! ! ! AMG4PSBLAS version 1.0 ! Algebraic Multigrid Package ! based on PSBLAS (Parallel Sparse BLAS version 3.7) ! ! (C) Copyright 2021 ! ! Salvatore Filippone ! Pasqua D'Ambra ! Fabio Durastante ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions, and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! 3. The name of the AMG4PSBLAS group or the names of its contributors may ! not be used to endorse or promote products derived from this ! software without specific written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AMG4PSBLAS GROUP OR ITS CONTRIBUTORS ! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ! POSSIBILITY OF SUCH DAMAGE. ! ! ! File: amg_saggrmat_minnrg_bld.F90 ! ! Subroutine: amg_saggrmat_minnrg_bld ! Version: real ! ! This routine builds a coarse-level matrix A_C from a fine-level matrix A ! by using the Galerkin approach, i.e. ! ! A_C = P_C^T A P_C, ! ! where P_C is a prolongator from the coarse level to the fine one. ! ! The prolongator P_C is built according to a smoothed aggregation algorithm, ! i.e. it is obtained by applying a damped Jacobi smoother to the piecewise ! constant interpolation operator P corresponding to the fine-to-coarse level ! mapping built by the amg_aggrmap_bld subroutine: ! ! P_C = (I - omega*D^(-1)A) * P, ! ! where D is the diagonal matrix with main diagonal equal to the main diagonal ! of A, and omega is a suitable smoothing parameter. An estimate of the spectral ! radius of D^(-1)A, to be used in the computation of omega, is provided, ! according to the value of p%parms%aggr_omega_alg, specified by the user ! through amg_sprecinit and amg_sprecset. ! 4. Minimum energy aggregation: ! M. Sala, R. Tuminaro: A new Petrov-Galerkin smoothed aggregation preconditioner ! for nonsymmetric linear systems, SIAM J. Sci. Comput., 31(1):143-166 (2008) ! ! On output from this routine the entries of AC, op_prol, op_restr ! are still in "global numbering" mode; this is fixed in the calling routine ! aggregator%mat_bld. ! ! ! Arguments: ! a - type(psb_sspmat_type), input. ! The sparse matrix structure containing the local part of ! the fine-level matrix. ! desc_a - type(psb_desc_type), input. ! The communication descriptor of the fine-level matrix. ! p - type(amg_s_onelev_type), input/output. ! The 'one-level' data structure that will contain the local ! part of the matrix to be built as well as the information ! concerning the prolongator and its transpose. ! parms - type(amg_sml_parms), input ! Parameters controlling the choice of algorithm ! ac - type(psb_sspmat_type), output ! The coarse matrix on output ! ! ilaggr - integer, dimension(:), input ! The mapping between the row indices of the coarse-level ! matrix and the row indices of the fine-level matrix. ! ilaggr(i)=j means that node i in the adjacency graph ! of the fine-level matrix is mapped onto node j in the ! adjacency graph of the coarse-level matrix. Note that the indices ! are assumed to be shifted so as to make sure the ranges on ! the various