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Abstract

MLD2P4 (Multi-Level Domain Decomposition Parallel Preconditioners
Package based on PSBLAS) is a package of parallel algebraic multi-level precondi-
tioners. It implements various versions of one-level additive and of multi-level additive
and hybrid Schwarz algorithms. In the multi-level case, a purely algebraic approach is
applied to generate coarse-level corrections, so that no geometric background is needed
concerning the matrix to be preconditioned. The matrix is required to be square, real
or complex, with a symmetric sparsity pattern.

MLD2P4 has been designed to provide scalable and easy-to-use preconditioners in
the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms) com-
putational framework and can be used in conjuction with the Krylov solvers available
in this framework. MLD2P4 enables the user to easily specify different aspects of a
generic algebraic multilevel Schwarz preconditioner, thus allowing to search for the
“best” preconditioner for the problem at hand.

The package has been designed employing object-oriented techniques, using Fortran
95, with interfaces to additional third party libraries such as UMFPACK, SuperLU
and SuperLU Dist, that can be exploited in building multi-level preconditioners. The
parallel implementation is based on a Single Program Multiple Data (SPMD) paradigm
for distributed-memory architectures; the inter-process data communication is based on
MPI and is managed mainly through PSBLAS.

This guide provides a brief description of the functionalities and the user interface
of MLD2P4.
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1 General Overview

The Multi-Level Domain Decomposition Parallel Preconditioners Pack-
age based on PSBLAS (MLD2P4) provides multi-level Schwarz preconditioners [20],
to be used in the iterative solutions of sparse linear systems:

Ax = b, (1)

where A is a square, real or complex, sparse matrix with a symmetric sparsity pattern.
These preconditioners have the following general features:

• both additive and hybrid multilevel variants are implemented, i.e. variants that are
additive among the levels and inside each level, and variants that are multiplicative
among the levels and additive inside each level; the basic Additive Schwarz (AS)
preconditioners are obtained by considering only one level;

• a purely algebraic approach is used to generate a sequence of coarse-level cor-
rections to a basic AS preconditioner, without explicitly using any information
on the geometry of the original problem (e.g. the discretization of a PDE). The
smoothed aggregation technique is applied as algebraic coarsening strategy [1, 24].

The package is written in Fortran 95, following an object-oriented approach through
the exploitation of features such as abstract data type creation, functional overloading
and dynamic memory management. The parallel implementation is based on a Single
Program Multiple Data (SPMD) paradigm for distributed-memory architectures. Single
and double precision implementations of MLD2P4 are available for both the real and
the complex case, that can be used through a single interface.

MLD2P4 has been designed to implement scalable and easy-to-use multilevel precon-
ditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational frame-
work [15]. PSBLAS is a library originally developed to address the parallel implemen-
tation of iterative solvers for sparse linear system, by providing basic linear algebra
operators and data management facilities for distributed sparse matrices; it also in-
cludes parallel Krylov solvers, built on the top of the basic PSBLAS kernels. The pre-
conditioners available in MLD2P4 can be used with these Krylov solvers. The choice
of PSBLAS has been mainly motivated by the need of having a portable and efficient
software infrastructure implementing “de facto” standard parallel sparse linear algebra
kernels, to pursue goals such as performance, portability, modularity ed extensibility in
the development of the preconditioner package. On the other hand, the implementation
of MLD2P4 has led to some revisions and extentions of the PSBLAS kernels, leading
to the recent PSBLAS 2.0 version [14]. The inter-process comunication required by
MLD2P4 is encapsulated into the PSBLAS routines, except few cases where MPI [21]
is explicitly called. Therefore, MLD2P4 can be run on any parallel machine where
PSBLAS and MPI implementations are available.

MLD2P4 has a layered and modular software architecture where three main layers
can be identified. The lower layer consists of the PSBLAS kernels, the middle one
implements the construction and application phases of the preconditioners, and the
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upper one provides a uniform and easy-to-use interface to all the preconditioners. This
architecture allows for different levels of use of the package: few black-box routines
at the upper layer allow non-expert users to easily build any preconditioner available
in MLD2P4 and to apply it within a PSBLAS Krylov solver. On the other hand, the
routines of the middle and lower layer can be used and extended by expert users to build
new versions of multi-level Schwarz preconditioners. We provide here a description of
the upper-layer routines, but not of the medium-layer ones.

This guide is organized as follows. General information on the distribution of the
source code is reported in Section 2, while details on the configuration and installation of
the package are given in Section 3. A description of multi-level Schwarz preconditioners
based on smoothed aggregation is provided in Section 4, to help the users in choosing
among the different preconditioners implemented in MLD2P4. The basics for building
and applying the preconditioners with the Krylov solvers implemented in PSBLAS are
reported in Section 5, where the Fortran 95 codes of a few sample programs are also
shown. A reference guide for the upper-layer routines of MLD2P4, that are the user
interface, is provided in Section 6. The error handling mechanism used by the package
is briefly described in Section 7. The copyright terms concerning the distribution and
modification of MLD2P4 are reported in Appendix A.
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2 Code Distribution

MLD2P4 is available from the web site

http://www.mld2p4.it

where contact points for further information can be also found. To report bugs or ask
general usage questions, please, send an email to bugreport@mld2p4.it.

