! ! ! MLD2P4 version 2.1 ! MultiLevel Domain Decomposition Parallel Preconditioners Package ! based on PSBLAS (Parallel Sparse BLAS version 3.5) ! ! (C) Copyright 2008-2018 ! ! Salvatore Filippone ! Pasqua D'Ambra ! Daniela di Serafino ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions, and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! 3. The name of the MLD2P4 group or the names of its contributors may ! not be used to endorse or promote products derived from this ! software without specific written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS ! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ! POSSIBILITY OF SUCH DAMAGE. ! module mld_d_pde_mod use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,& & psb_dspmat_type, psb_d_vect_type, dzero,& & psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type interface function d_func_3d(x,y,z) result(val) import :: psb_dpk_ real(psb_dpk_), intent(in) :: x,y,z real(psb_dpk_) :: val end function d_func_3d end interface interface mld_gen_pde3d module procedure mld_d_gen_pde3d end interface mld_gen_pde3d contains function d_null_func_3d(x,y,z) result(val) real(psb_dpk_), intent(in) :: x,y,z real(psb_dpk_) :: val val = dzero end function d_null_func_3d ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs. ! subroutine mld_d_gen_pde3d(ictxt,idim,a,bv,xv,desc_a,afmt,& & a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,nrl,iv) use psb_base_mod ! ! Discretizes the partial differential equation ! ! a1 dd(u) a2 dd(u) a3 dd(u) b1 d(u) b2 d(u) b3 d(u) ! - ------ - ------ - ------ + ----- + ------ + ------ + c u = f ! dxdx dydy dzdz dx dy dz ! ! with Dirichlet boundary conditions ! u = g ! ! on the unit cube 0<=x,y,z<=1. ! ! ! Note that if b1=b2=b3=c=0., the PDE is the Laplace equation. ! implicit none procedure(d_func_3d) :: b1,b2,b3,c,a1,a2,a3,g integer(psb_ipk_) :: idim type(psb_dspmat_type) :: a type(psb_d_vect_type) :: xv,bv type(psb_desc_type) :: desc_a integer(psb_ipk_) :: ictxt, info character(len=*) :: afmt procedure(d_func_3d), optional :: f class(psb_d_base_sparse_mat), optional :: amold class(psb_d_base_vect_type), optional :: vmold class(psb_i_base_vect_type), optional :: imold integer(psb_ipk_), optional :: nrl,iv(:) ! Local variables. integer(psb_ipk_), parameter :: nb=20 type(psb_d_csc_sparse_mat) :: acsc type(psb_d_coo_sparse_mat) :: acoo type(psb_d_csr_sparse_mat) :: acsr real(psb_dpk_) :: zt(nb),x,y,z integer(psb_ipk_) :: m,n,nnz,glob_row,nlr,i,ii,ib,k integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner integer(psb_ipk_) :: np, iam, nr, nt integer(psb_ipk_) :: icoeff integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:) real(psb_dpk_), allocatable :: val(:) ! deltah dimension of each grid cell ! deltat discretization time real(psb_dpk_) :: deltah, sqdeltah, deltah2 real(psb_dpk_), parameter :: rhs=dzero,one=done,zero=dzero real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb integer(psb_ipk_) :: err_act procedure(d_func_3d), pointer :: f_ character(len=20) :: name, ch_err,tmpfmt info = psb_success_ name = 'create_matrix' call psb_erractionsave(err_act) call psb_info(ictxt, iam, np) if (present(f)) then f_ => f else f_ => d_null_func_3d end if deltah = 1.d0/(idim+2) sqdeltah = deltah*deltah deltah2 = 2.d0* deltah ! initialize array descriptor and sparse matrix storage. provide an ! estimate of the number of non zeroes m = idim*idim*idim n = m nnz = ((n*9)/(np)) if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n if (.not.present(iv)) then if (present(nrl)) then nr = nrl else ! ! Using a simple BLOCK distribution. ! nt = (m+np-1)/np nr = max(0,min(nt,m-(iam*nt))) end if nt = nr call psb_sum(ictxt,nt) if (nt /= m) then write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m info = -1 call psb_barrier(ictxt) call psb_abort(ictxt) return end if else if (size(iv) /= m) then write(psb_err_unit,*) iam, 'Initialization error IV',size(iv),m info = -1 call psb_barrier(ictxt) call psb_abort(ictxt) return end if end if call psb_barrier(ictxt) t0 = psb_wtime() if (present(iv)) then call psb_cdall(ictxt,desc_a,info,vg=iv) else call psb_cdall(ictxt,desc_a,info,nl=nr) end if if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz) ! define rhs from boundary conditions; also build initial guess if (info == psb_success_) call psb_geall(xv,desc_a,info) if (info == psb_success_) call psb_geall(bv,desc_a,info) call psb_barrier(ictxt) talc = psb_wtime()-t0 if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='allocation rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! we build an auxiliary matrix consisting of one row at a ! time; just a small matrix. might be extended to generate ! a bunch of rows per call. ! allocate(val(20*nb),irow(20*nb),& &icol(20*nb),stat=info) if (info /= psb_success_ ) then info=psb_err_alloc_dealloc_ call psb_errpush(info,name) goto 9999 endif myidx = desc_a%get_global_indices() nlr = size(myidx) ! loop over rows belonging to current process in a block ! distribution. call psb_barrier(ictxt) t1 = psb_wtime() do ii=1, nlr,nb