processes do not overlap. ! nlaggr - integer, dimension(:) input ! nlaggr(i) contains the aggregates held by process i. ! op_prol - type(psb_sspmat_type), input/output ! The tentative prolongator on input, the computed prolongator on output ! ! op_restr - type(psb_sspmat_type), output ! The restrictor operator; in this particular case, it is different ! from the transpose of the prolongator. ! ! info - integer, output. ! Error code. ! ! subroutine amg_saggrmat_minnrg_bld(a,desc_a,ilaggr,nlaggr,parms,& & ac,desc_ac,op_prol,op_restr,t_prol,info) use psb_base_mod use amg_base_prec_type use amg_s_inner_mod, amg_protect_name => amg_saggrmat_minnrg_bld implicit none ! Arguments type(psb_sspmat_type), intent(in) :: a type(psb_desc_type), intent(inout) :: desc_a integer(psb_lpk_), intent(inout) :: ilaggr(:), nlaggr(:) type(amg_sml_parms), intent(inout) :: parms type(psb_lsspmat_type), intent(inout) :: t_prol type(psb_sspmat_type), intent(inout) :: op_prol, ac,op_restr type(psb_desc_type), intent(inout) :: desc_ac integer(psb_ipk_), intent(out) :: info ! Local variables integer(psb_lpk_) :: nrow, nglob, ncol, ntaggr, nzac, ip, ndx,& & naggr, nzl,naggrm1,naggrp1, i, j, k, jd, icolF, nrt type(psb_ctxt_type) :: ctxt integer(psb_ipk_) :: np, me, icomm character(len=20) :: name type(psb_lsspmat_type) :: la, af, ptilde, rtilde, atran, atp, atdatp type(psb_lsspmat_type) :: am3,am4, ap, adap,atmp,rada, ra, atmp2, dap, dadap, da type(psb_lsspmat_type) :: dat, datp, datdatp, atmp3, tmp_prol type(psb_ls_coo_sparse_mat) :: tmpcoo type(psb_ls_csr_sparse_mat) :: acsr1, acsr2, acsr3, acsr, acsrf type(psb_ls_csc_sparse_mat) :: csc_dap, csc_dadap, csc_datp, csc_datdatp, acsc real(psb_spk_), allocatable :: adiag(:), adinv(:) real(psb_spk_), allocatable :: omf(:), omp(:), omi(:), oden(:) logical :: filter_mat integer(psb_ipk_) :: ierr(5) integer(psb_ipk_) :: debug_level, debug_unit, err_act integer(psb_ipk_), parameter :: ncmax=16 real(psb_spk_) :: anorm, theta real(psb_spk_) :: tmp, alpha, beta, ommx name='amg_aggrmat_minnrg' info=psb_success_ call psb_erractionsave(err_act) if (psb_errstatus_fatal()) then info = psb_err_internal_error_; goto 9999 end if debug_unit = psb_get_debug_unit() debug_level = psb_get_debug_level() ctxt = desc_a%get_context() icomm = desc_a%get_mpic() call psb_info(ctxt, me, np) nglob = desc_a%get_global_rows() nrow = desc_a%get_local_rows() ncol = desc_a%get_local_cols() theta = parms%aggr_thresh naggr = nlaggr(me+1) ntaggr = sum(nlaggr) naggrm1 = sum(nlaggr(1:me)) naggrp1 = sum(nlaggr(1:me+1)) filter_mat = (parms%aggr_filter == amg_filter_mat_) !NEEDS TO BE REWORKED !! ! naggr: number of local aggregates ! nrow: local rows. ! allocate(adinv(ncol),& & omf(ncol),omp(ntaggr),oden(ntaggr),omi(ncol),stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_; ierr(1)=6*ncol+ntaggr; call psb_errpush(info,name,i_err=ierr,a_err='real(psb_spk_)') goto 9999 end if !!$ ! Get the diagonal D !!$ adiag = a%get_diag(info) !!$ if (info == psb_success_) & !!