The software is available under a modified BSD license, as specified in Appendix A;
please note that some of the optional third party libraries may be licensed under a
different and more stringent license, most notably the GPL, and this should be taken
into account when treating derived works.
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3 Configuring and Building MLD2P4

To build MLD2P4 it is necessary to set up a Makefile with appropriate values for your
system; this is done by means of the configure script. The distribution also includes
the autoconf and automake sources employed to generate the script, but usually this is
not needed to build the software.

MLD2P4 is implemented almost entirely in Fortran 95, with some interfaces to
external libraries in C; the Fortran compiler must support the Fortran 95 standard plus
the extension TR15581, which enhances the usability of ALLOCATABLE variables. Most
modern Fortran compilers support this language level. In particular, this is supported
by the GNU Fortran compiler as of version 4.2.0; however we recommend to use the
latest available release (4.3.1 at the time of this writing). The software defines data
types and interfaces for real and complex data, in both single and double precision.

3.1 Prerequisites

The following base libraries are needed:

BLAS The Basic Linear Algebra subprograms [10, 10, 17]. Many vendors provide op-
timized versions; if no vendor version is available for a given platform, the ATLAS
software (http://math-atlas.sourceforge.net/) may be employed. The ref-
erence BLAS from Netlib (http://www.netlib.org/blas) are meant to define
the standard behaviour of the BLAS interface, so they are not optimized for any
particular plaftorm, and should only be used as a last resort. Note that BLAS
computation form a relatively small part of the MLD2P4/PSBLAS computations;
they are however critical when using preconditioners based on the UMFPACK or
SuperLU third party libraries.

MPI A version of MPI [16, 21] is available on most high performance computing sys-
tem; only version 1.1 is required.

BLACS The Basic Linear Algebra Communication Subroutines [12] are available in
source form from http://www.netlib.org/blacs; some vendors include them in
their parallel computing support libraries.

PSBLAS Parallel Sparse BLAS [14, 15] is available from
http://www.ce.uniroma2.it/psblas; indeed, all the prerequisites listed so far
are also prerequisites of PSBLAS. Version 2.3 (or later) is required. To build the
MLD2P4 library it is necessary to get access to the source PSBLAS directory
employed to build the version under use; after the MLD2P4 build process com-
pletes, only the compiled form of the PSBLAS library is necessary to build user
applications.

Please note that the four previous libraries must have Fortran interfaces compatible
with MLD2P4; usually this means that they should all be built with the same compiler
as MLD2P4.



3 Configuring and Building MLD2P4 5

3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these
are optional, but if you enable them some defaults for multilevel preconditioners may
change to reflect their presence.

UMFPACK [8] A sparse direct factorization package available from
http://www.cise.ufl.edu/research/sparse/umfpack/; provides serial factor-
ization and triangular system solution for double precision real and complex data.
We have tested versions 4.4 and 5.1;

SuperLU [9] A sparse direct factorization package available from
http://crd.lbl.gov/~xiaoye/SuperLU/; provides serial factorization and tri-
angular system solution for single and double precision, real and complex data.
We have tested versions 3.0 and 3.1.

SuperLU Dist [18] A sparse direct factorization package available from the same site
as SuperLU; provides parallel factorization and triangular system solution for
double precision real and complex data. We have tested version 2.1.

3.3 Configuration options

To build MLD2P4 the first step is to use the configure script in the main directory to
generate the necessary makefile(s).

As a minimal example consider the following:

./configure --with-psblas=/home/user/PSBLAS/psblas-2.3

which assumes that the various MPI compilers and support libraries are available in the
standard directories on the system, and specifies only the PSBLAS build directory (note
that the latter directory must be specified with an absolute path). The full set of options
may be looked at by issuing the command ./configure --help, which produces:

$ ./configure --help
‘configure’ configures MLD2P4 1.0 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
-h, --help display this help and exit

--help=short display options specific to this package
--help=recursive display the short help of all the included packages
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-V, --version display version information and exit
-q, --quiet, --silent do not print ‘checking...’ messages

--cache-file=FILE cache test results in FILE [disabled]
-C, --config-cache alias for ‘--cache-file=config.cache’
-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:
--prefix=PREFIX install architecture-independent files in PREFIX
[/usr/local]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]

By default, ‘make install’ will install all the files in
‘/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify
an installation prefix other than ‘/usr/local’ using ‘--prefix’,
for instance ‘--prefix=$HOME’.

For better control, use the options below.

Fine tuning of the installation directories:
--bindir=DIR user executables [EPREFIX/bin]
--sbindir=DIR system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]
--sysconfdir=DIR read-only single-machine data [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]
--localstatedir=DIR modifiable single-machine data [PREFIX/var]
--libdir=DIR object code libraries [EPREFIX/lib]
--includedir=DIR C header files [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc [/usr/include]
--datarootdir=DIR read-only arch.-independent data root [PREFIX/share]
--datadir=DIR read-only architecture-independent data [DATAROOTDIR]
--infodir=DIR info documentation [DATAROOTDIR/info]
--localedir=DIR locale-dependent data [DATAROOTDIR/locale]
--mandir=DIR man documentation [DATAROOTDIR/man]
--docdir=DIR documentation root [DATAROOTDIR/doc/mld2p4]
--htmldir=DIR html documentation [DOCDIR]
--dvidir=DIR dvi documentation [DOCDIR]
--pdfdir=DIR pdf documentation [DOCDIR]
--psdir=DIR ps documentation [DOCDIR]

Optional Packages:
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
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--with-psblas The source directory for PSBLAS, for example,
--with-psblas=/opt/packages/psblas-2.3

--with-libs List additional link flags here. For example,
--with-libs=-lspecial_system_lib or
--with-libs=-L/path/to/libs

--with-clibs additional CLIBS flags to be added: will prepend
to CLIBS

--with-flibs additional FLIBS flags to be added: will prepend
to FLIBS

--with-library-path additional LIBRARYPATH flags to be added: will
prepend to LIBRARYPATH

--with-include-path additional INCLUDEPATH flags to be added: will
prepend to INCLUDEPATH

--with-module-path additional MODULE_PATH flags to be added: will
prepend to MODULE_PATH

--with-umfpack=LIBNAME Specify the library name for UMFPACK library.
Default: "-lumfpack -lamd"

--with-umfpackdir=DIR Specify the directory for UMFPACK library and
includes.

