MLD2P4
User’s and Reference Guide

A guide for the Multi-Level Domain Decomposition
Parallel Preconditioners Package based on PSBLAS

Pasqua D’Ambra
IAC-CNR, Naples, Italy

Daniela di Serafino
University of Campania “Luigi Vanvitelli”, Caserta, Italy

Salvatore Filippone
Cranfield University, Cranfield, United Kingdom

Software version: 2.1
March 28, 2017

Abstract

MLD2P4 (MuLTl-LEVEL DOMAIN DECOMPOSITION PARALLEL PRECONDITIONERS
PACKAGE BASED ON PSBLAS) is a package of parallel algebraic multi-level precon-
ditioners. The first release of MLD2P4 made available multi-level additive and hybrid
Schwarz preconditioners, as well as one-level additive Schwarz preconditioners. The
package has been extended to include further multi-level cycles and smoothers widely
used in multigrid methods. In the multi-level case, a purely algebraic approach is ap-
plied to generate coarse-level corrections, so that no geometric background is needed
concerning the matrix to be preconditioned. The matrix is assumed to be square, real
or complex.

MLD2P4 has been designed to provide scalable and easy-to-use preconditioners in
the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms) com-
putational framework and can be used in conjuction with the Krylov solvers available in
this framework. MLD2P4 enables the user to easily specify different features of an al-
gebraic multi-level preconditioner, thus allowing to search for the “best” preconditioner
for the problem at hand.

The package employs object-oriented design techniques in Fortran 2003, with inter-
faces to additional third party libraries such as MUMPS, UMFPACK, SuperLU, and
SuperL U _Dist, which can be exploited in building multi-level preconditioners. The par-
allel implementation is based on a Single Program Multiple Data (SPMD) paradigm;
the inter-process communication is based on MPI and is managed mainly through PS-
BLAS.

This guide provides a brief description of the functionalities and the user interface
of MLD2P4.

ii

Contents

Abstract

1 General Overview

2 Code Distribution

3 Configuring and Building MLD2P4
3.1 Prerequisites L
3.2 Optional third party libraries
3.3 Configuration options L
3.4 Bugreporting
3.5 Example and test programs Lo

4 Multigrid Background
4.1 AMG preconditionerso
4.2 Smoothed Aggregation
4.3 Smoothers and coarsest-level solvers

5 Getting Started
5.1 Examples e e

7

User Interface

6.1 Subroutine init
6.2 Subroutine set
6.3 Subroutine build
6.4 Subroutine hierarchy build o000
6.5 Subroutine smoothers_build
6.6 Subroutine apply L
6.7 Subroutine free e
6.8 Subroutine descr

Error Handling

A License

References

iii

16
17

21
22
23
33
34
35
36
37
38

39

40

41

iv

1 GENERAL OVERVIEW 1

1 General Overview

The MULTI-LEVEL DOMAIN DECOMPOSITION PARALLEL PRECONDITIONERS PACK-
AGE BASED ON PSBLAS (MLD2P4) provides parallel Algebraic MultiGrid (AMG)
and Domain Decomposition preconditioners (see, e.g., [3, 23, 21]), to be used in the
iterative solution of linear systems,

Az = b, (1)

where A is a square, real or complex, sparse matrix. The name of the package comes
from its original implementation, containing multi-level additive and hybrid Schwarz
preconditioners, as well as one-level additive Schwarz preconditioners. The current
version extends the original plan by including multi-level cycles and smoothers widely
used in multigrid methods.

The multi-level preconditioners implemented in MLD2P4 are obtained by combining
AMG cycles with smoothers and coarsest-level solvers. The V-, W-, and K-cycles [3, 19]
are available, which allow to define almost all the preconditioners in the package, in-
cluding the multi-level hybrid Schwarz ones; a specific cycle is implemented to obtain
multi-level additive Schwarz preconditioners. The Jacobi, hybrid forward/backward
Gauss-Seidel, block-Jacobi, and additive Schwarz methods are available as smoothers.
An algebraic approach is used to generate a hierarchy of coarse-level matrices and oper-
ators, without explicitly using any information on the geometry of the original problem,
e.g., the discretization of a PDE. To this end, the smoothed aggregation technique [2, 25]
is applied. Either exact or approximate solvers can be used on the coarsest-level sys-
tem. Specifically, different sparse LU factorizations from external packages, and native
incomplete LU factorizations and Jacobi, hybrid Gauss-Seidel, and block-Jacobi solvers
are available. All smoothers can be also exploited as one-level preconditioners.

MLD2P4 is written in Fortran 2003, following an object-oriented design through the
exploitation of features such as abstract data type creation, type extension, functional
overloading, and dynamic memory management. The parallel implementation is based
on a Single Program Multiple Data (SPMD) paradigm. Single and double precision
implementations of MLD2P4 are available for both the real and the complex case,
which can be used through a single interface.

MLD2P4 has been designed to implement scalable and easy-to-use multilevel precon-
ditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational frame-
work [15, 14]. PSBLAS provides basic linear algebra operators and data management
facilities for distributed sparse matrices, as well as parallel Krylov solvers which can
be used with the MLD2P4 preconditioners. The choice of PSBLAS has been mainly
motivated by the need of having a portable and efficient software infrastructure im-
plementing “de facto” standard parallel sparse linear algebra kernels, to pursue goals
such as performance, portability, modularity ed extensibility in the development of the
preconditioner package. On the other hand, the implementation of MLD2P4 has led
to some revisions and extentions of the original PSBLAS kernels. The inter-process
comunication required by MLD2P4 is encapsulated in the PSBLAS routines; there-

2 MLD2P4 USER’S AND REFERENCE GUIDE

fore, MLD2P4 can be run on any parallel machine where PSBLAS implementations are
available.

MLD2P4 has a layered and modular software architecture where three main layers
can be identified. The lower layer consists of the PSBLAS kernels, the middle one
implements the construction and application phases of the preconditioners, and the
upper one provides a uniform interface to all the preconditioners. This architecture
allows for different levels of use of the package: few black-box routines at the upper
layer allow all users to easily build and apply any preconditioner available in MLD2P4;
facilities are also available allowing expert users to extend the set of smoothers and
solvers for building new versions of the preconditioners (see Section 77).

We note that the user interface of MLD2P4 2.1 has been extended with respect to
the previous versions in order to separate the construction of the multi-level hierarchy
from the construction of the smoothers and solvers, and to allow for more flexibility at
each level. The software architecture described in [8] has significantly evolved too, in
order to fully exploit the Fortran 2003 features implemented in PSBLAS 3. However,
compatibility with previous versions has been preserved.

This guide is organized as follows. General information on the distribution of the
source code is reported in Section 2, while details on the configuration and installation
of the package are given in Section 3. A short description of the preconditioners im-
plemented in MLD2P4 is provided in Section 4, to help the users in choosing among
them. The basics for building and applying the preconditioners with the Krylov solvers
implemented in PSBLAS are reported in Section 5, where the Fortran codes of a few
sample programs are also shown. A reference guide for the user interface routines is
provided in Section 6. Information on the extension of the package through the addition
of new smoothers and solvers is reported in Section ?7. The error handling mechanism
used by the package is briefly described in Section 7. The copyright terms concerning
the distribution and modification of MLD2P4 are reported in Appendix A.

2 CODE DISTRIBUTION 3

2 Code Distribution

MLD2P4 is available from the web site
http://www.mld2p4.it

where contact points for further information can be also found.

The software is available under a modified BSD license, as specified in Appendix A;
please note that some of the optional third party libraries may be licensed under a
different and more stringent license, most notably the GPL, and this should be taken
into account when treating derived works.

The library defines a version string with the constant

mld_version_string_

whose current value is 2.1.0

4 MLD2P4 USER’S AND REFERENCE GUIDE

3 Configuring and Building MLD2P4

In order to build MLD2P4 it is necessary to set up a Makefile with appropriate system-
dependent variables; this is done by means of the configure script. The distribution
also includes the autoconf and automake sources employed to generate the script, but
usually this is not needed to build the software.

