!!$ !!$ !!$ MLD2P4 version 1.0 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 2.2) !!$ !!$ (C) Copyright 2008 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari University of Rome Tor Vergata !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_sexample_ml.f90 ! ! This sample program solves a linear system obtained by discretizing a ! PDE with Dirichlet BCs. The solver is BiCGStab coupled with one of the ! following multi-level preconditioner, as explained in Section 6.1 of ! the MLD2P4 User's and Reference Guide: ! - choice = 1, default multi-level Schwarz preconditioner (Sec. 6.1, Fig. 2) ! - choice = 2, hybrid three-level Schwarz preconditioner (Sec. 6.1, Fig. 3) ! - choice = 3, additive three-level Schwarz preconditioner (Sec. 6.1, Fig. 4) ! ! The PDE is a general second order equation in 3d ! ! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u) ! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0 ! dxdx dydy dzdz dx dy dz ! ! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1. ! ! Example taken from: ! C.T.Kelley ! Iterative Methods for Linear and Nonlinear Equations ! SIAM 1995 ! ! In this sample program the index space of the discretized ! computational domain is first numbered sequentially in a standard way, ! then the corresponding vector is distributed according to a BLOCK ! data distribution. ! ! Boundary conditions are set in a very simple way, by adding ! equations of the form ! ! u(x,y) = exp(-x^2-y^2-z^2) ! ! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation. ! program mld_sexample_ml use psb_base_mod use mld_prec_mod use psb_krylov_mod use psb_util_mod use data_input implicit none ! input parameters ! sparse matrices type(psb_sspmat_type) :: A ! sparse matrices descriptor type(psb_desc_type):: desc_A ! preconditioner type(mld_sprec_type) :: P ! right-hand side, solution and residual vectors real(psb_spk_), allocatable , save :: b(:), x(:), r(:) ! solver and preconditioner parameters real(psb_spk_) :: tol, err integer :: itmax, iter, istop integer :: nlev ! parallel environment parameters integer :: ictxt, iam, np ! other variables integer :: choice integer :: i,info,j,amatsize,descsize,precsize integer :: idim, ierr, ircode real(psb_dpk_) :: t1, t2, tprec real(psb_spk_) :: resmx, resmxp character(len=20) :: name ! initialize the parallel environment call psb_init(ictxt) call psb_info(ictxt,iam,np) if (iam < 0) then ! This should not happen, but just in case call psb_exit(ictxt) stop endif name='mld_sexample_ml' if(psb_get_errstatus() /= 0) goto 9999 info=0 call psb_set_errverbosity(2) ! get parameters call get_parms(ictxt,choice,idim,itmax,tol) ! allocate and fill in the coefficient matrix, rhs and initial guess call psb_barrier(ictxt) t1 = psb_wtime() call create_matrix(idim,A,b,x,desc_A,part_block,ictxt,info) t2 = psb_wtime() - t1 if(info /= 0) then info=4010 call psb_errpush(info,name) goto 9999 end if call psb_amx(ictxt,t2) if (iam == psb_root_) write(*,'("Overall matrix creation time : ",es10.4)')t2 if (iam == psb_root_) write(*,'(" ")') select case(choice) case(1) ! initialize the default multi-level preconditioner, i.e. hybrid ! Schwarz, using RAS (with overlap 1 and ILU(0) on the blocks) ! as post-smoother and 4 block-Jacobi sweeps (with UMFPACK LU ! on the blocks) as distributed coarse-level solver call mld_precinit(P,'ML',info) case(2) ! set a three-level hybrid Schwarz preconditioner, which uses ! block Jacobi (with ILU(0) on the blocks) as post-smoother, ! a coarsest matrix replicated on the processors, and the ! LU factorization from UMFPACK as coarse-level solver call mld_precinit(P,'ML',info,nlev=3) call mld_precset(P,mld_smoother_type_,'BJAC',info) call mld_precset(P,mld_coarse_mat_,'REPL',info) call mld_precset(P,mld_coarse_solve_,'UMF',info) case(3) ! set a three-level additive Schwarz preconditioner, which