--with-superlu=LIBNAME Specify the library name for SUPERLU library.
Default: "-lslu"

--with-superludir=DIR Specify the directory for SUPERLU library and
includes.

--with-superludist=LIBNAME
Specify the libname for SUPERLUDIST library.
Requires you also specify SuperLU. Default: "-lslud"

--with-superludistdir=DIR
Specify the directory for SUPERLUDIST library and
includes.

Some influential environment variables:
FC Fortran compiler command
FCFLAGS Fortran compiler flags
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>
LIBS libraries to pass to the linker, e.g. -l<library>
CC C compiler command
CFLAGS C compiler flags
CPPFLAGS C/C++/Objective C preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>
CPP C preprocessor
MPICC MPI C compiler command

Use these variables to override the choices made by ‘configure’ or to help
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it to find libraries and programs with nonstandard names/locations.

Report bugs to <bugreport@mld2p4.it>.

Thus, a sample build with libraries in installation directories specifics to the GNU 4.3
compiler suite might be as follows, specifying only the UMFPACK external package:

./configure --with-psblas=/home/user/psblas-2.3/ \
--with-libs="-L/usr/local/BLAS/gnu43 -L/usr/local/BLACS/gnu43" \
--with-blacs=-lmpiblacs --with-umfpackdir=/usr/local/UMFPACK/gnu43

Once the configure script has completed execution, it will have generated the file
Make.inc which will then be used by all Makefiles in the directory tree.

To build the library the user will now enter

make

followed (optionally) by

make install

3.4 Example and test programs

The package contains the examples and tests directories; both of them are further
divided into fileread and pargen subdirectories. Their purpose is as follows:

examples contains a set of simple example programs with a predefined choice of precon-
ditioners, selectable via integer values. These are intended to get an acquaintance
with the multilevel preconditioners.

test contains a set of more sophisticated examples that will allow the user, via the
input files in the runs subdirectories, to experiment with the full range of precon-
ditioners implemented in the library.

The fileread directories contain sample programs that read sparse matrices from
files, according to the Matrix Market or the Harwell-Boeing storage format; the pargen
instead generate matrices in full parallel mode from the discretization of a sample PDE.
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4 Multi-level Domain Decomposition Background

Domain Decomposition (DD) preconditioners, coupled with Krylov iterative solvers, are
widely used in the parallel solution of large and sparse linear systems. These precondi-
tioners are based on the divide and conquer technique: the matrix to be preconditioned
is divided into submatrices, a “local” linear system involving each submatrix is (ap-
proximately) solved, and the local solutions are used to build a preconditioner for the
whole original matrix. This process often corresponds to dividing a physical domain
associated to the original matrix into subdomains, e.g. in a PDE discretization, to (ap-
proximately) solving the subproblems corresponding to the subdomains and to building
an approximate solution of the original problem from the local solutions [6, 7, 20].

Additive Schwarz preconditioners are DD preconditioners using overlapping sub-
matrices, i.e. with some common rows, to couple the local information related to the
submatrices (see, e.g., [20]). The main motivation for choosing Additive Schwarz pre-
conditioners is their intrinsic parallelism. A drawback of these preconditioners is that
the number of iterations of the preconditioned solvers generally grows with the num-
ber of submatrices. This may be a serious limitation on parallel computers, since the
number of submatrices usually matches the number of available processors. Optimal
convergence rates, i.e. iteration numbers independent of the number of submatrices, can
be obtained by correcting the preconditioner through a suitable approximation of the
original linear system in a coarse space, which globally couples the information related
to the single submatrices.

Two-level Schwarz preconditioners are obtained by combining basic (one-level) Sch-
warz preconditioners with a coarse-level correction. In this context, the one-level pre-
conditioner is often called ‘smoother’. Different two-level preconditioners are obtained
by varying the choice of the smoother and of the coarse-level correction, and the way
they are combined [20]. The same reasoning can be applied starting from the coarse-
level system, i.e. a coarse-space correction can be built from this system, thus obtaining
multi-level preconditioners.

It is worth noting that optimal preconditioners do not necessarily correspond to
minimum execution times. Indeed, to obtain effective multi-level preconditioners a
tradeoff between optimality of convergence and the cost of building and applying the
coarse-space corrections must be achieved. The choice of the number of levels, i.e. of
the coarse-space corrections, also affects the effectiveness of the preconditioners. One
more goal is to get convergence rates as less sensitive as possible to variations in the
matrix coefficients.

Two main approaches can be used to build coarse-space corrections. The geometric
approach applies coarsening strategies based on the knowledge of some physical grid
associated to the matrix and requires the user to define grid transfer operators from the
fine to the coarse levels and vice versa. This may result difficult for complex geome-
tries; furthermore, suitable one-level preconditioners may be required to get efficient
interplay between fine and coarse levels, e.g. when matrices with highly varying coef-
ficients are considered. The algebraic approach builds coarse-space corrections using
only matrix information. It performs a fully automatic coarsening and enforces the
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interplay between the fine and coarse levels by suitably choosing the coarse space and
the coarse-to-fine interpolation [22].