MLD2P4 is implemented almost entirely in Fortran 2003, with some interfaces to
external libraries in C; the Fortran compiler must support the Fortran 2003 standard
plus the extension MOLD= feature, which enhances the usability of ALLOCATE. Many
compilers do this; in particular, this is supported by the GNU Fortran compiler, for
which we recommend to use at least version 4.8. The software defines data types and
interfaces for real and complex data, in both single and double precision.

Building MLD2P4 requires some base libraries (see Section 3.1); interfaces to op-
tional third-party libraries, which extend the functionalities of MLD2P4 (see Sec-
tion 3.2), are also available. Many Linux distributions (e.g., Ubuntu, Fedora, CentOS)
provide precompiled packages for the prerequisite and optional software. In many cases
these packages are split between a runtime part and a “developer” part; in order to
build MLD2P4 you need both. A description of the base and optional software used by
MLD2P4 is given in the next sections.

3.1 Prerequisites

The following base libraries are needed:

BLAS [11, 12, 17] Many vendors provide optimized versions of BLAS; if no vendor
version is available for a given platform, the ATLAS software (math-atlas.
sourceforge.net) may be employed. The reference BLAS from Netlib (www.
netlib.org/blas) are meant to define the standard behaviour of the BLAS in-
terface, so they are not optimized for any particular plaftorm, and should only be
used as a last resort. Note that BLAS computations form a relatively small part
of the MLD2P4/PSBLAS computations; they are however critical when using
preconditioners based on MUMPS, UMFPACK or SuperLU third party libraries.
Note that UMFPACK requires a full LAPACK library; our experience is that con-
figuring ATLAS for building full LAPACK does not work in the correct way. Our
advice is first to download the LAPACK tarfile from www.netlib.org/lapack and
install it independently of ATLAS. In this case, you need to modify the OPTS
and NOOPT definitions for including -fPIC compilation option in the make.inc
file of the LAPACK library.

MPT [16, 22] A version of MPI is available on most high-performance computing sys-
tems.

PSBLAS [13, 15] Parallel Sparse BLAS (PSBLAS) is available from www.ce.uniroma2.
it/psblas; version 3.5.0 (or later) is required. Indeed, all the prerequisites listed
so far are also prerequisites of PSBLAS.

math-atlas.sourceforge.net
math-atlas.sourceforge.net
www.netlib.org/blas
www.netlib.org/blas
www.netlib.org/lapack
www.ce.uniroma2.it/psblas
www.ce.uniroma2.it/psblas

3 CONFIGURING AND BuIlLDING MLD2P4 5

Please note that the four previous libraries must have Fortran interfaces compatible
with MLD2P4; usually this means that they should all be built with the same compiler
as MLD2P4.

3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these
are optional, but if you enable them some defaults for multi-level preconditioners may
change to reflect their presence.

UMFPACK [9] A sparse LU factorization package included in the SuiteSparse library,
available from faculty.cse.tamu.edu/davis/suitesparse.html; it provides se-
quential factorization and triangular system solution for double precision real and
complex data. We tested version 4.5.4 of SuiteSparse. Note that for configur-
ing SuiteSparse you should provide the right path to the BLAS and LAPACK
libraries in the SuiteSparse_config/SuiteSparse_config.mk file.

MUMPS [1] A sparse LU factorization package available from mumps.enseeiht.fr;
it provides sequential and parallel factorizations and triangular system solution
for single and double precision, real and complex data. We tested versions 4.10.0
and 5.0.1.

SuperLU [10] A sparse LU factorization package available from crd.1bl.gov/~xiaoye/
SuperLU/; it provides sequential factorization and triangular system solution for
single and double precision, real and complex data. We tested versions 4.3 and 5.0.
If you installed BLAS from ATLAS, remember to define the BLASLIB variable
in the make.inc file.

SuperLU _Dist [18] A sparse LU factorization package available from the same site
as SuperLU; it provides parallel factorization and triangular system solution for
double precision real and complex data. We tested versions 3.3 and 4.2. If you
installed BLAS from ATLAS, remember to define the BLASLIB variable in the
make.inc file and to add the -std=c99 option to the C compiler options. Note
that this library requires the ParMETIS library for parallel graph partitioning
and fill-reducing matrix ordering, available from glaros.dtc.umn.edu/gkhome/
metis/parmetis/overview.

3.3 Configuration options

In order to build MLD2P4, the first step is to use the configure script in the main
directory to generate the necessary makefile.
As a minimal example consider the following:

./configure --with-psblas=PSB-INSTALL-DIR

faculty.cse.tamu.edu/davis/suitesparse.html
mumps.enseeiht.fr
crd.lbl.gov/~xiaoye/SuperLU/
crd.lbl.gov/~xiaoye/SuperLU/
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

MLD2P4 USER’S AND REFERENCE GUIDE

which assumes that the various MPI compilers and support libraries are available in
the standard directories on the system, and specifies only the PSBLAS install directory

(note that the

latter directory must be specified with an absolute path). The full set

of options may be looked at by issuing the command ./configure --help, which

produces:
‘configure’

Usage: ./con

configures MLD2P4 2.1 to adapt to many kinds of systems.

figure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as

VAR=VALUE.

Defaults for

See below for descriptions of some of the useful variables.

the options are specified in brackets.

Configuration:
-h, —--help display this help and exit
--help=short display options specific to this package
--help=recursive display the short help of all the included packages
-V, --version display version information and exit
-q, —-quiet, --silent do not print ‘checking...’ messages
--cache-file=FILE cache test results in FILE [disabled]
-C, ——config-cache alias for ‘--cache-file=config.cache’
-n, —--no-create do not create output files
--srcdir=DIR find the sources in DIR [configure dir or ‘..’]
Installation directories:
—--prefix=PREFIX install architecture-independent files in PREFIX
[/usr/locall
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]
By default, ‘make install’ will install all the files in
¢/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify
an installation prefix other than ‘/usr/local’ using ‘--prefix’,
for instance ‘--prefix=$HOME’.
For better control, use the options below.
Fine tuning of the installation directories:
--bindir=DIR user executables [EPREFIX/bin]
--sbindir=DIR system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]
--sysconfdir=DIR read-only single-machine data [PREFIX/etc]

3 CONFIGURING AND BuIlLDING MLD2P4 7

—--sharedstatedir=DIR
—--localstatedir=DIR
--1ibdir=DIR
—-includedir=DIR
—--oldincludedir=DIR
-—datarootdir=DIR
—--datadir=DIR
—--infodir=DIR
—-localedir=DIR
--mandir=DIR
-—docdir=DIR
—--htmldir=DIR
—-—dvidir=DIR
--pdfdir=DIR
--psdir=DIR

Program names:

-—-program-prefix=PREFIX
--program-suffix=SUFFIX

modifiable architecture-independent data [PREFIX/com]
modifiable single-machine data [PREFIX/var]

object code libraries [EPREFIX/1ib]

C header files [PREFIX/include]

C header files for non-gcc [/usr/include]

read-only arch.-independent data root [PREFIX/share]
read-only architecture-independent data [DATAROOTDIR]
info documentation [DATAROOTDIR/infol
locale-dependent data [DATAROOTDIR/localel

man documentation [DATAROOTDIR/man]

documentation root [DATAROOTDIR/doc/mld2p4]

html documentation [DOCDIR]

dvi documentation [DOCDIRI]

pdf documentation [DOCDIR]

ps documentation [DOCDIR]

prepend PREFIX to installed program names
append SUFFIX to installed program names

--program-transform-name=PROGRAM run sed PROGRAM on installed program names

Optional Features:

--disable-option-checking ignore unrecognized --enable/--with options

--disable-FEATURE
--enable-FEATURE [=ARG]

do not include FEATURE (same as --enable-FEATURE=no)
include FEATURE [ARG=yes]

--disable-dependency-tracking speeds up one-time build
--enable-dependency-tracking do not reject slow dependency extractors

--enable-serial
--enable-long-integers

Optional Packages:
—-with-PACKAGE [=ARG]
--without-PACKAGE
--with-psblas=DIR

Specify whether to enable a fake mpi library to run
in serial mode.
Specify usage of 64 bits integers.

use PACKAGE [ARG=yes]

do not use PACKAGE (same as --with-PACKAGE=no)
The install directory for PSBLAS, for example,
--with-psblas=/opt/packages/psblas-3.5

--with-psblas-incdir=DIR

Specify the directory for PSBLAS includes.

