%\section{Bibliography\label{sec:bib}} \begin{thebibliography}{99} \addcontentsline{toc}{section}{\refname} \markboth{\textsc{MLD2P4 User's and Reference Guide}} {\textsc{References}} %\let\refname\relax % %\bibitem{PARA04FOREST} %G.~Bella, S.~Filippone, A.~De Maio, A., Testa, M.: %A Simulation Model for Forest Fires. %In: Dongarra, J., Madsen, K., Wasniewski, J. (eds.): %Proceedings of PARA~04 Workshop on State of the Art %in Scientific Computing. Lecture Notes in Computer Science, 3732. Berlin: %Springer, 2005 % \bibitem{BREZINA_VANEK} M.~Brezina, P.~Van{\v e}k, {\em A Black-Box Iterative Solver Based on a Two-Level Schwarz Method}, Computing, 63, 1999, 233--263. % \bibitem{para_04} A.~Buttari, P.~D'Ambra, D.~di Serafino, S.~Filippone, {\em Extending PSBLAS to Build Parallel Schwarz Preconditioners}, in , J.~Dongarra, K.~Madsen, J.~Wasniewski, editors, Proceedings of PARA~04 Workshop on State of the Art in Scientific Computing, Lecture Notes in Computer Science, Springer, 2005, 593--602. % \bibitem{aaecc_07} A.~Buttari, P.~D'Ambra, D.~di~Serafino, S.~Filippone, {\em 2LEV-D2P4: a package of high-performance preconditioners for scientific and engineering applications}, Applicable Algebra in Engineering, Communications and Computing, 18, 3, 2007, 223--239. %Published online: 13 February 2007, {\tt http://dx.doi.org/10.1007/s00200-007-0035-z} % \bibitem{apnum_07} P.~D'Ambra, S.~Filippone, D.~di~Serafino, {\em On the Development of PSBLAS-based Parallel Two-level Schwarz Preconditioners}, Applied Numerical Mathematics, Elsevier Science, 57, 11-12, 2007, 1181-1196. %published online 3 February 2007, {\tt % http://dx.doi.org/10.1016/j.apnum.2007.01.006} %% \bibitem{DOUGLAS} %% R.E.~Bank and C.C.~Douglas, %% {\em SMMP: Sparse Matrix Multiplication Package}, %% Advances in Computational Mathematics, 1993, 1, 127-137. %% (See also {\tt http://www.mgnet.org/~douglas/ccd-codes.html}) % % %% \bibitem{CAI_SAAD} %% X.~C.~Cai and Y.~Saad, %% {\em Overlapping Domain Decomposition Algorithms for General Sparse Matrices}, %% Numerical Linear Algebra with Applications, 3(3), pp.~221--237, 1996. % \bibitem{CAI_SARKIS} X.~C.~Cai, M.~Sarkis, {\em A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems}, SIAM Journal on Scientific Computing, 21, 2, 1999, 792--797. % \bibitem{Cai_Widlund_92} X.~C.~Cai, O.~B.~Widlund, {\em Domain Decomposition Algorithms for Indefinite Elliptic Problems}, SIAM Journal on Scientific and Statistical Computing, 13, 1, 1992, 243--258. % \bibitem{dd1_94} T.~Chan and T.~Mathew, {\em Domain Decomposition Algorithms}, in A.~Iserles, editor, Acta Numerica 1994, 61--143. Cambridge University Press. % \bibitem{MLD2P4_TOMS} P.~D'Ambra, D.~di~Serafino, S.~Filippone, \emph{MLD2P4: a Package of Parallel Multilevel Algebraic Domain Decomposition Preconditioners in Fortran 95}, ACM Trans. Math. Softw., 37(3), 2010. % \bibitem{UMFPACK} T.A.~Davis, {\em Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal Method with a Column Pre-ordering Strategy}, ACM Transactions on Mathematical Software, 30, 2004, 196--199. (See also {\tt http://www.cise.ufl.edu/~davis/}) % \bibitem{MUMPS} P.R.~Amestoy, C.~Ashcraft, O.~Boiteau, A.~Buttari, J.~L'Excellent, C.~Weisbecker {\em Improving multifrontal methods by means of block low-rank representations}, SIAM SISC, volume 37, number 3, pages A1452-A1474. (See also {\tt http://mumps.enseeiht.fr}) % \bibitem{SUPERLU} J.W.~Demmel, S.C.~Eisenstat, J.R.~Gilbert, X.S.~Li and J.W.H.~Liu, A supernodal approach to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications, 20, 3, 1999, 720--755. % \bibitem{blas3} J.~J.~Dongarra, J.~Du Croz, I.~S.~Duff, S.~Hammarling, \emph{A set of Level 3 Basic Linear Algebra Subprograms}, ACM Transactions on Mathematical Software, 16, 1990, 1--17. % \bibitem{blas2} J.~J.~Dongarra, J.~Du Croz, S.~Hammarling, R.~J.~Hanson, \emph{An extended set of FORTRAN Basic Linear Algebra Subprograms}, ACM Transactions on Mathematical Software, 14, 1988, 1--17. % \bibitem{BLACS} J.~J.~Dongarra and R.~C.~Whaley, {\em A User's Guide to the BLACS v.~1.1}, Lapack Working Note 94, Tech.