MLD2P4 uses a pure algebraic approach for building the sequence of coarse matrices
starting from the original matrix. The algebraic approach is based on the smoothed
aggregation algorithm [1, 24]. A decoupled version of this algorithm is implemented,
where the smoothed aggregation is applied locally to each submatrix [23]. In the next
two subsections we provide a brief description of the multi-level Schwarz preconditioners
and of the smoothed aggregation technique as implemented in MLD2P4. For further
details the user is referred to [2, 3, 4, 20].

4.1 Multi-level Schwarz Preconditioners

The Multilevel preconditioners implemented in MLD2P4 are obtained by combining AS
preconditioners with coarse-space corrections; therefore we first provide a sketch of the
AS preconditioners.

Given the linear system (1), where A = (aij) ∈ <n×n is a nonsingular sparse matrix
with a symmetric nonzero pattern, let G = (W,E) be the adjacency graph of A, where
W = {1, 2, . . . , n} and E = {(i, j) : aij 6= 0} are the vertex set and the edge set of G,
respectively. Two vertices are called adjacent if there is an edge connecting them. For
any integer δ > 0, a δ-overlap partition of W can be defined recursively as follows. Given
a 0-overlap (or non-overlapping) partition of W , i.e. a set of m disjoint nonempty sets
W 0
i ⊂W such that ∪mi=1W

0
i = W , a δ-overlap partition of W is obtained by considering

the sets W δ
i ⊃W

δ−1
i obtained by including the vertices that are adjacent to any vertex

in W δ−1
i .

Let nδi be the size of W δ
i and Rδi ∈ <n

δ
i×n the restriction operator that maps a vector

v ∈ <n onto the vector vδi ∈ <n
δ
i containing the components of v corresponding to the

vertices in W δ
i . The transpose of Rδi is a prolongation operator from <nδi to <n. The

matrix Aδi = RδiA(Rδi )
T ∈ <nδi×nδi can be considered as a restriction of A corresponding

to the set W δ
i .

The classical one-level AS preconditioner is defined by

M−1
AS =

m∑
i=1

(Rδi )
T (Aδi )

−1Rδi ,

where Aδi is assumed to be nonsingular. Its application to a vector v ∈ <n within a
Krylov solver requires the following three steps:

1. restriction of v as vi = Rδi v, i = 1, . . . ,m;

2. solution of the linear systems Aδiwi = vi, i = 1, . . . ,m;

3. prolongation and sum of the wi’s, i.e. w =
∑m

i=1(Rδi )
Twi.

Note that the linear systems at step 2 are usually solved approximately, e.g. using
incomplete LU factorizations such as ILU(p), MILU(p) and ILU(p, t) [19, Chapter 10].
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A variant of the classical AS preconditioner that outperforms it in terms of conver-
gence rate and of computation and communication time on parallel distributed-memory
computers is the so-called Restricted AS (RAS) preconditioner [5, 13]. It is obtained
by zeroing the components of wi corresponding to the overlapping vertices when ap-
plying the prolongation. Therefore, RAS differs from classical AS by the prolongation
operators, which are substituted by (R̃0

i )
T ∈ <nδi×n, where R̃0

i is obtained by zeroing
the rows of Rδi corresponding to the vertices in W δ

i \W 0
i :

M−1
RAS =

m∑
i=1

(R̃0
i )
T (Aδi )

−1Rδi .

Analogously, the AS variant called AS with Harmonic extension (ASH) is defined by

M−1
ASH =

m∑
i=1

(Rδi )
T (Aδi )

−1R̃0
i .

We note that for δ = 0 the three variants of the AS preconditioner are all equal to the
block-Jacobi preconditioner.

As already observed, the convergence rate of the one-level Schwarz preconditioned
iterative solvers deteriorates as the number m of partitions of W increases [7, 20]. To
reduce the dependency of the number of iterations on the degree of parallelism we may
introduce a global coupling among the overlapping partitions by defining a coarse-space
approximation AC of the matrix A. In a pure algebraic setting, AC is usually built with
a Galerkin approach. Given a set WC of coarse vertices, with size nC , and a suitable
restriction operator RC ∈ <nC×n, AC is defined as

AC = RCAR
T
C

and the coarse-level correction matrix to be combined with a generic one-level AS
preconditioner M1L is obtained as

M−1
C = RTCA

−1
C RC ,

where AC is assumed to be nonsingular. The application of M−1
C to a vector v corre-

sponds to a restriction, a solution and a prolongation step; the solution step, involving
the matrix AC , may be carried out also approximately.

The combination of MC and M1L may be performed in either an additive or a mul-
tiplicative framework. In the former case, the two-level additive Schwarz preconditioner
is obtained:

M−1
2LA = M−1

C +M−1
1L .

Applying M−1
2L−A to a vector v within a Krylov solver corresponds to applying M−1

C

and M−1
1L to v independently and then summing up the results.

In the multiplicative case, the combination can be performed by first applying the
smoother M−1

1L and then the coarse-level correction operator M−1
C :

w = M−1
1L v,

z = w +M−1
C (v −Aw);
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this corresponds to the following two-level hybrid pre-smoothed Schwarz preconditioner:

M−1
2LH−PRE = M−1

C +
(
I −M−1

C A
)
M−1

1L .