--with-psblas-libdir=DIR

--with-ccopt

--with-fcopt

Specify the directory for PSBLAS library.
additional CCOPT flags to be added: will prepend
to CCOPT

additional FCOPT flags to be added: will prepend
to FCOPT

—--with-1libs

--with-clibs
--with-flibs
--with-library-path
--with-include-path
--with-module-path
--with-extra-libs
--with-blas=<1ib>
--with-blasdir=<dir>
--with-lapack=<1ib>
--with-mumps=LIBNAME

--with-mumpsdir=DIR

--with-mumpsincdir=DIR
--with-mumpslibdir=DIR
--with-umfpack=LIBNAME

-—with-umfpackdir=DIR

MLD2P4 USER’S AND REFERENCE GUIDE

List additional link flags here. For example,
--with-libs=-1special_system_lib or
--with-libs=-L/path/to/libs

additional CLIBS flags to be added: will prepend
to CLIBS

additional FLIBS flags to be added: will prepend
to FLIBS

additional LIBRARYPATH flags to be added: will
prepend to LIBRARYPATH

additional INCLUDEPATH flags to be added: will
prepend to INCLUDEPATH

additional MODULE_PATH flags to be added: will
prepend to MODULE_PATH

List additional link flags here. For example,
--with-extra-libs=-1lspecial_system_lib or
--with-extra-libs=-L/path/to/libs

use BLAS library <1lib>

search for BLAS library in <dir>

use LAPACK library <1lib>

Specify the libname for MUMPS. Default: autodetect
with minimum "-lmumps_common -lpord"

Specify the directory for MUMPS library and
includes. Note: you will need to add auxiliary
libraries with —--extra-libs; this depends on how
MUMPS was configured and installed, at a minimum you
will need SCALAPACK and BLAS

Specify the directory for MUMPS includes.
Specify the directory for MUMPS library.

Specify the library name for UMFPACK and its support
libraries. Default: "-lumfpack -lamd"

Specify the directory for UMFPACK library and
includes.

--with-umfpackincdir=DIR

Specify the directory for UMFPACK includes.

--with-umfpacklibdir=DIR

--with-superlu=LIBNAME

--with-superludir=DIR

--with-superluincdir=DIR

--with-superlulibdir=DIR

Specify the directory for UMFPACK library.
Specify the library name for SUPERLU library.
Default: "-lsuperlu"

Specify the directory for SUPERLU library and
includes.

Specify the directory for SUPERLU includes.

Specify the directory for SUPERLU library.

3 CONFIGURING AND BuIlLDING MLD2P4 9

--with-superludist=LIBNAME
Specify the libname for SUPERLUDIST library.
Requires you also specify SuperLU. Default:
"-1superlu_dist"
--with-superludistdir=DIR
Specify the directory for SUPERLUDIST library and
includes.
--with-superludistincdir=DIR
Specify the directory for SUPERLUDIST includes.
--with-superludistlibdir=DIR
Specify the directory for SUPERLUDIST library.

Some influential environment variables:

FC Fortran compiler command

FCFLAGS Fortran compiler flags

LDFLAGS linker flags, e.g. -L<1ib dir> if you have libraries in a
nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -1<library>

cC C compiler command

CFLAGS C compiler flags

CPPFLAGS C/C++/0Objective C preprocessor flags, e.g. -I<include dir> if
you have headers in a nonstandard directory <include dir>

MPICC MPI C compiler command
MPIFC MPI Fortran compiler command
CPP C preprocessor

Use these variables to override the choices made by ‘configure’ or to help
it to find libraries and programs with nonstandard names/locations.

Report bugs to <bugreport@mld2p4.it>.

For instance, if a user has built and installed PSBLAS 3.5 under the /opt directory
and is using the SuiteSparse package (which includes UMFPACK), then MLD2P4 might
be configured with:

./configure --with-psblas=/opt/psblas-3.5/ \
--with-umfpackincdir=/usr/include/suitesparse/

Once the configure script has completed execution, it will have generated the file
Make.inc which will then be used by all Makefiles in the directory tree; this file will be
copied in the install directory under the name Make.inc.MLD2P4.
To use the MUMPS solver package, the user has to add the appropriate options
to the configure script; by default we are looking for the libraries ~1dmumps -lsmumps
-1zmumps -lcmumps -mumps_common -lpord. MUMPS often uses additional pack-
ages such as ScaLAPACK, ParMETIS, SCOTCH, as well as enabling OpenMP; in such
cases it is necessary to add linker options with the ——with-extra-1libs configure option.

10 MLD2P4 USER’S AND REFERENCE GUIDE

To build the library the user will now enter
make
followed (optionally) by

make install

3.4 Bug reporting
If you find any bugs in our codes, please send an email to

pasqua.dambra@cnr.it
daniela.diserafino@unicampania.it
salvatore.filippone@cranfield.ac.uk

You should be aware that the amount of information needed to reproduce a problem in
a parallel program may vary quite a lot.

3.5 Example and test programs

The package contains the examples and tests directories; both of them are further
divided into fileread and pdegen subdirectories. Their purpose is as follows:

examples contains a set of simple example programs with a predefined choice of precon-
ditioners, selectable via integer values. These are intended to get an acquaintance
with the multi-level preconditioners available in MLD2P4.

tests contains a set of more sophisticated examples that will allow the user, via the
input files in the runs subdirectories, to experiment with the full range of precon-
ditioners implemented in the package.

The fileread directories contain sample programs that read sparse matrices from
files, according to the Matrix Market or the Harwell-Boeing storage format; the pdegen
programs generate matrices in full parallel mode from the discretization of a sample
partial differential equation.

4 MULTIGRID BACKGROUND 11

4 Multigrid Background

Multigrid preconditioners, coupled with Krylov iterative solvers, are widely used in
the parallel solution of large and sparse linear systems, because of their optimality in
the solution of linear systems arising from the discretization of scalar elliptic Partial
Differential Equations (PDEs) on regular grids. Optimality, also known as algorithmic
scalability, is the property of having a computational cost per iteration that depends
linearly on the problem size, and a convergence rate that is independent of the problem
size.

Multigrid preconditioners are based on a recursive application of a two-grid process
consisting of smoother iterations and a coarse-space (or coarse-level) correction. The
smoothers may be either basic iterative methods, such as the Jacobi and Gauss-Seidel
ones, or more complex subspace-correction methods, such as the Schwarz ones. The
coarse-space correction consists of solving, in an appropriately chosen coarse space, the
residual equation associated with the approximate solution computed by the smoother,
and of using the solution of this equation to correct the previous approximation. The
transfer of information between the original (fine) space and the coarse one is per-
formed by using suitable restriction and prolongation operators. The construction of
the coarse space and the corresponding transfer operators is carried out by applying
a so-called coarsening algorithm to the system matrix. Two main approaches can be
used to perform coarsening: the geometric approach, which exploits the knowledge of
some physical grid associated with the matrix and requires the user to define transfer
operators from the fine to the coarse level and vice versa, and the algebraic approach,
which builds the coarse-space correction and the associate transfer operators using only
matrix information. The first approach may be difficult when the system comes from
discretizations on complex geometries; furthermore, ad hoc one-level smoothers may be
required to get an efficient interplay between fine and coarse levels, e.g., when matrices
with highly varying coefficients are considered. The second approach performs a fully
automatic coarsening and enforces the interplay between fine and coarse level by suit-
ably choosing the coarse space and the coarse-to-fine interpolation (see, e.g., [3, 23, 21]
for details.)

MLD2P4 uses a pure algebraic approach, based on the smoothed aggregation algo-
rithm [2, 25], for building the sequence of coarse matrices and transfer operators, start-
ing from the original one. A decoupled version of this algorithm is implemented, where
the smoothed aggregation is applied locally to each submatrix [24]. A brief description
of the AMG preconditioners implemented in MLD2P4 is given in Sections 4.1-4.3. For
further details the reader is referred to [4, 5, 7, 8].

We note that optimal multigrid preconditioners do not necessarily correspond to
minimum execution times in a parallel setting. Indeed, to obtain effective parallel
multigrid preconditioners, a tradeoff between the optimality and the cost of building
and applying the smoothers and the coarse-space corrections must be achieved. Effective
parallel preconditioners require algorithmic scalability to be coupled with implementa-
tion scalability, i.e., a computational cost per iteration which remains (almost) constant
as the number of parallel processors increases.