$ & call psb_realloc(ncol,adiag,info) !!$ if (info == psb_success_) & !!$ & call psb_halo(adiag,desc_a,info) !!$ if (info == psb_success_) call a%cp_to_l(la) !!$ if (info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='sp_getdiag') !!$ goto 9999 !!$ end if !!$ !!$ do i=1,size(adiag) !!$ if (adiag(i) /= szero) then !!$ adinv(i) = sone / adiag(i) !!$ else !!$ adinv(i) = sone !!$ end if !!$ end do !!$ !!$ !!$ !!$ ! 1. Allocate Ptilde in sparse matrix form !!$ call op_prol%mv_to(tmpcoo) !!$ call ptilde%mv_from(tmpcoo) !!$ call ptilde%cscnv(info,type='csr') !!$ !!$ if (info == psb_success_) call la%cscnv(am3,info,type='csr',dupl=psb_dupl_add_) !!$ if (info == psb_success_) call la%cscnv(da,info,type='csr',dupl=psb_dupl_add_) !!$ if (info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='spcnv') !!$ goto 9999 !!$ end if !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & ' Initial copies done.' !!$ !!$ call da%scal(adinv,info) !!$ !!$ call psb_spspmm(da,ptilde,dap,info) !!$ !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_from_subroutine_,name,a_err='spspmm 1') !!$ goto 9999 !!$ end if !!$ !!$ call dap%clone(atmp,info) !!$ !!$ call psb_sphalo(atmp,desc_a,am4,info,& !!$ & colcnv=.false.,rowscale=.true.,outfmt='CSR ') !!$ if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=am4) !!$ if (info == psb_success_) call am4%free() !!$ !!$ call psb_spspmm(da,atmp,dadap,info) !!$ call atmp%free() !!$ !!$ ! !$ write(0,*) 'Columns of AP',psb_sp_get_ncols(ap) !!$ ! !$ write(0,*) 'Columns of ADAP',psb_sp_get_ncols(adap) !!$ call dap%mv_to(csc_dap) !!$ call dadap%mv_to(csc_dadap) !!$ !!$ call csc_mat_col_prod(csc_dap,csc_dadap,omp,info) !!$ call csc_mat_col_prod(csc_dadap,csc_dadap,oden,info) !!$ call psb_sum(ctxt,omp) !!$ call psb_sum(ctxt,oden) !!$ ! !$ write(0,*) trim(name),' OMP :',omp !!$ ! !$ write(0,*) trim(name),' ODEN:',oden !!$ !!$ omp = omp/oden !!$ !!$ ! !$ write(0,*) 'Check on output prolongator ',omp(1:min(size(omp),10)) !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done NUMBMM 1' !!$ !!$ call am3%mv_to(acsr3) !!$ ! Compute omega_int !!$ ommx = szero !!$ do i=1, ncol !!$ if (ilaggr(i) >0) then !!$ omi(i) = omp(ilaggr(i)) !!$ else !!$ omi(i) = szero !!$ end if !!$ if(abs(omi(i)) .gt. abs(ommx)) ommx = omi(i) !!$ end do !!$ ! Compute omega_fine !!$ do i=1, nrow !!$ omf(i) = ommx !!$ do j=acsr3%irp(i),acsr3%irp(i+1)-1 !!$ if(abs(omi(acsr3%ja(j))) .lt. abs(omf(i))) omf(i)=omi(acsr3%ja(j)) !!$ end do !!$ ! ! if(min(real(omf(i)),aimag(omf(i))) < szero) omf(i) = szero !!$ if(psb_minreal(omf(i)) < szero) omf(i) = szero !!$ end do !!$ !!$ omf(1:nrow) = omf(1:nrow) * adinv(1:nrow) !!$ !!$ if (filter_mat) then !!$ ! !!$ ! Build the filtered matrix Af from A !!$ ! !!$ call la%cscnv(acsrf,info,dupl=psb_dupl_add_) !!$ !!$ do i=1,nrow !!$ tmp = szero !!$ jd = -1 !!$ do j=acsrf%irp(i),acsrf%irp(i+1)-1 !!$ if (acsrf%ja(j) == i) jd = j !!$ if (abs(acsrf%val(j)) < theta*sqrt(abs(adiag(i)*adiag(acsrf%ja(j))))) then !!$ tmp=tmp+acsrf%val(j) !!$ acsrf%val(j)=szero !!