On the other hand, by applying the smoother after the coarse-level correction, i.e. by
computing

w = M−1
C v,

z = w +M−1
1L (v −Aw),

the two-level hybrid post-smoothed Schwarz preconditioner is obtained:

M−1
2LH−POST = M−1

1L +
(
I −M−1

1L A
)
M−1
C .

One more variant of two-level hybrid preconditioner is obtained by applying the smoother
before and after the coarse-level correction. In this case, the preconditioner is symmetric
if A, M1L and MC are symmetric.

As previously noted, on parallel computers the number of submatrices usually
matches the number of available processors. When the size of the system to be precon-
ditioned is very large, the use of many processors, i.e. of many small submatrices, often
leads to a large coarse-level system, whose solution may be computationally expensive.
On the other hand, the use of few processors often leads to local sumatrices that are
too expensive to be processed on single processors, because of memory and/or com-
puting requirements. Therefore, it seems natural to use a recursive approach, in which
the coarse-level correction is re-applied starting from the current coarse-level system.
The corresponding preconditioners, called multi-level preconditioners, can significantly
reduce the computational cost of preconditioning with respect to the two-level case (see
[20, Chapter 3]). Additive and hybrid multilevel preconditioners are obtained as direct
extensions of the two-level counterparts. For a detailed descrition of them, the reader
is referred to [20, Chapter 3]. The algorithm for the application of a multi-level hybrid
post-smoothed preconditioner M to a vector v, i.e. for the computation of w = M−1v,
is reported, for example, in Figure 1. Here the number of levels is denoted by nlev and
the levels are numbered in increasing order starting from the finest one, i.e. the finest
level is level 1; the coarse matrix and the corresponding basic preconditioner at each
level l are denoted by Al and Ml, respectively, with A1 = A.

4.2 Smoothed Aggregation

In order to define the restriction operator RC , which is used to compute the coarse-
level matrix AC , MLD2P4 uses the smoothed aggregation algorithm described in [1, 24].
The basic idea of this algorithm is to build a coarse set of vertices WC by suitably
grouping the vertices of W into disjoint subsets (aggregates), and to define the coarse-
to-fine space transfer operator RTC by applying a suitable smoother to a simple piecewise
constant prolongation operator, to improve the quality of the coarse-space correction.

Three main steps can be identified in the smoothed aggregation procedure:

1. coarsening of the vertex set W , to obtain WC ;
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v1 = v;

for l = 2, nlev do
! transfer vl−1 to the next coarser level
vl = Rlvl−1

endfor

! apply the coarsest-level correction
ynlev = A−1

nlevvnlev

for l = nlev − 1, 1,−1 do
! transfer yl+1 to the next finer level
yl = RT

l+1yl+1;
! compute the residual at the current level
rl = vl −A−1

l yl;
! apply the basic Schwarz preconditioner to the residual
rl = M−1

l rl

! update yl

yl = yl + rl
endfor
w = y1;

Figure 1: Application of the multi-level hybrid post-smoothed preconditioner.

2. construction of the prolongator RTC ;

3. application of RC and RTC to build AC .

To perform the coarsening step, we have implemented the aggregation algorithm
sketched in [4]. According to [24], a modification of this algorithm has been actually
considered, in which each aggregate Nr is made of vertices of W that are strongly coupled
to a certain root vertex r ∈W , i.e.

Nr =
{
s ∈W : |ars| > θ

√
|arrass|

}
∪ {r} ,

for a given θ ∈ [0, 1]. Since this algorithm has a sequential nature, a decoupled version
of it has been chosen, where each processor i independently applies the algorithm to
the set of vertices W 0

i assigned to it in the initial data distribution. This version is
embarrassingly parallel, since it does not require any data communication. On the other
hand, it may produce non-uniform aggregates near boundary vertices, i.e. near vertices
adjacent to vertices in other processors, and is strongly dependent on the number of
processors and on the initial partitioning of the matrix A. Nevertheless, this algorithm
has been chosen for the implementation in MLD2P4, since it has been shown to produce
good results in practice [3, 4, 23].
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The prolongator PC = RTC is built starting from a tentative prolongator P ∈ <n×nC ,
defined as

P = (pij), pij =
{

1 if i ∈ V j
C

0 otherwise
. (2)

PC is obtained by applying to P a smoother S ∈ <n×n:

PC = SP, (3)

in order to remove oscillatory components from the range of the prolongator and hence
to improve the convergence properties of the multi-level Schwarz method [1, 22]. A
simple choice for S is the damped Jacobi smoother:

S = I − ωD−1A, (4)

where the value of ω can be chosen using some estimate of the spectral radius of D−1A
[1].
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5 Getting Started

We describe the basics for building and applying MLD2P4 one-level and multi-level
Schwarz preconditioners with the Krylov solvers included in PSBLAS [14]. The follow-
ing steps are required:

1. Declare the preconditioner data structure. It is a derived data type, mld_xprec_
type, where x may be s, d, c or z, according to the basic data type of the sparse
matrix (s = real single precision; d = real double precision; c = complex single
precision; z = complex double precision). This data structure is accessed by the
user only through the MLD2P4 routines, following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, according to a precondi-
tioner type chosen by the user. This is performed by the routine mld_precinit,
which also sets defaults for each preconditioner type selected by the user. The
defaults associated to each preconditioner type are given in Table 1, where the
strings used by mld_precinit to identify the preconditioner types are also given.
Note that these strings are valid also if uppercase letters are substituted by cor-
responding lowercase ones.