12 MLD2P4 USER’S AND REFERENCE GUIDE

4.1 AMG preconditioners

In order to describe the AMG preconditioners available in MLD2P4, we consider a
linear system

Az = b, (2)

where A = (a;5) € R™ ™ is a nonsingular sparse matrix; for ease of presentation we
assume A is real, but the results are valid for the complex case as well.

Let us assume as finest index space the set of row (column) indices of A, i.e.,
Q ={1,2,...,n}. Any algebraic multilevel preconditioners implemented in MLD2P4
generates a hierarchy of index spaces and a corresponding hierarchy of matrices,

A=0>02>...oqMev, A=A A% . AMev,

by using the information contained in A, without assuming any knowledge of the geom-
etry of the problem from which A originates. A vector space R is associated with QF,
where ny, is the size of QF. For all k < nlev, a restriction operator and a prolongation
one are built, which connect two levels k£ and k + 1:

Pk c Rnkxnk+1’ Rk c Rnk+1 Xnk;

the matrix A**1 is computed by using the previous operators according to the Galerkin
approach, i.e.,
AR — Rk gk pk.

R* = (P")T in the current implementation of MLD2P4. A smoother with iteration
matrix MF is set up at each level k < nlev, and a solver is set up at the coarsest level,
so that they are ready for application (for example, setting up a solver based on the LU
factorization means computing and storing the L and U factors). The construction of
the hierarchy of AMG components described so far corresponds to the so-called build
phase of the preconditioner.

The components produced in the build phase may be combined in several ways to
obtain different multilevel preconditioners; this is done in the application phase, i.e., in
the computation of a vector of type w = B~'v, where B denotes the preconditioner,
usually within an iteration of a Krylov solver [20]. An example of such a combination,
known as V-cycle, is given in Figure 1. In this case, a single iteration of the same
smoother is used before and after the the recursive call to the V-cycle (i.e., in the pre-
smoothing and post-smoothing phases); however, different choices can be performed.
Other cycles can be defined; in MLD2P4, we implemented the standard V-cycle and
W-cycle [3], and a version of the K-cycle described in [19].

4.2 Smoothed Aggregation

In order to define the prolongator P*, used to compute the coarse-level matrix A*+1,
MLD2P4 uses the smoothed aggregation algorithm described in [2, 25]. The basic idea
of this algorithm is to build a coarse set of indices Q¥1 by suitably grouping the indices
of QF into disjoint subsets (aggregates), and to define the coarse-to-fine space transfer

4 MULTIGRID BACKGROUND 13

procedure V-cycle (k, AR b uk)
if (k # nlev) then
uF = uk + M* (bk — Akuk)
bk—l—l — Rk+1 (bk _ Akuk)
uM 1l = Vcycle(k + 1, AFF1 pFF1 0)
W
uf = uF + MF (bk — Akuk)

else
uk = (AR) 7
endif
return u”
end

Figure 1: Application phase of a V-cycle preconditioner.

operator P* by applying a suitable smoother to a simple piecewise constant prolongation
operator, with the aim of improving the quality of the coarse-space correction.
Three main steps can be identified in the smoothed aggregation procedure:

1. aggregation of the indices of Q¥ to obtain QF*!;
2. construction of the prolongator P¥;
3. application of P¥ and R* = (P*)T to build A+,

In order to perform the coarsening step, the smoothed aggregation algorithm de-
scribed in [25] is used. In this algorithm, each index j € Q**! corresponds to an
aggregate Qg“ of Q¥ consisting of a suitably chosen index i € QF and indices that are
(usually) contained in a strongly-coupled neighborood of i, i.e.,

k k k . k .
Qjcwe)—{rea k| > 0 razazfr\}u{z}, 3)

for a given threshold 6 € [0,1] (see [25] for the details). Since this algorithm has a
sequential nature, a decoupled version of it is applied, where each processor indepen-
dently executes the algorithm on the set of indices assigned to it in the initial data
distribution. This version is embarrassingly parallel, since it does not require any data
communication. On the other hand, it may produce some nonuniform aggregates and
is strongly dependent on the number of processors and on the initial partitioning of the
matrix A. Nevertheless, this parallel algorithm has been chosen for MLD2P4, since it
has been shown to produce good results in practice [5, 7, 24].

14 MLD2P4 USER’S AND REFERENCE GUIDE

The prolongator P* is built starting from a tentative prolongator P* € R™*™k+1,

defined as N
- 1 ifi € QF
Pk — (pF. i — 3

(Pij): - Py 0 otherwise,

where Q;“ is the aggregate of QF corresponding to the index j € QFf!. P* is obtained

by applying to P* a smoother S* € R™ X"
k_ gk ph.

in order to remove nonsmooth components from the range of the prolongator, and hence
to improve the convergence properties of the multi-level method [2, 23]. A simple choice
for S* is the damped Jacobi smoother:

Sk . wk(Dk)flAk’

where D* is the diagonal matrix with the same diagonal entries as A Ak = (dfj) is
the filtered matrix defined as
ke k
_k aj; ifjeNFO), .. _k k kE -k
;5 = { 0” otherwi;e (J # 1), Qi = QA — Z(aij - aij)v (4)

i

and w” is an approximation of 4/(3p"), where p¥ is the spectral radius of (D*)~1 A%, [2].
In MLD2P4 this approximation is obtained by using || A% ||~ as an estimate of p*. Note
that for systems coming from uniformly elliptic problems, filtering the matrix A* has

little or no effect, and A¥ can be used instead of A’f;. The latter choice is the default in
MLD2P4.

4.3 Smoothers and coarsest-level solvers

The smoothers implemented in MLD2P4 include the Jacobi and block-Jacobi methods,
a hybrid version of the forward and backward Gauss-Seidel methods, and the additive
Schwarz (AS) ones (see, e.g., [20, 21]).

The hybrid Gauss-Seidel version is considered because the original Gauss-Seidel
method is inherently sequential. At each iteration of the hybrid version, each parallel
process uses the most recent values of its own local variables and the values of the
non-local variables computed at the previous iteration, obtained by exchanging data
with other processes before the beginning of the current iteration.

In the AS methods, the index space QF is divided into mj subsets Qf of size ny,
possibly overlapping. For each 7 we consider the restriction operator Rf € Rk X7k
that maps a vector z* to the vector xf made of the components of z* with indices in
Qk and the prolongation operator Pk (Rk) These operators are then used to build
Ak RFAFPE which is the restriction of A* to the index space QF. The classical AS

(2
precondltloner Mk g is defined as

(Mfs)™ Zpk (A7) ~'RY,

4 MULTIGRID BACKGROUND 15

where Af is supposed to be nonsingular. We observe that an approximate inverse of Af
is usually considered instead of (AF)~!. The setup of M¥%¢ during the multilevel build
phase involves

e the definition of the index subspaces Qf and of the corresponding operators Rf
(and PF);

e the computation of the submatrices Af ;

e the computation of their inverses (usually approximated through some form of
incomplete factorization).

The computation of zF = M]flswk , with w* € R™, during the multilevel application
phase, requires

e the restriction of w¥ to the subspaces R, i.e. wf = wak;

e the computation of the vectors zF = (AF)~ 1wk,

e the prolongation and the sum of the previous vectors, i.e. zF = ok Pisz .

Variants of the classical AS method, which use modifications of the restriction and pro-
longation operators, are also implemented in MLD2P4. Among them, the Restricted AS
(RAS) preconditioner usually outperforms the classical AS preconditioner in terms of
convergence rate and of computation and communication time on parallel distributed-
memory computers, and is therefore the most widely used among the AS precondition-
ers [6].

Direct solvers based on sparse LU factorizations, implemented in the third-party
libraries reported in Section 3.2, can be applied as coarsest-level solvers by MLD2P4.
Native inexact solvers based on incomplete LU factorizations, as well as Jacobi, hybrid
(forward) Gauss-Seidel, and block Jacobi preconditioners are also available. Direct
solvers usually lead to more effective preconditioners in terms of algorithmic scalability;
however, this does not guarantee parallel efficiency.