$ endif !!$ enddo !!$ if (jd == -1) then !!$ write(0,*) name,': Warning: there is no diagonal element', i !!$ else !!$ acsrf%val(jd)=acsrf%val(jd)-tmp !!$ end if !!$ enddo !!$ ! Take out zeroed terms !!$ call acsrf%clean_zeros(info) !!$ !!$ ! !!$ ! Build the smoothed prolongator using the filtered matrix !!$ ! !!$ do i=1,acsrf%get_nrows() !!$ do j=acsrf%irp(i),acsrf%irp(i+1)-1 !!$ if (acsrf%ja(j) == i) then !!$ acsrf%val(j) = sone - omf(i)*acsrf%val(j) !!$ else !!$ acsrf%val(j) = - omf(i)*acsrf%val(j) !!$ end if !!$ end do !!$ end do !!$ !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done gather, going for SYMBMM 1' !!$ !!$ call af%mv_from(acsrf) !!$ ! !!$ ! op_prol = (I-w*D*Af)Ptilde !!$ ! Doing it this way means to consider diag(Af_i) !!$ ! !!$ ! !!$ call psb_spspmm(af,ptilde,op_prol,info) !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done SPSPMM 1' !!$ else !!$ ! !!$ ! Build the smoothed prolongator using the original matrix !!$ ! !!$ do i=1,acsr3%get_nrows() !!$ do j=acsr3%irp(i),acsr3%irp(i+1)-1 !!$ if (acsr3%ja(j) == i) then !!$ acsr3%val(j) = sone - omf(i)*acsr3%val(j) !!$ else !!$ acsr3%val(j) = - omf(i)*acsr3%val(j) !!$ end if !!$ end do !!$ end do !!$ !!$ call am3%mv_from(acsr3) !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done gather, going for SYMBMM 1' !!$ ! !!$ ! !!$ ! op_prol = (I-w*D*A)Ptilde !!$ ! !!$ ! !!$ call psb_spspmm(am3,ptilde,op_prol,info) !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done NUMBMM 1' !!$ !!$ end if !!$ !!$ !!$ ! !!$ ! Ok, let's start over with the restrictor !!$ ! !!$ call ptilde%transc(rtilde) !!$ call la%cscnv(atmp,info,type='csr') !!$ call psb_sphalo(atmp,desc_a,am4,info,& !!$ & colcnv=.true.,rowscale=.true.) !!$ nrt = am4%get_nrows() !!$ call am4%csclip(atmp2,info,lone,nrt,lone,ncol) !!$ call atmp2%cscnv(info,type='CSR') !!$ if (info == psb_success_) call psb_rwextd(ncol,atmp,info,b=atmp2) !!$ call am4%free() !!$ call atmp2%free() !!$ !!$ ! This is to compute the transpose. It ONLY works if the !!$ ! original A has a symmetric pattern. !!$ call atmp%transc(atmp2) !!$ call atmp2%csclip(dat,info,lone,nrow,lone,ncol) !!$ call dat%cscnv(info,type='csr') !!$ call dat%scal(adinv,info) !!$ !!$ ! Now for the product. !!$ call psb_spspmm(dat,ptilde,datp,info) !!$ !!$ call datp%clone(atmp2,info) !!$ call psb_sphalo(atmp2,desc_a,am4,info,& !!$ & colcnv=.false.,rowscale=.true.,outfmt='CSR ') !!$ if (info == psb_success_) call psb_rwextd(ncol,atmp2,info,b=am4) !!$ if (info == psb_success_) call am4%free() !!$ !!$ !!$ call psb_symbmm(dat,atmp2,datdatp,info) !!$ call psb_numbmm(dat,atmp2,datdatp) !!$ call atmp2%free() !!$ !!$ call datp%mv_to(csc_datp) !!$ call datdatp%mv_to(csc_datdatp) !!$ !!$ call csc_mat_col_prod(csc_datp,csc_datdatp,omp,info) !!$ call csc_mat_col_prod(csc_datdatp,csc_datdatp,oden,info) !!$ call psb_sum(ctxt,omp) !!$ call psb_sum(ctxt,oden) !!$ !!$ !!$ ! !$ write(debug_unit,*) trim(name),' OMP_R :',omp !!$ ! ! $ write(debug_unit,*) trim(name),' ODEN_R:',oden !!