3. Modify the selected preconditioner type, by properly setting preconditioner param-
eters. This is performed by the routine mld_precset. This routine must be called
only if the user wants to modify the default values of the parameters associated
to the selected preconditioner type, to obtain a variant of the preconditioner.
Examples of use of mld_precset are given in Section 5.1; a complete list of all
the preconditioner parameters and their allowed and default values is provided in
Section 6, Tables 2-5.

4. Build the preconditioner for a given matrix. This is performed by the routine
mld_precbld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is performed by
the routine mld_precaply. When using the PSBLAS Krylov solvers, this step is
completely transparent to the user, since mld_precaply is called by the PSBLAS
routine implementing the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine mld_
precfree. This step is complementary to step 1 and should be performed when
the preconditioner is no more used.

A detailed description of the above routines is given in Section 6. Examples showing
the basic use of MLD2P4 are reported in Section 5.1.

Note that the Fortran 95 module mld_prec_mod, containing the definition of the
preconditioner data type and the interfaces to the routines of MLD2P4, must be used
in any program calling such routines. The modules psb_base_mod, for the sparse matrix
and communication descriptor data types, and psb_krylov_mod, for interfacing with
the Krylov solvers, must be also used (see Section 5.1).
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Remark 1. The coarsest-level solver used by the default two-level preconditioner has
been chosen by taking into account that, on parallel machines, it often leads to the
smallest execution time when applied to linear systems coming from finite-difference
discretizations of basic elliptic PDE problems, considered as standard tests for multi-
level Schwarz preconditioners [3, 4]. However, this solver does not necessarily correspond
to the smallest number of iterations of the preconditioned Krylov method, which is
usually obtained by applying a direct solver to the coarsest-level system, e.g. based on
the LU factorization (see Section 6 for the coarsest-level solvers available in MLD2P4).

Remark 2. The include path for MLD2P4 must override those for PSBLAS, e.g. the
latter must come first in the sequence passed to the compiler, as the MLD2P4 version
of the Krylov solver interfaces must override that of PSBLAS. This will change in
the future when the support for the class statement becomes widespread in Fortran
compilers.

type string default preconditioner

No preconditioner ’NOPREC’ Considered only to use the PSBLAS
Krylov solvers with no preconditioner.

Diagonal ’DIAG’ —
Block Jacobi ’BJAC’ Block Jacobi with ILU(0) on the local

blocks.
Additive Schwarz ’AS’ Restricted Additive Schwarz (RAS),

with overlap 1 and ILU(0) on the local
blocks.

Multilevel ’ML’ Multi-level hybrid preconditioner (ad-
ditive on the same level and mul-
tiplicative through the levels), with
post-smoothing only. Number of lev-
els: 2. Post-smoother: RAS with
overlap 1 and ILU(0) on the local
blocks. Aggregation: smoothed aggre-
gation with threshold θ = 0. Coarsest
matrix: distributed among the proces-
sors. Coarsest-level solver: 4 sweeps
of the block-Jacobi solver, with LU
(or ILU) factorization of the blocks
(UMFPACK for the double precision
versions and SuperLU for the single
precision ones, if they have been in-
stalled; ILU(0), otherwise).

Table 1: Preconditioner types, corresponding strings and default choices.
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5.1 Examples

The code reported in Figure 2 shows how to set and apply the default multi-level pre-
conditioner available in the real double precision version of MLD2P4 (see Table 1). This
preconditioner is chosen by simply specifying ’ML’ as second argument of mld_precinit
(a call to mld_precset is not needed) and is applied with the BiCGSTAB solver pro-
vided by PSBLAS. As previously observed, the modules psb_base_mod, mld_prec_mod
and psb_krylov_mod must be used by the example program.

The part of the code concerning the reading and assembling of the sparse matrix
and the right-hand side vector, performed through the PSBLAS routines for sparse
matrix and vector management, is not reported here for brevity; the statements con-
cerning the deallocation of the PSBLAS data structure are neglected too. The complete
code can be found in the example program file mld_dexample_ml.f90, in the directory
examples/fileread of the MLD2P4 tree (see Section 3.4). For details on the use of
the PSBLAS routines, see the PSBLAS User’s Guide [14].

The setup and application of the default multi-level preconditioners for the real
single precision and the complex, single and double precision, versions are obtained
with straightforward modifications of the previous example (see Section 6 for details).
If these versions are installed, the corresponding Fortran 95 codes are available in
examples/fileread/.

Different versions of multi-level preconditioners can be obtained by changing the de-
fault values of the preconditioner parameters. The code reported in Figure 3 shows how
to set a three-level hybrid Schwarz preconditioner, which uses block Jacobi with ILU(0)
on the local blocks as post-smoother, has a coarsest matrix replicated on the processors,
and solves the coarsest-level system with the LU factorization from UMFPACK [8]. The
number of levels is specified by using mld_precinit; the other preconditioner param-
eters are set by calling mld_precset. Note that the type of multilevel framework (i.e.
multiplicative among the levels with post-smoothing only) is not specified since it is the
default set by mld_precinit.