16

MLD2P4 USER’S AND REFERENCE GUIDE

5 Getting Started

We describe the basics for building and applying MLD2P4 one-level and multi-level
(i.e., AMG) preconditioners with the Krylov solvers included in PSBLAS [13]. The
following steps are required:

1.

Declare the preconditioner data structure. It is a derived data type, mld_xprec_
type, where x may be s, d, ¢ or z, according to the basic data type of the sparse
matrix (s = real single precision; d = real double precision; ¢ = complex single
precision; z = complex double precision). This data structure is accessed by the
user only through the MLD2P4 routines, following an object-oriented approach.

. Allocate and initialize the preconditioner data structure, according to a precon-

ditioner type chosen by the user. This is performed by the routine init, which
also sets defaults for each preconditioner type selected by the user. The precondi-
tioner types and the defaults associated with them are given in Table 1, where the
strings used by init to identify the preconditioner types are also given. Note that
these strings are valid also if uppercase letters are substituted by corresponding
lowercase ones.

. Modify the selected preconditioner type, by properly setting preconditioner param-

eters. This is performed by the routine set. This routine must be called only if
the user wants to modify the default values of the parameters associated with the
selected preconditioner type, to obtain a variant of that preconditioner. Examples
of use of set are given in Section 5.1; a complete list of all the preconditioner pa-
rameters and their allowed and default values is provided in Section 6, Tables 2-8.

Build the preconditioner for a given matriz. If the selected preconditioner is multi-
level, then two steps must be performed, as specified next.

4.1 Build the aggregation hierarchy for a given matriz. This is performed by the
routine hierarchy_build.

4.2 Build the preconditioner for a given matriz. This is performed by the routine
smoothers_build.

If the selected preconditioner is one-level, it is built in a single step, performed by
the routine bld.

Apply the preconditioner at each iteration of a Krylov solver. This is performed by
the routine aply. When using the PSBLAS Krylov solvers, this step is completely
transparent to the user, since aply is called by the PSBLAS routine implementing
the Krylov solver (psb_krylov).

Free the preconditioner data structure. This is performed by the routine free.
This step is complementary to step 1 and should be performed when the precon-
ditioner is no more used.

5 GETTING STARTED 17

All the previous routines are available as methods of the preconditioner object. A
detailed description of them is given in Section 6. Examples showing the basic use of
MLD2P4 are reported in Section 5.1.

TYPE STRING DEFAULT PRECONDITIONER
No preconditioner | ’NOPREC’ | Considered only to use the PSBLAS Krylov
solvers with no preconditioner.

Diagonal ’DIAG’ or | Diagonal preconditioner. For any zero diagonal
> JACOBI’ entry of the matrix to be preconditioned, the cor-
responding entry of the preconditioner is set to 1.

Block Jacobi ’BJAC’ Block-Jacobi with ILU(0) on the local blocks.

Additive Schwarz | ’AS’ Restricted Additive Schwarz (RAS), with over-
lap 1 and ILU(0) on the local blocks.

Multilevel *ML° V-cycle with one hybrid forward Gauss-Seidel

(GS) sweep as pre-smoother and one hybrid back-
ward GS sweep as post-smoother, basic smoothed
aggregation as coarsening algorithm, and LU
(plus triangular solve) as coarsest-level solver.
See the default values in Tables 2-8 for further
details of the preconditioner.

Table 1: Preconditioner types, corresponding strings and default choices.

Note that the module m1d_prec_mod, containing the definition of the preconditioner
data type and the interfaces to the routines of MLD2P4, must be used in any program
calling such routines. The modules psb_base_mod, for the sparse matrix and commu-
nication descriptor data types, and psb_krylov_mod, for interfacing with the Krylov
solvers, must be also used (see Section 5.1).

Remark 1. Coarsest-level solvers based on the LU factorization, such as those
implemented in UMFPACK, MUMPS, SuperLU, and SuperLU_Dist, usually lead to
smaller numbers of preconditioned Krylov iterations than inexact solvers, when the
linear system comes from a standard discretization of basic scalar elliptic PDE problems.
However, this does not necessarily correspond to the smallest execution time on parallel
computers.

5.1 Examples

The code reported in Figure 2 shows how to set and apply the default multi-level
preconditioner available in the real double precision version of MLD2P4 (see Table 1).
This preconditioner is chosen by simply specifying ML’ as the second argument of
P%init (a call to P¥%set is not needed) and is applied with the CG solver provided by
PSBLAS (the matrix of the system to be solved is assumed to be positive definite). As

18 MLD2P4 USER’S AND REFERENCE GUIDE

previously observed, the modules psb_base_mod, mld_prec_mod and psb_krylov_mod
must be used by the example program.

The part of the code concerning the reading and assembling of the sparse matrix
and the right-hand side vector, performed through the PSBLAS routines for sparse
matrix and vector management, is not reported here for brevity; the statements con-
cerning the deallocation of the PSBLAS data structure are neglected too. The complete
code can be found in the example program file m1d_dexample_ml.£90, in the directory
examples/fileread of the MLD2P4 implementation (see Section 3.5). A sample test
problem along with the relevant input data is available in examples/fileread/runs.
For details on the use of the PSBLAS routines, see the PSBLAS User’s Guide [13].

The setup and application of the default multi-level preconditioner for the real
single precision and the complex, single and double precision, versions are obtained with
straightforward modifications of the previous example (see Section 6 for details). If these
versions are installed, the corresponding codes are available in examples/fileread/.

Different versions of the multi-level preconditioner can be obtained by changing
the default values of the preconditioner parameters. The code reported in Figure 3
shows how to set a V-cycle preconditioner which applies 1 block-Jacobi sweep as pre-
and post-smoother, and solves the coarsest-level system with 8 block-Jacobi sweeps.
Note that the ILU(0) factorization (plus triangular solve) is used as local solver for
the block-Jacobi sweeps, since this is the default associated with block-Jacobi and
set by P%init. Furthermore, specifying block-Jacobi as coarsest-level solver implies
that the coarsest-level matrix is distributed among the processes. Figure 4 shows how
to set a W-cycle preconditioner which applies no pre-smoother and 2 Gauss-Seidel
sweeps as post-smoother, and solves the coarsest-level system with the multifrontal LU
factorization implemented in MUMPS. It is specified that the coarsest-level matrix is
distributed, since MUMPS can be used on both replicated and distributed matrices,
and by default it is used on replicated ones. Note the use of the parameter pos to
specify a property only for the pre-smoother or the post-smoother (see Section 6.2
for more details). Note also that a Krylov method different from CG must be used
to solve the preconditioned system, since the preconditione in nonsymmetric. The
code fragments shown in Figures 3 and 4 are included in the example program file
mld_dexample_ml.£f90 too.

Finally, Figure 5 shows the setup of a one-level additive Schwarz preconditioner,
i.e., RAS with overlap 2. The corresponding example program is available in the file
mld_dexample_1llev.£90.

For all the previous preconditioners, example programs where the sparse matrix
and the right-hand side are generated by discretizing a PDE with Dirichlet boundary
conditions are also available in the directory examples/pdegen.

5 GETTING STARTED 19

use psb_base_mod
use mld_prec_mod
use psb_krylov_mod

! sparse matrix
type (psb_dspmat_type) :: A
! sparse matrix descriptor

type (psb_desc_type) :: desc_A
! preconditioner
type (mld_dprec_type) :: P

! right-hand side and solution vectors
type(psb_d_vect_type) :: b, x

! initialize the parallel environment
call psb_init(ictxt)
call psb_info(ictxt,iam,np)

! read and assemble the spd matrix A and the right-hand side b
! using PSBLAS routines for sparse matrix / vector management

]
! initialize the default multi-level preconditioner, i.e. V-cycle
! with basic smoothed aggregation, 1 hybrid forward/backward
I GS sweep as pre/post-smoother and UMFPACK as coarsest-level
! solver
call P%init(°ML’,info)

! build the preconditioner

call Pjhierarchy_build(A,desc_A,info)
call PY%smoothers_build(A,desc_A,info)

! set the solver parameters and the initial guess

! solve Ax=b with preconditioned CG
call psb_krylov(’CG’,A,P,b,x,tol,desc_A,info)

! deallocate the preconditioner
call Pfree(info)

! deallocate other data structures

! exit the parallel environment
call psb_exit(ictxt)
stop

Figure 2: setup and application of the default multi-level preconditioner (example 1).