\ Rep.\ UT-CS-95-281, University of Tennessee, March 1995 (updated May 1997). % %\bibitem{sblas_97} %I.~Duff, M.~Marrone, G.~Radicati and C.~Vittoli, %{\em Level 3 Basic Linear Algebra Subprograms for Sparse Matrices: %a User Level Interface}, %ACM Transactions on Mathematical Software, 23(3), pp.~379--401, 1997. % %\bibitem{sblas_02} %I.~Duff, M.~Heroux and R.~Pozo, %{\em An Overview of the Sparse Basic Linear %Algebra Subprograms: the New Standard from the BLAS Technical Forum}, %ACM Transactions on Mathematical Software, 28(2), pp.~239--267, 2002. % \bibitem{EFSTATHIOU} E.~Efstathiou, J.~G.~Gander, {\em Why Restricted Additive Schwarz Converges Faster than Additive Schwarz}, BIT Numerical Mathematics, 43, 2003, 945--959. % \bibitem{PSBLASGUIDE} S.~Filippone, A.~Buttari, {\em PSBLAS-3.0 User's Guide. A Reference Guide for the Parallel Sparse BLAS Library}, 2012, available from \texttt{http://www.ce.uniroma2.it/psblas/}. \bibitem{PSBLAS3} Salvatore Filippone and Alfredo Buttari. {\em {Object-Oriented Techniques for Sparse Matrix Computations in Fortran 2003}.} ACM Trans. on Math Software, 38(4), 2012. % \bibitem{psblas_00} S.~Filippone, M.~Colajanni, {\em PSBLAS: A Library for Parallel Linear Algebra Computation on Sparse Matrices}, ACM Transactions on Mathematical Software, 26, 4, 2000, 527--550. % \bibitem{MPI2} W.~Gropp, S.~Huss-Lederman, A.~Lumsdaine, E.~Lusk, B.~Nitzberg, W.~Saphir, M.~Snir, {\em MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions}, MIT Press, 1998. % \bibitem{blas1} C.~L.~Lawson, R.~J.~Hanson, D.~Kincaid, F.~T.~Krogh, \emph{Basic Linear Algebra Subprograms for FORTRAN usage}, ACM Transactions on Mathematical Software, 5, 1979, 308--323. % \bibitem{SUPERLUDIST} X.~S.~Li, J.~W.~Demmel, {\em SuperLU\_DIST: A Scalable Distributed-memory Sparse Direct Solver for Unsymmetric Linear Systems}, ACM Transactions on Mathematical Software, 29, 2, 2003, 110--140. % %\bibitem{KIVA3PSBLAS} %S.~Filippone, P.~D'Ambra, M.~Colajanni, %{\em Using a Parallel Library of Sparse Linear Algebra in a Fluid Dynamics %Applications Code on Linux Clusters}, %in G.~Joubert, A.~Murli, F.~Peters, M.~Vanneschi, editors, %Parallel Computing - Advances \& Current Issues, %pp.~441--448, Imperial College Press, 2002. % %\bibitem{METIS} %Karypis, G. and Kumar, V., %{\em {METIS}: Unstructured Graph Partitioning and Sparse Matrix % Ordering System}. %Minneapolis, MN 55455: University of Minnesota, Department of % Computer Science, 1995. %Internet Address: {\verb|http://www.cs.umn.edu/~karypis|}. %\bibitem{BLAS1} %Lawson, C., Hanson, R., Kincaid, D. and Krogh, F., % Basic {L}inear {A}lgebra {S}ubprograms for {F}ortran usage, %{ACM Trans. Math. Softw.} vol.~{5}, 38--329, 1979. % %\bibitem{machiels} %{Machiels, L. and Deville, M.} %{\em Fortran 90: An entry to object-oriented programming for the solution % of partial differential equations.} %{ACM Trans. Math. Softw.} vol.~{23}, 32--49. %\bibitem{metcalf} %{Metcalf, M., Reid, J. and Cohen, M.} %{\em Fortran 95/2003 explained.} %{Oxford University Press}, 2004. % \bibitem{Saad_book} Y.~Saad, \emph{Iterative methods for sparse linear systems}, 2nd edition, SIAM, 2003 \bibitem{dd2_96} B.~Smith, P.~Bjorstad, W.~Gropp, {\em Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations}, Cambridge University Press, 1996. % \bibitem{MPI1} M.~Snir, S.~Otto, S.~Huss-Lederman, D.~Walker, J.~Dongarra, {\em MPI: The Complete Reference. Volume 1 - The MPI Core}, second edition, MIT Press, 1998. %% \bibitem{StubenGMD69_99} K.~St\"{u}ben, {\em Algebraic Multigrid (AMG): an Introduction with Applications}, in A.~Sch\"{u}ller, U.~Trottenberg, C.~Oosterlee, editors, Multigrid, Academic Press, 2000. % \bibitem{TUMINARO_TONG} R.~S.~Tuminaro, C.~Tong, {\em Parallel Smoothed Aggregation Multigrid: Aggregation Strategies on Massively Parallel Machines}, in J. Donnelley, editor, Proceedings of SuperComputing 2000, Dallas, 2000. % \bibitem{VANEK_MANDEL_BREZINA} P.~Van{\v e}k, J.~Mandel and M.~Brezina, {\em Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems}, Computing, 56, 1996, 179-196. % \end{thebibliography}