uses ! RAS (with overlap 1 and ILU(0) on the blocks) as pre- and ! post-smoother, and 5 block-Jacobi sweeps (with UMFPACK LU ! on the blocks) as distributed coarsest-level solver call mld_precinit(P,'ML',info,nlev=3) call mld_precset(P,mld_ml_type_,'ADD',info) call mld_precset(P,mld_smoother_pos_,'TWOSIDE',info) call mld_precset(P,mld_coarse_sweeps_,5,info) end select ! build the preconditioner call psb_barrier(ictxt) t1 = psb_wtime() call mld_precbld(A,desc_A,P,info) tprec = psb_wtime()-t1 call psb_amx(ictxt, tprec) if (info /= 0) then call psb_errpush(4010,name,a_err='psb_precbld') goto 9999 end if ! set the solver parameters and the initial guess call psb_geall(x,desc_A,info) x(:) =0.0 call psb_geasb(x,desc_A,info) ! solve Ax=b with preconditioned BiCGSTAB call psb_barrier(ictxt) t1 = psb_wtime() call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info,itmax,iter,err,itrace=1,istop=2) t2 = psb_wtime() - t1 call psb_amx(ictxt,t2) call psb_geall(r,desc_A,info) r(:) =0.0 call psb_geasb(r,desc_A,info) call psb_geaxpby(sone,b,szero,r,desc_A,info) call psb_spmm(-sone,A,x,sone,r,desc_A,info) call psb_genrm2s(resmx,r,desc_A,info) call psb_geamaxs(resmxp,r,desc_A,info) amatsize = psb_sizeof(A) descsize = psb_sizeof(desc_A) precsize = mld_sizeof(P) call psb_sum(ictxt,amatsize) call psb_sum(ictxt,descsize) call psb_sum(ictxt,precsize) call mld_precdescr(P,info) if (iam==psb_root_) then write(*,'(" ")') write(*,'("Matrix from PDE example")') write(*,'("Computed solution on ",i8," processors")')np write(*,'("Iterations to convergence : ",i6)')iter write(*,'("Error estimate on exit : ",es10.4)')err write(*,'("Time to build prec. : ",es10.4)')tprec write(*,'("Time to solve system : ",es10.4)')t2 write(*,'("Time per iteration : ",es10.4)')t2/(iter) write(*,'("Total time : ",es10.4)')t2+tprec write(*,'("Residual 2-norm : ",es10.4)')resmx write(*,'("Residual inf-norm : ",es10.4)')resmxp write(*,'("Total memory occupation for A : ",i10)')amatsize write(*,'("Total memory occupation for DESC_A : ",i10)')descsize write(*,'("Total memory occupation for PREC : ",i10)')precsize end if call psb_gefree(b, desc_A,info) call psb_gefree(x, desc_A,info) call psb_spfree(A, desc_A,info) call mld_precfree(P,info) call psb_cdfree(desc_A,info) 9999 continue if(info /= 0) then call psb_error(ictxt) end if call psb_exit(ictxt) stop contains ! ! get parameters from standard input ! subroutine get_parms(ictxt,choice,idim,itmax,tol) use psb_base_mod implicit none integer :: choice, idim, ictxt, itmax real(psb_spk_) :: tol integer :: iam, np call psb_info(ictxt,iam,np) if (iam==psb_root_) then ! read input parameters call read_data(choice,5) call read_data(idim,5) call read_data(itmax,5) call read_data(tol,5) end if call psb_bcast(ictxt,choice) call psb_bcast(ictxt,idim) call psb_bcast(ictxt,itmax) call psb_bcast(ictxt,tol) end subroutine get_parms ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs ! subroutine create_matrix(idim,a,b,xv,desc_a,parts,ictxt,info) ! ! Discretize the partial diferential equation ! ! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u) ! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0 ! dxdx dydy dzdz dx dy dz ! ! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1. ! ! Boundary conditions are set in a very simple way, by adding ! equations of the form ! ! u(x,y) = exp(-x^2-y^2-z^2) ! ! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation. ! use psb_base_mod implicit none integer :: idim integer, parameter :: nbmax=10 real(psb_spk_), allocatable :: b(:),xv(:) type(psb_desc_type) :: desc_a integer :: ictxt, info interface ! .....user passed subroutine..... subroutine parts(global_indx,n,np,pv,nv) implicit none integer, intent(in) :: global_indx, n, np integer, intent(out) :: nv integer, intent(out) :: pv(*) end subroutine parts end interface ! local variables type(psb_sspmat_type) :: a real(psb_spk_) :: zt(nbmax),glob_x,glob_y,glob_z integer :: m,n,nnz,glob_row integer :: x,y,z,ia,indx_owner integer :: np, iam integer :: element integer :: nv, inv integer, allocatable :: irow(:),icol(:) real(psb_spk_), allocatable :: val(:) integer, allocatable :: prv(:) ! deltah dimension of each grid cell ! deltat discretization time real(psb_spk_) :: deltah real(psb_spk_),parameter :: rhs=0.e0,one=1.e0,zero=0.e0 real(psb_dpk_) :: t1, t2, t3, tins, tasb real(psb_spk_) :: a1, a2, a3, a4, b1, b2, b3 external :: a1, a2, a3, a4, b1, b2, b3 integer :: err_act character(len=20) :: name info = 0 name = 'create_matrix' call psb_erractionsave(err_act) call psb_info(ictxt, iam, np) deltah = 1.e0/(idim-1) ! initialize array descriptor and sparse matrix storage; provide an ! estimate of the number of non zeroes m = idim*idim*idim n = m nnz = ((n*9)/(np)) if(iam == psb_root_) write(0,'("Generating Matrix (size=",i0x,")...")')n call psb_cdall(ictxt,desc_a,info,mg=n,parts=parts) call psb_spall(a,desc_a,info,nnz=nnz) ! define rhs from boundary conditions; also build initial guess call psb_geall(b,desc_a,info) call psb_geall(xv,desc_a,info) if(info /= 0) then info=4010 call psb_errpush(info,name) goto 9999 end if ! we build an auxiliary matrix consisting of one row at a ! time; just a small matrix. might be extended to generate ! a bunch of rows per call. ! allocate(val(20*nbmax),irow(20*nbmax),& &icol(20*nbmax),prv(np),stat=info) if (info /= 0 ) then info=4000 call psb_errpush(info,name) goto 9999 endif tins = 0.e0 call psb_barrier(ictxt) t1 = psb_wtime() ! loop over rows belonging to current process in a block ! distribution. ! icol(1)=1 do glob_row = 1, n call parts(glob_row,n,np,prv,nv) do inv = 1, nv indx_owner = prv(inv) if (indx_owner == iam) then ! local matrix pointer element=1 ! compute gridpoint coordinates if (mod(glob_row,(idim*idim)) == 0) then x = glob_row/(idim*idim) else x = glob_row/(idim*idim)+1 endif if (mod((glob_row-(x-1)*idim*idim),idim) == 0) then y = (glob_row-(x-1)*idim*idim)/idim else y = (glob_row-(x-1)*idim*idim)/idim+1 endif z = glob_row-(x-1)*idim*idim-(y-1)*idim ! glob_x, glob_y, glob_x coordinates glob_x=x*deltah glob_y=y*deltah glob_z=z*deltah ! check on boundary points zt(1) = 0.e0 ! internal point: build discretization ! ! term depending on (x-1,y,z) ! if (x==1) then val(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*(-val(element)) else val(element)=-b1(glob_x,glob_y,glob_z)& & -a1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-2)*idim*idim+(y-1)*idim+(z) element=element+1 endif ! term depending on (x,y-1,z) if (y==1) then val(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b2(glob_x,glob_y,glob_z)& & -a2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y-2)*idim+(z) element=element+1 endif ! term depending on (x,y,z-1) if (z==1) then val(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b3(glob_x,glob_y,glob_z)& & -a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y-1)*idim+(z-1) element=element+1 endif ! term depending on (x,y,z) val(element)=2*b1(glob_x,glob_y,glob_z)& & +2*b2(glob_x,glob_y,glob_z)& & +2*b3(glob_x,glob_y,glob_z)& & +a1(glob_x,glob_y,glob_z)& & +a2(glob_x,glob_y,glob_z)& & +a3(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y-1)*idim+(z) element=element+1 ! term depending on (x,y,z+1) if (z==idim) then val(element)=-b1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b1(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y-1)*idim+(z+1) element=element+1 endif ! term depending on (x,y+1,z) if (y==idim) then val(element)=-b2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element)) else val(element)=-b2(glob_x,glob_y,glob_z) val(element) = val(element)/(deltah*& & deltah) icol(element)=(x-1)*idim*idim+(y)*idim+(z) element=element+1 endif ! term depending on (x+1,y,z) if (x