MLD2P4 USER’S AND REFERENCE GUIDE

! build a V-cycle preconditioner with 1 block-Jacobi sweep (with
! TLUCO) on the blocks) as pre- and post-smoother, and 8 block-Jacobi
! sweeps (with ILU(O) on the blocks) as coarsest-level solver

call Pinit(’ML’,info)

call_PYset (’SMOOTHER_TYPE’,’BJAC’ ,info)

call PYset (’COARSE_SOLVE’,’BJAC’,info)

call PYset(’COARSE_SWEEPS’,8,info)

call P)hierarchy_build(A,desc_A,info)

call PYsmoothers_build(A,desc_A,info)

Figure 3: setup of a multi-level preconditioner

! build a W-cycle preconditioner with 2 Gauss-Seidel sweeps as
! post-smoother (and no pre-smoother), a distributed coarsest
! matrix, and MUMPS as coarsest-level solver

call P%init(°ML’,info)

call P)set (’ML_TYPE’, ’WCYCLE’,info)

call P)set(’SMOOTHER_TYPE’,’GS’,info)

call P)set(’SMOOTHER_SWEEPS’,0,info,pos="PRE’)

call PYset(’SMOOTHER_SWEEPS’,2,info,pos="P0ST’)

call P%set(’COARSE_SOLVE’, ’MUMPS’,info)

call P%set(’COARSE_MAT’,’DIST’,info)

call P}hierarchy_build(A,desc_A,info)

call PY%smoothers_build(A,desc_A,info)

! solve Ax=b with preconditioned BiCGSTAB
call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)

Figure 4: setup of a multi-level preconditioner

! set RAS with overlap 2 and ILU(O) on the local blocks
call P%init(’AS’,info)
call PY%set(’SUB_OVR’,2,info)
call P%bld(A,desc_A,info)

Figure 5: setup of a one-level Schwarz preconditioner.

6 USER INTERFACE 21

6 User Interface

The basic user interface of MLD2P4 consists of eight routines. The six routines init,
set, hierarchy_build, smoothers_build, bld, and apply encapsulate all the function-
alities for the setup and the application of any multi-level and one-level preconditioner
implemented in the package. The routine free deallocates the preconditioner data
structure, while descr prints a description of the preconditioner setup by the user.

All the routines are available as methods of the preconditioner object. For each
routine, the same user interface is overloaded with respect to the real/ complex case
and the single/double precision; arguments with appropriate data types must be passed
to the routine, i.e.,

e the sparse matrix data structure, containing the matrix to be preconditioned,
must be of type psb_zspmat_type with = s for real single precision, z = d
for real double precision, z = c for complex single precision, £ = z for complex
double precision;

e the preconditioner data structure must be of type mld_xprec_type, with z = s,
d, c, z, according to the sparse matrix data structure;

e the arrays containing the vectors v and w involved in the preconditioner applica-
tion w = B~ v must be of type psb_zvect_type with z = s, d, ¢, z, in a manner
completely analogous to the sparse matrix type;

e real parameters defining the preconditioner must be declared according to the
precision of the sparse matrix and preconditioner data structures (see Section 6.2).

A description of each routine is given in the remainder of this section.

22 MLD2P4 USER’S AND REFERENCE GUIDE

6.1 Subroutine init

call p%init(ptype,info)

This routine allocates and initializes the preconditioner p, according to the precondi-
tioner type chosen by the user.

Arguments
ptype character(len=%), intent(in).
The type of preconditioner. Its values are specified in Table 1.
Note that the strings are case insensitive.
info integer, intent (out).
Error code. If no error, 0 is returned. See Section 7 for details.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precinit(p,ptype,info)

6 USER INTERFACE 23

6.2 Subroutine set

call plset(what,val,info [,ilev, ilmax, pos])

This routine sets the parameters defining the preconditioner p. More precisely, the
parameter identified by what is assigned the value contained in val.

Arguments
what

val

info

ilev

ilmax

pos

character(len=x).

The parameter to be set. It can be specified through its name; the string
is case-insensitive. See Tables 2-8.

integer or character(len=x) or real (psb_spk_) or
real(psb_dpk_), intent(in).

The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Tables 2-8. When the value is of
type character(len=x), it is also treated as case insensitive.

integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.
integer, optional, intent(in).

For the multi-level preconditioner, the level at which the preconditioner
parameter has to be set. The levels are numbered in increasing order
starting from the finest one, i.e., level 1 is the finest level. If ilev is not
present, the parameter identified by what is set at all the appropriate
levels (see Tables 2-8).

integer, optional, intent(in).

For the multi-level preconditioner, when both ilev and ilmax are
present, the settings are applied at all levels ilev:ilmax. When ilev
is present but ilmax is not, then the default is ilmax=ilev. The levels
are numbered in increasing order starting from the finest one, i.e., level
1 is the finest level.

charater(len=+*), optional, intent(in).

Whether the other arguments apply only to the pre-smoother (?PRE’) or
to the post-smoother (?’POST”). If pos is not present, the other arguments
are applied to both smoothers. If the preconditioner is one-level or the
parameter identified by what does not concern the smoothers, pos is
ignored.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precset(p,what,val,info)

However, in this case the optional arguments ilev, ilmax, and pos cannot be used.

24 MLD2P4 USER’S AND REFERENCE GUIDE

A variety of preconditioners can be obtained by a suitable setting of the precon-
ditioner parameters. These parameters can be logically divided into four groups, i.e.,
parameters defining

1. the type of multi-level cycle and how many cycles must be applied;
2. the aggregation algorithm;

3. the coarse-space correction at the coarsest level (for multi-level preconditioners
only);

4. the smoother of the multi-level preconditioners, or the one-level preconditioner.

A list of the parameters that can be set, along with their allowed and default values,
is given in Tables 2-8. For a description of the meaning of the parameters, please refer
also to Section 4.

Remark 2. A smoother is usually obtained by combining two objects: a smoother
(SMOOTHER_TYPE) and a local solver (SUB_SOLVE), as specified in Tables 7-8. For ex-
ample, the block-Jacobi smoother using ILU(0) on the blocks is obtained by combining
the block-Jacobi smoother object with the ILU(0) solver object. Similarly, the hybrid
Gauss-Seidel smoother (see Note in Table 7) is obtained by combining the block-Jacobi
smoother object with a single sweep of the Gauss-Seidel solver object, while the point-
Jacobi smoother is the result of combining the block-Jacobi smoother object with a
single sweep of the pointwise-Jacobi solver object. However, for simplicity, shortcuts
are provided to set point-Jacobi, hybrid (forward) Gauss-Seidel, and hybrid backward
Gauss-Seidel, i.e., the previous smoothers can be defined by setting only SMOOTHER_TYPE
to appropriate values (see Tables 7), i.e., without setting SUB_SOLVE too.

The smoother and solver objects are arranged in a hierarchical manner. When
specifying a smoother object, its parameters, including the local solver, are set to their
default values, and when a solver object is specified, its defaults are also set, overriding
in both cases any previous settings even if explicitly specified. Therefore if the user sets
a smoother, and wishes to use a solver different from the default one, the call to set the
solver must come after the call to set the smoother.

Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi
coarsest-level solvers, and shortcuts are available in this case too (see Table 5).

Remark 3. In general, a coarsest-level solver cannot be used with both the repli-
cated and distributed coarsest-matrix layout; therefore, setting the solver after the
layout may change the layout. Similarly, setting the layout after the solver may change
the solver.

More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be
replicated, while SuperLU_Dist requires it to be distributed. In these cases, setting
the coarsest-level solver implies that the layout is redefined according to the solver,
ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel and
block-Jacobi can be applied to replicated and distributed matrices, thus their choice

6 USER INTERFACE 25

does not modify any previously specified layout. It is worth noting that, when the
matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers
reduce to the corresponding local solver objects (see Remark 2). For the point-Jacobi
and Gauss-Seidel solvers, these objects correspond to a single point-Jacobi sweep and
a single Gauss-Seidel sweep, respectively, which are very poor solvers.