ib = min(nb,nlr-ii+1) icoeff = 1 do k=1,ib i=ii+k-1 ! local matrix pointer glob_row=myidx(i) ! compute gridpoint coordinates if (mod(glob_row,(idim*idim)) == 0) then ix = glob_row/(idim*idim) else ix = glob_row/(idim*idim)+1 endif if (mod((glob_row-(ix-1)*idim*idim),idim) == 0) then iy = (glob_row-(ix-1)*idim*idim)/idim else iy = (glob_row-(ix-1)*idim*idim)/idim+1 endif iz = glob_row-(ix-1)*idim*idim-(iy-1)*idim ! x, y, x coordinates x = (ix-1)*deltah y = (iy-1)*deltah z = (iz-1)*deltah zt(k) = f_(x,y,z) ! internal point: build discretization ! ! term depending on (x-1,y,z) ! val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2 if (ix == 1) then zt(k) = g(dzero,y,z)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix-2)*idim*idim+(iy-1)*idim+(iz) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y-1,z) val(icoeff) = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2 if (iy == 1) then zt(k) = g(x,dzero,z)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix-1)*idim*idim+(iy-2)*idim+(iz) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y,z-1) val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2 if (iz == 1) then zt(k) = g(x,y,dzero)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz-1) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y,z) val(icoeff)=2.d0*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah & & + c(x,y,z) icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz) irow(icoeff) = glob_row icoeff = icoeff+1 ! term depending on (x,y,z+1) val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2 if (iz == idim) then zt(k) = g(x,y,done)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix-1)*idim*idim+(iy-1)*idim+(iz+1) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y+1,z) val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2 if (iy == idim) then zt(k) = g(x,done,z)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix-1)*idim*idim+(iy)*idim+(iz) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x+1,y,z) val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2 if (ix==idim) then zt(k) = g(done,y,z)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix)*idim*idim+(iy-1)*idim+(iz) irow(icoeff) = glob_row icoeff = icoeff+1 endif end do call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info) if(info /= psb_success_) exit call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info) if(info /= psb_success_) exit zt(:)=0.d0 call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info) if(info /= psb_success_) exit end do tgen = psb_wtime()-t1 if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='insert rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if deallocate(val,irow,icol) call psb_barrier(ictxt) t1 = psb_wtime() call psb_cdasb(desc_a,info,mold=imold) tcdasb = psb_wtime()-t1 call psb_barrier(ictxt) t1 = psb_wtime() if (info == psb_success_) then if (present(amold)) then call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold) else call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt) end if end if call psb_barrier(ictxt) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold) if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if tasb = psb_wtime()-t1 call psb_barrier(ictxt) ttot = psb_wtime() - t0 call psb_amx(ictxt,talc) call psb_amx(ictxt,tgen) call psb_amx(ictxt,tasb) call psb_amx(ictxt,ttot) if(iam == psb_root_) then tmpfmt = a%get_fmt() write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')& & tmpfmt write(psb_out_unit,'("-allocation time : ",es12.5)') talc write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb write(psb_out_unit,'("-total time : ",es12.5)') ttot end if call psb_erractionrestore(err_act) return 9999 call psb_error_handler(ictxt,err_act) return end subroutine mld_d_gen_pde3d ! ! functions parametrizing the differential equation ! function b1(x,y,z) use psb_base_mod, only : psb_dpk_, done real(psb_dpk_) :: b1 real(psb_dpk_), intent(in) :: x,y,z b1=dzero end function b1 function b2(x,y,z) use psb_base_mod, only : psb_dpk_, done real(psb_dpk_) :: b2 real(psb_dpk_), intent(in) :: x,y,z b2=dzero end function b2 function b3(x,y,z) use psb_base_mod, only : psb_dpk_, done real(psb_dpk_) :: b3 real(psb_dpk_), intent(in) :: x,y,z b3=dzero end function b3 function c(x,y,z) use psb_base_mod, only : psb_dpk_, done real(psb_dpk_) :: c real(psb_dpk_), intent(in) :: x,y,z c=dzero end function c function a1(x,y,z) use psb_base_mod, only : psb_dpk_, done real(psb_dpk_) :: a1 real(psb_dpk_), intent(in) :: x,y,z a1=done end function a1 function a2(x,y,z) use psb_base_mod, only : psb_dpk_, done real(psb_dpk_) :: a2 real(psb_dpk_), intent(in) :: x,y,z a2=done end function a2 function a3(x,y,z) use psb_base_mod, only : psb_dpk_, done real(psb_dpk_) :: a3 real(psb_dpk_), intent(in) :: x,y,z a3=done end function a3 function g(x,y,z) use psb_base_mod, only : psb_dpk_, done, dzero real(psb_dpk_) :: g real(psb_dpk_), intent(in) :: x,y,z g = dzero if (x == done) then g = done else if (x == dzero) then g = exp(y**2-z**2) end if end function g end module mld_d_pde_mod