Figure 4 shows how to set a three-level additive Schwarz preconditioner, which uses
RAS, with overlap 1 and ILU(0) on the blocks, as pre- and post-smoother, and ap-
plies five block-Jacobi sweeps, with the UMFPACK LU factorization on the blocks, as
distributed coarsest-level solver. Again, mld_precset is used only to set non-default
values of the parameters (see Tables 2-5). In both cases, the construction and the appli-
cation of the preconditioner are carried out as for the default multi-level preconditioner.
The code fragments shown in in Figures 3-4 are included in the example program file
mld_dexample_ml.f90 too.

Finally, Figure 5 shows the setup of a one-level additive Schwarz preconditioner, i.e.
RAS with overlap 2. The corresponding example program is available in mld_dexample_
1lev.f90.

For all the previous preconditioners, example programs where the sparse matrix
and the right-hand side are generated by discretizing a PDE with Dirichlet boundary
conditions are also available in the directory examples/pdegen.
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use psb_base_mod
use mld_prec_mod
use psb_krylov_mod

... ...
!
! sparse matrix
type(psb_dspmat_type) :: A

! sparse matrix descriptor
type(psb_desc_type) :: desc_A

! preconditioner
type(mld_dprec_type) :: P

! right-hand side and solution vectors
real(kind(1.d0)) :: b(:), x(:)

... ...
!
! initialize the parallel environment
call psb_init(ictxt)
call psb_info(ictxt,iam,np)

... ...
!
! read and assemble the matrix A and the right-hand side b
! using PSBLAS routines for sparse matrix / vector management
... ...
!
! initialize the default multi-level preconditioner, i.e. hybrid
! Schwarz, using RAS (with overlap 1 and ILU(0) on the blocks)
! as post-smoother and 4 block-Jacobi sweeps (with UMFPACK LU
! on the blocks) as distributed coarse-level solver
call mld_precinit(P,’ML’,info)

!
! build the preconditioner
call mld_precbld(A,desc_A,P,info)

!
! set the solver parameters and the initial guess
... ...

!
! solve Ax=b with preconditioned BiCGSTAB
call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)
... ...

!
! deallocate the preconditioner
call mld_precfree(P,info)

!
! deallocate other data structures
... ...

!
! exit the parallel environment
call psb_exit(ictxt)
stop

Figure 2: Setup and application of the default multi-level Schwarz preconditioner.
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Remark 3. Any PSBLAS-based program using the basic preconditioners implemented
in PSBLAS 2.0, i.e. the diagonal and block-Jacobi ones, can use the diagonal and block-
Jacobi preconditioners implemented in MLD2P4 without any change in the code. The
PSBLAS-based program must be only recompiled and linked to the MLD2P4 library.

... ...
! set a three-level hybrid Schwarz preconditioner, which uses
! block Jacobi (with ILU(0) on the blocks) as post-smoother,
! a coarsest matrix replicated on the processors, and the
! LU factorization from UMFPACK as coarse-level solver
call mld_precinit(P,’ML’,info,nlev=3)
call_mld_precset(P,mld_smoother_type_,’BJAC’,info)
call mld_precset(P,mld_coarse_mat_,’REPL’,info)
call mld_precset(P,mld_coarse_solve_,’UMF’,info)

... ...

Figure 3: Setup of a hybrid three-level Schwarz preconditioner.

... ...
! set a three-level additive Schwarz preconditioner, which uses
! RAS (with overlap 1 and ILU(0) on the blocks) as pre- and
! post-smoother, and 5 block-Jacobi sweeps (with UMFPACK LU
! on the blocks) as distributed coarsest-level solver
call mld_precinit(P,’ML’,info,nlev=3)
call mld_precset(P,mld_ml_type_,’ADD’,info)
call_mld_precset(P,mld_smoother_pos_,’TWOSIDE’,info)
call mld_precset(P,mld_coarse_sweeps_,5,info)

... ...

Figure 4: Setup of an additive three-level Schwarz preconditioner.

... ...
! set RAS with overlap 2 and ILU(0) on the local blocks
call mld_precinit(P,’AS’,info)
call mld_precset(P,mld_sub_ovr_,2,info)

... ...

Figure 5: Setup of a one-level Schwarz preconditioner.



20 MLD2P4 User’s and Reference Guide

6 User Interface

The basic user interface of MLD2P4 consists of six routines. The four routines mld_
precinit, mld_precset, mld_precbld and mld_precaply encapsulate all the function-
alities for the setup and the application of any one-level and multi-level preconditioner
implemented in the package. The routine mld_precfree deallocates the preconditioner
data structure, while mld_precdescr prints a description of the preconditioner setup
by the user.

For each routine, the same user interface is overloaded with respect to the real/complex
case and the single/double precision; arguments with appropriate data types must be
passed to the routine, i.e.

• the sparse matrix data structure, containing the matrix to be preconditioned,
must be of type mld_xspmat_type with x = s for real single precision, x = d
for real double precision, x = c for complex single precision, x = z for complex
double precision;

• the preconditioner data structure must be of type mld_xprec_type, with x = s,
d, c, z, according to the sparse matrix data structure;

• the arrays containing the vectors v and w involved in the preconditioner applica-
tion w = M−1v must be of type type(kind parameter), with type = real, complex
and kind parameter = kind(1.e0), kind(1.d0), according to the sparse matrix
and preconditioner data structure; note that the PSBLAS module psb_base_mod
provides the constants psb_spk_ = kind(1.e0) and psb_dpk_ = kind(1.d0);

• real parameters defining the preconditioner must be declared according to the
precision of the sparse matrix and preconditioner data structures (see Section 6.2).