On the other hand, the distributed layout can be used with any solver but UMF-
PACK and SuperLU; therefore, if any of these two solvers has already been selected,
the coarsest-level solver is changed to block-Jacobi, with the previously chosen solver
applied to the local blocks. Likewise, the replicated layout can be used with any solver
but SuperLu_Dist; therefore, if SuperLu_Dist has been previously set, the coarsest-level
solver is changed to the default sequential solver.

MLD2P4 USER’S AND REFERENCE GUIDE

26

what DATA TYPE val DEFAULT COMMENTS
’ML_CYCLE’ character(len=x) | *VCYCLE’ >VCYCLE’ Multi-level cycle: V-cycle, W-cycle, K-
’WCYCLE’ cycle, hybrid Multiplicative Schwarz, and
’KCYCLE’ Additive Schwarz.
’MULT’ Note that hybrid Multiplicative Schwarz
>ADD’ is equivalent to V-cycle and is included
for compatibility with previous versions of
MLD2P4.
’OQUTER_SWEEPS’ integer Any integer 1 Number of multi-level cycles.

number > 1

Table 2:

Parameters defining the multi-level cycle and the number of cycles to be applied.

27

6 USER INTERFACE

WI)LIOB[R UOI)eFoISSe oY) Suruyep siojotuered ¢ o[qe],

"STOA9] JO JoqUUNU WNWIXRW payads oY) uey) Io[[eus
9 ARUI S[OAS] JO IOQUINU [RTLJOR O} ‘DI0JOIOY], "POYDLII ST S[9AJ] JO IOUINU WINUWIXRU 1]} IO ‘OIjel SUTUSSIROD WINUIIXRUI
oYY} ‘PIOYSOIYY) 9ZIS 9SIR0OD 91} :JOWL ST BLI)LID SUIMO[[O] oY) JO U0 1Sed] Je Uuoym sdols WILIoF[R UOI)eFoIZFe o, *9I0N

‘(107e3u0701d BATIRIUS)

“9'T) PoYjO0WSUN 10 POY[JO0UWS :TYJLIOSZ «IHLOOWSNA ¢
-Te uorjedordse oy} Aq posn I03e3UO[0I] «AIHIOOKS ¢ ‘ QIHLOOWS ¢ |(*=UST)I930eIRelDd 1094 ¥HOV .
‘[¢z] poyuom
-ordur st euIZOIg pue [PPURIN ‘YoURA Aq
W}LIO3[e UOoIye3doIdde Ie[eds oy} ‘A[jual
-INO WY LIoS[R uoljeSordse jo odAT, WA ¢ ¢ANA ¢ |(x=UST)I9310RIRYD (AdALTEDOV .
LV +V o ureyjed Ajisreds
o1} 09} uoryedaidde pordnooop sorjdde uory
-do DHAWAS oY} -d[qe[reAe ST (DEQ) UON
-e8o133e pordnooep oy} A[uo ‘Ajjusoring) OAANAS .
“WYILIOS[R UOIIRFIZ3R [o[[etred D4d. ‘¢ 0dd. |(*=UST)I910BIRYD CIDHY UV .
"(990N 90s) onyea sy
SoyORal S[Ad] JO Ioquunu oy} J1 sdojs uory 1 < Ioquunu
-e30133% O], "S[OAJ[JO IoUUINU WINUWIIXRIA 02 Iogojur Auy Io8equt <SATT XVN .
"(990N 908)
proyse1yy siyy oy penbe 10 uey) Iomof St
S[OAQ] QATJIOISUOD OM} JB SUOISUSWIP XLI}
-eW 9} Ueamjoq orpel oy} j1 sdojs uory 1<
-e30133® oY T, ‘OljRl SUTUSSIROD WINWIIUIIA Gl Ioqunu Auy Te9x (OIILVY MO NIN.
‘(990N 90s) proyseay) sy} 0p renbo 1o uey) [9A9] }souy oY)
JoMO[ST XLIJRW 95951000 poinduwod 9y) Jo | je XLIjew 9y} JO
so[qelIRA JO IoqUInU [eqo[8 oy} Ji sdojs | umorsuewp oyj SI 0<
uoredaIsse oy, ‘PlOYSAIY) OZIS JsIe0)) | U aIayM ‘[u/ (| pqunu Auy I989qUT (AZIS ASHY0D NI,
SLINHNINOD LINvAadd Tea HdAL VILVA jeyn

MLD2P4 USER’S AND REFERENCE GUIDE

28

what DATA TYPE val DEFAULT COMMENTS
>AGGR_ORD’ character(len=%) ’NATURAL’ ’NATURAL’ Initial ordering of indices for the aggre-
’DEGREE’ gation algorithm: either natural order-
ing or sorted by descending degrees of
the nodes in the matrix graph.
> AGGR_THRESH’ real (kind_parameter) | Any real 0.05 The threshold 6 in the aggregation al-
number € [0, 1] gorithm, see (3) in Section 4.2. See also
the note at the bottom of this table.
>AGGR_FILTER’ character (len=x) ’FILTER’ ’NOFILTER’ Matrix used in computing the smoothed
’NOFILTER’ prolongator: filtered or unfiltered

(see (4) in Section 4.2).

Note. Different thresholds at different levels, such as those used in [25, Section 5.1], can be easily set by invoking the rou-
tine set with the parameter ilev.

Table 4: Parameters defining the aggregation algorithm (continued).

29

6 USER INTERFACE

[9A9] 1S9SIe0O 97} e UOI}I9.LI0D 2ords-9s1000 o} wgﬁgﬁwﬁu SIojouieIed :G 9[qe],

"9SIMIOT)0 (1TT ‘POI[RISUL JT 1'TS USY) ‘POI[RISUI JT SIWAN USY) ‘PAI[RISUI JT JW(— UOISIOA OIS o[qnOp
fOSIMIO30 ATT ‘PO[[EISUI JI (1'TS ULY) ‘PO[[BISUI JI SWAW — UOIsIoA uotstaad of3uls

:19PI0 SUIMO[[O] Y[} UT UASOTD dre FATOSANS ASYYOD Pue IATOS ASUYOD I0] S)Mefd(990N

“uots1001d 9[qNOoP Ul AJUO S[(R[IeAR dIR <ANN ¢
1S NTRedNg pue SOVAAINN YeU) 990N “(9Af0s VIS«
remguetry snid) MOVIANN 10 NTRANS ‘SANNIN ¢ SAWOM ¢
woy NT “(d)NTIN ‘(#'d)ATL ‘()T IA[0S [9A9] NTIN
-)S9SIR0D SB UISOTD ST IQAJOS IQOIR[* JOO[(O} 9SBD Ul ¢INTI.
‘XTIRUL 9SIR0D d[} JO SYDO[([RUOSRIP O} I0] IQA[OS | "9JON 990G (NTI. | (x=UST)I090RIRYD ANTOSINS ~ASHUVOD .
‘uotsard a[qnop ur A[uo
o[qerreae ore 1Sy TANG pue MOVJAIN onrea
OSTL 9} SMO[[R UOTUYM dN[eA }[IIRJOP ® 0} }9S SI INOAR]
XLIJeuW 9y} ‘poyroads ST s1oA[os snotadid o) Jo Aue
U A\ “XLIJRW PINqLIIsIp B I0 poajedl[dol e Io7)Io
)M Posn 9¢ Ued SJWAW ‘PRINLIISIP 9 01 91 o1mb
-1 DYrd pue 9 ‘Td0DVL ‘1SIANTS ‘pojedrdor oq o (OVrd.
XLIJRUI 1S9SIR0OD o1} 9Imbal IS pue WA el 910N ¢SH,
"TqOdR[-¥D0[q 10 [9pIg-ssner) PLqAy «1d00V[.
‘iqooe-quiod :(eafos remguerry snid) 9s1q) T1odng (ISIanIS.
10 GJINNIN WO (T Pomquisp :(eA[os remsue NS
-ty snd) npedng 10 “OVAINND ‘SAINNIN Woly dWN
N1 Terpuonbos :[oAd] 3S0SIROD O} IR POSL IOAJOS | "9JON 909G ¢SAWNW, | (*=UST)I810RICYD «IATOSTISHY0D
"WOY] JO [OrO UO PaJedI[dol I0 S9SS0d ¢ 1dTY .
-o1d o1} 3uoure pajNqLIISIP :JNOAR] XIIJBUI }S9SIR0)) Td9Y (ISIQ. | (x=ueT)Io30eIRYD ¢ LYW ISHUV0D
SINHNWOD | LINvddd Ter HdAL VIVd Jeym

MLD2P4 USER’S AND REFERENCE GUIDE

30

what DATA TYPE val DEFAULT | COMMENTS

> COARSE_SWEEPS’ integer Any integer | 10 Number of sweeps when JACOBI, GS or BJAC
number > 0 is chosen as coarsest-level solver.