$ omp = omp/oden !!$ ! !$ write(0,*) 'Check on output restrictor',omp(1:min(size(omp),10)) !!$ ! Compute omega_int !!$ ommx = szero !!$ do i=1, ncol !!$ if (ilaggr(i) >0) then !!$ omi(i) = omp(ilaggr(i)) !!$ else !!$ omi(i) = szero !!$ end if !!$ if(abs(omi(i)) .gt. abs(ommx)) ommx = omi(i) !!$ end do !!$ ! Compute omega_fine !!$ ! Going over the columns of atmp means going over the rows !!$ ! of A^T. Hopefully ;-) !!$ call atmp%cp_to(acsc) !!$ !!$ do i=1, nrow !!$ omf(i) = ommx !!$ do j= acsc%icp(i),acsc%icp(i+1)-1 !!$ if(abs(omi(acsc%ia(j))) .lt. abs(omf(i))) omf(i)=omi(acsc%ia(j)) !!$ end do !!$ ! ! if(min(real(omf(i)),aimag(omf(i))) < szero) omf(i) = szero !!$ if(psb_minreal(omf(i)) < szero) omf(i) = szero !!$ end do !!$ omf(1:nrow) = omf(1:nrow)*adinv(1:nrow) !!$ call psb_halo(omf,desc_a,info) !!$ call acsc%free() !!$ !!$ !!$ call atmp%mv_to(acsr1) !!$ !!$ do i=1,acsr1%get_nrows() !!$ do j=acsr1%irp(i),acsr1%irp(i+1)-1 !!$ if (acsr1%ja(j) == i) then !!$ acsr1%val(j) = sone - acsr1%val(j)*omf(acsr1%ja(j)) !!$ else !!$ acsr1%val(j) = - acsr1%val(j)*omf(acsr1%ja(j)) !!$ end if !!$ end do !!$ end do !!$ call atmp%mv_from(acsr1) !!$ !!$ call rtilde%mv_to(tmpcoo) !!$ nzl = tmpcoo%get_nzeros() !!$ i=0 !!$ do k=1, nzl !!$ if ((naggrm1 < tmpcoo%ia(k)) .and. (tmpcoo%ia(k) <= naggrp1)) then !!$ i = i+1 !!$ tmpcoo%val(i) = tmpcoo%val(k) !!$ tmpcoo%ia(i) = tmpcoo%ia(k) !!$ tmpcoo%ja(i) = tmpcoo%ja(k) !!$ end if !!$ end do !!$ call tmpcoo%set_nzeros(i) !!$ call rtilde%mv_from(tmpcoo) !!$ call rtilde%cscnv(info,type='csr') !!$ !!$ call psb_spspmm(rtilde,atmp,op_restr,info) !!$ !!$ ! !!$ ! Now we have to gather the halo of op_prol, and add it to itself !!$ ! to multiply it by A, !!$ ! !!$ call op_prol%clone(tmp_prol,info) !!$ if (info == psb_success_) call psb_sphalo(tmp_prol,desc_a,am4,info,& !!$ & colcnv=.false.,rowscale=.true.) !!$ if (info == psb_success_) call psb_rwextd(ncol,tmp_prol,info,b=am4) !!$ if (info == psb_success_) call am4%free() !!$ !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,a_err='Halo of op_prol') !!$ goto 9999 !!$ end if !!$ !!$ ! !!$ ! Now we have to fix this. The only rows of B that are correct !!$ ! are those corresponding to "local" aggregates, i.e. indices in ilaggr(:) !!$ ! !!$ call op_restr%mv_to(tmpcoo) !!$ !!$ nzl = tmpcoo%get_nzeros() !!$ i=0 !!$ do k=1, nzl !!$ if ((naggrm1 < tmpcoo%ia(k)) .and. (tmpcoo%ia(k) <= naggrp1)) then !!$ i = i+1 !!$ tmpcoo%val(i) = tmpcoo%val(k) !!$ tmpcoo%ia(i) = tmpcoo%ia(k) !!$ tmpcoo%ja(i) = tmpcoo%ja(k) !!$ end if !!$ end do !!$ call tmpcoo%set_nzeros(i) !!$ call op_restr%mv_from(tmpcoo) !!$ call op_restr%cscnv(info,type='csr') !!$ !!$ !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'starting sphalo/ rwxtd' !!$ !!$ call psb_spspmm(la,tmp_prol,am3,info) !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done SPSPMM 2' !!$ !!$ call psb_sphalo(am3,desc_a,am4,info,& !!$ & colcnv=.false.,rowscale=.true.) !!$ if (info == psb_success_) call psb_rwextd(ncol,am3,info,b=am4) !!