A description of each routine is given in the remainder of this section.
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6.1 Subroutine mld precinit

mld_precinit(p,ptype,info)
mld_precinit(p,ptype,info,nlev)

This routine allocates and initializes the preconditioner data structure, according to the
preconditioner type chosen by the user.

Arguments
p type(mld_xprec_type), intent(inout).

The preconditioner data structure. Note that x must be chosen ac-
cording to the real/complex, single/double precision version of MLD2P4
under use.

ptype character(len=*), intent(in).
The type of preconditioner. Its values are specified in Table 1.
Note that the strings are case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

nlev integer, optional, intent(in).
The number of levels of the multilevel preconditioner. If nlev is not
present and ptype=’ML’, ’ml’, then nlev=2 is assumed. Otherwise,
nlev is ignored.
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6.2 Subroutine mld precset

mld_precset(p,what,val,info)

This routine sets the parameters defining the preconditioner. More precisely, the pa-
rameter identified by what is assigned the value contained in val.

Arguments
p type(mld_xprec_type), intent(inout).

The preconditioner data structure. Note that x must be chosen ac-
cording to the real/complex, single/double precision version of MLD2P4
under use.

what integer, intent(in).
The number identifying the parameter to be set. A mnemonic constant
has been associated to each of these numbers, as reported in Tables 2-5.

val integer or character(len=*) or real(psb_spk_) or
real(psb_dpk_), intent(in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Tables 2-5. When the value is of
type character(len=*), it is also treated as case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

A variety of (one-level and multi-level) preconditioners can be obtained by a suitable
setting of the preconditioner parameters. These parameters can be logically divided
into four groups, i.e. parameters defining

1. the type of multi-level preconditioner;

2. the one-level preconditioner used as smoother;

3. the aggregation algorithm;

4. the coarse-space correction at the coarsest level.

A list of the parameters that can be set, along with their allowed and default values, is
given in Tables 2-5. For a detailed description of the meaning of the parameters, please
refer to Section 4.
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6.3 Subroutine mld precbld

mld_precbld(a,desc_a,p,info)

This routine builds the preconditioner according to the requirements made by the user
through the routines mld_precinit and mld_precset.

Arguments
a type(psb_xspmat_type), intent(in).

The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [14].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [14].

p type(mld_xprec_type), intent(inout).
The preconditioner data structure. Note that x must be chosen ac-
cording to the real/complex, single/double precision version of MLD2P4
under use.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.
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6.4 Subroutine mld precaply

mld_precaply(p,x,y,desc_a,info)
mld_precaply(p,x,y,desc_a,info,trans,work)

This routine computes y = op(M−1)x, where M is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its transpose, according to
the value of trans. Note that, when MLD2P4 is used with a Krylov solver from
PSBLAS, mld_precaply is called within the PSBLAS routine mld_krylov and hence
it is completely transparent to the user.

Arguments
p type(mld_xprec_type), intent(inout).

The preconditioner data structure, containing the local part of M . Note
that x must be chosen according to the real/complex, single/double
precision version of MLD2P4 under use.

x type(kind parameter), dimension(:), intent(in).
The local part of the vector x. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version
of MLD2P4 under use.

y type(kind parameter), dimension(:), intent(out).
The local part of the vector y. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version
of MLD2P4 under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

trans character(len=1), optional, intent(in).
If trans = ’N’,’n’ then op(M−1) = M−1; if trans = ’T’,’t’
then op(M−1) = M−T (transpose of M−1); if trans = ’C’,’c’ then
op(M−1) = M−C (conjugate transpose of M−1).

work type(kind parameter), dimension(:), optional, target.
Workspace. Its size should be at least 4 * psb_cd_get_local_
cols(desc_a) (see the PSBLAS User’s Guide). Note that type and
kind parameter must be chosen according to the real/complex, sin-
gle/double precision version of MLD2P4 under use.



6 User Interface 29

6.5 Subroutine mld precfree

mld_precfree(p,info)

This routine deallocates the preconditioner data structure.

Arguments
p type(mld_xprec_type), intent(inout).

The preconditioner data structure. Note that x must be chosen
according to the real/complex, single/double precision version
of MLD2P4 under use.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.
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6.6 Subroutine mld precdescr

mld_precdescr(p,info)
mld_precdescr(p,info,iout)

This routine prints a description of the preconditioner to the standard output or to a
file. It must be called after mld_precbld has been called.

Arguments
p type(mld_xprec_type), intent(in).

The preconditioner data structure. Note that x must be chosen ac-
cording to the real/complex, single/double precision version of MLD2P4
under use.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

iout integer, intent(in), optional.
The id of the file where the preconditioner description will be printed;
the default is the standard output.
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7 Error Handling

The error handling in MLD2P4 is based on the PSBLAS (version 2) error handling.
Error conditions are signaled via an integer argument info; whenever an error condition
is detected, an error trace stack is built by the library up to the top-level, user-callable
routine. This routine will then decide, according to the user preferences, whether the
error should be handled by terminating the program or by returning the error condition
to the user code, which will then take action, and whether an error message should be
printed. These options may be set by using the PSBLAS error handling routines; for
further details see the PSBLAS User’s Guide [14].
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A License

The MLD2P4 is freely distributable under the following copyright terms:

MLD2P4 version 1.0
MultiLevel Domain Decomposition Parallel Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 2.3)

(C) Copyright 2008

Salvatore Filippone University of Rome Tor Vergata
Alfredo Buttari University of Rome Tor Vergata
Pasqua D’Ambra ICAR-CNR, Naples
Daniela di Serafino Second University of Naples

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
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