8 Method descr
	6.9 Auxiliary Methods
	6.9.1 Method: dump
	6.9.2 Method: clone
	6.9.3 Method: sizeof
	6.9.4 Method: allocate_wrk
	6.9.5 Method: free_wrk

	7 Adding new smoother and solver objects to MLD2P4
	8 Error Handling
	A License
	References