$ if (info == psb_success_) call am4%free() !!$ !!$ if(info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,& !!$ & a_err='Extend am3') !!$ goto 9999 !!$ end if !!$ if (debug_level >= psb_debug_outer_) & !!$ & write(debug_unit,*) me,' ',trim(name),& !!$ & 'Done sphalo/ rwxtd' !!$ !!$ call psb_spspmm(op_restr,am3,ac,info) !!$ if (info == psb_success_) call am3%free() !!$ if (info == psb_success_) call ac%cscnv(info,type='coo',dupl=psb_dupl_add_) !!$ !!$ if (info /= psb_success_) then !!$ call psb_errpush(psb_err_internal_error_,name,& !!$ &a_err='Build ac = op_restr x am3') !!$ goto 9999 !!$ end if if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),& & 'Done smooth_aggregate ' call psb_erractionrestore(err_act) return 9999 continue call psb_errpush(info,name) call psb_error_handler(err_act) return contains subroutine csc_mat_col_prod(a,b,v,info) implicit none type(psb_ls_csc_sparse_mat), intent(in) :: a, b real(psb_spk_), intent(out) :: v(:) integer(psb_ipk_), intent(out) :: info integer(psb_lpk_) :: i,j,k, nr, nc,iap,nra,ibp,nrb info = psb_success_ nc = a%get_ncols() if (nc /= b%get_ncols()) then write(0,*) 'Matrices A and B should have same columns' info = -1 return end if do j=1, nc iap = a%icp(j) nra = a%icp(j+1)-iap ibp = b%icp(j) nrb = b%icp(j+1)-ibp v(j) = sparse_srtd_dot(nra,a%ia(iap:iap+nra-1),a%val(iap:iap+nra-1),& & nrb,b%ia(ibp:ibp+nrb-1),b%val(ibp:ibp+nrb-1)) end do end subroutine csc_mat_col_prod subroutine csr_mat_row_prod(a,b,v,info) implicit none type(psb_ls_csr_sparse_mat), intent(in) :: a, b real(psb_spk_), intent(out) :: v(:) integer(psb_ipk_), intent(out) :: info integer(psb_lpk_) :: i,j,k, nr, nc,iap,nca,ibp,ncb info = psb_success_ nr = a%get_nrows() if (nr /= b%get_nrows()) then write(0,*) 'Matrices A and B should have same rows' info = -1 return end if do j=1, nr iap = a%irp(j) nca = a%irp(j+1)-iap ibp = b%irp(j) ncb = b%irp(j+1)-ibp v(j) = sparse_srtd_dot(nca,a%ja(iap:iap+nca-1),a%val(iap:iap+nca-1),& & ncb,b%ja(ibp:ibp+ncb-1),b%val(ibp:ibp+ncb-1)) end do end subroutine csr_mat_row_prod function sparse_srtd_dot(nv1,iv1,v1,nv2,iv2,v2) result(dot) implicit none integer(psb_lpk_), intent(in) :: nv1,nv2 integer(psb_lpk_), intent(in) :: iv1(:), iv2(:) real(psb_spk_), intent(in) :: v1(:),v2(:) real(psb_spk_) :: dot integer(psb_lpk_) :: i,j,k, ip1, ip2 dot = szero ip1 = 1 ip2 = 1 do if (ip1 > nv1) exit if (ip2 > nv2) exit if (iv1(ip1) == iv2(ip2)) then dot = dot + (v1(ip1))*v2(ip2) ip1 = ip1 + 1 ip2 = ip2 + 1 else if (iv1(ip1) < iv2(ip2)) then ip1 = ip1 + 1 else ip2 = ip2 + 1 end if end do end function sparse_srtd_dot subroutine local_dump(me,mat,name,header) type(psb_lsspmat_type), intent(in) :: mat integer(psb_ipk_), intent(in) :: me character(len=*), intent(in) :: name character(len=*), intent(in) :: header character(len=80) :: filename write(filename,'(a,a,i0,a,i0,a)') trim(name),'.p',me open(20+me,file=filename) call mat%print(20+me,head=trim(header)) close(20+me) end subroutine local_dump end subroutine amg_saggrmat_minnrg_bld