>COARSE_FILLIN’ integer Any integer | 0 Fill-in level p of the ILU factorizations.
number > 0

>COARSE_ILUTHRS’ real (kind_parameter) | Any real 0 Drop tolerance ¢ in the ILU(p,t) factoriza-

number > 0

tion.

Table 6: Parameters defining the coarse-space correction at the coarsest level (continued).

31

6 USER INTERFACE

.H@QOESUQOU@HQ [oA9[-9UO0 9} JO S[Te}9p 97} 10 Iojoows 9yl mgwgwwﬁ SIojomreaeJ

1), O1qRL

"ATUO zZIemydg

0 < Iequmu

OAINIPPY 10J ‘sioAe] del1eA0 Jo Ioquuny T | IeSejur Auy Io8equrt <HA0T9NS .
"AToA1300ds
-1 ‘180d(=sod 10 q¥d.=sod Yum Io[}o3
-0} () 03 39S sI IojowreIed SIUY) JI posn
St Iayjoows-3sod 10 I9yjows-oxd ou ‘osed
[PAS]-I3NW oY) U] “IouolIpuodald [oAd] 0 < Iequnu
-9U0 10 I8rjoous o) Jo sdeoms Jo Iaquunn T | 1080jur Auy 1e3equrt « SdAAMS “HAHLOOKS ¢
NN
‘[OpIeS-ssner) PLIGAT UO S[Ie)ap 10§ SIo NS
9joN 998 ‘(eafos remauerry snid) MOV | -UOIIPU0IDId [0Ad[-0UO ¢ SAWNN ¢
-ANN 10 ATedng ‘SIINAIN WOl O | ZIRMIPS SAWIPPY pue VTIN
(DNTIN ‘(20T (4T ‘[PPoS-ssnen) | 1qode-3po[q 10§ ATI 0TI
plemyoeq PLIQAY ‘[opleg-ssner) (pIem.oy) AoAT300dS01 ‘SI10U0T) NI
puqdy ‘rqooep-jurod (g o8ed ‘g yrewey | -Tpuooelid [eAS[-jNUI (SHd,
995) IoUOIIPU0aId [9AS[-OUO 10 ISI00WS | JO sIdfjoours-jsod pue ¢SH.
oY) T[IIM POST 9q O} IOA[os Tedo[oYJ, | -oxd 10] §Hg pue §H (I900VC ¢ | (*=UST)I®1deIeyd «ANTOS™ANS
"SISUOTYTPU0DDId [9AS[-0UO AQ POIOUST ST 9]
"ZIRMTYDS ¢SV
OAIIPPY PU® ‘1qOJR[-DO[] ‘[OPIOg-SSTer) <OVl
premspeq PG4 ‘[OprRg-ssnen (premioy) «S9d¢
pPLIqAY ‘1qooep-jutod :I0UOIIIPU0ISId [9A9] ¢SH.
-y oy} ur pesn toyjoows jo odAf, (8994 (I900Vl . | (#=UST)JI830RIRYD «IdAL YIHIOOKS «
SLNHNINOD LINvddad Tea HdAL VLVd Jeyn

MLD2P4 USER’S AND REFERENCE GUIDE

32

what DATA TYPE val DEFAULT COMMENTS
>SUB_RESTR’ character (len=x) ’HALO’ ’HALO’ Type of restriction operator, for Additive
’NONE’ Schwarz only: HALQO for taking into account the
overlap, NONE for neglecting it.
Note that HALO must be chosen for the classi-
cal Addditive Schwarz smoother and its RAS
variant.
>SUB_PROL’ character (len=x) ’SUM° ’NONE’ Type of prolongation operator, for Additive
’NONE’ Schwarz only: SUM for adding the contributions
from the overlap, NONE for neglecting them.
Note that SUM must be chosen for the classical
Additive Schwarz smoother, and NONE for its
RAS variant.
’SUB_FILLIN’ integer Any integer 0 Fill-in level p of the incomplete LU factoriza-
number > 0 tions.
’SUB_ILUTHRS’ real (kind_parameter) | Any real num- | 0 Drop tolerance ¢ in the ILU(p, t) factorization.

ber > 0

Table 8: Parameters defining the smoother or the details of the one-level preconditioner (continued).

6 USER INTERFACE 33

6.3 Subroutine build

call p¥%build(a,desc_a,info)

This routine builds the one-level preconditioner p according to the requirements made
by the user through the routines init and set (see Sections 6.4 and 6.5 for multi-level
preconditioners).

Arguments

a type (psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that z must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [13].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [13].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precbld(p,what,val,info)

In this case, the routine can be used to build multi-level preconditioners too.

34 MLD2P4 USER’S AND REFERENCE GUIDE

6.4 Subroutine hierarchy build

call pjhierarchy_build(a,desc_a,info)

This routine builds the hierarchy of matrices and restriction/prolongation operators
for the multi-level preconditioner p, according to the requirements made by the user
through the routines init and set.

Arguments

a type (psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that z must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [13].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [13].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

6 USER INTERFACE 35

6.5 Subroutine smoothers_build

call p’%smoothers_build(a,desc_a,p,info)

This routine builds the smoothers and the coarsest-level solvers for the multi-level
preconditioner p, according to the requirements made by the user through the routines
init and set, and based on the aggregation hierarchy produced by a previous call to
hierarchy_build (see Section 6.4).

Arguments

a type(psb_zspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that z must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [13].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [13].

info integer, intent (out).
Error code. If no error, 0 is returned. See Section 7 for details.

36 MLD2P4 USER’S AND REFERENCE GUIDE

6.6 Subroutine apply

call phapply(x,y,desc_a,info [,trans,work])

This routine computes y = op(B~1)z, where B is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its transpose, according to the
value of trans. Note that, when MLD2P4 is used with a Krylov solver from PSBLAS,
phapply is called within the PSBLAS routine psb_krylov and hence it is completely
transparent to the user.

Arguments

X type (kind_parameter) , dimension(:), intent(in).
The local part of the vector . Note that type and kind_parameter must
be chosen according to the real/complex, single/double precision version
of MLD2P4 under use.

y type (kind_parameter) , dimension(:), intent(out).
The local part of the vector y. Note that type and kind_parameter must
be chosen according to the real /complex, single/double precision version
of MLD2P4 under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent (out).
Error code. If no error, 0 is returned. See Section 7 for details.

trans character(len=1), optional, intent(in).
If trans = ’N’,’n’ then op(B~!) = B~!; if trans = ’T’,’t’ then
op(B~1) = B~T (transpose of B~!); if trans = °C’, ’c’ then op(B~!) =
B~C (conjugate transpose of B~1).

work type (kind_parameter) , dimension(:), optional, target.
Workspace. Its size should be at least 4 * psb_cd_get_local_
cols(desc_a) (see the PSBLAS User’s Guide). Note that type and
kind_parameter must be chosen according to the real/complex, sin-
gle/double precision version of MLD2P4 under use.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precaply(p,what,val,info)

6 USER INTERFACE 37

6.7 Subroutine free

call pifree(p,info)
This routine deallocates the preconditioner data structure p.

Arguments

info integer, intent (out).
Error code. If no error, 0 is returned. See Section 7 for details.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precfree(p,info)

38 MLD2P4 USER’S AND REFERENCE GUIDE

6.8 Subroutine descr
call plkdescr(info, [iout])
This routine prints a description of the preconditioner p to the standard output or to

a file. It must be called after hierachy_build and smoothers_build, or build, have
been called.

Arguments
info integer, intent (out).
Error code. If no error, 0 is returned. See Section 7 for details.
iout integer, intent(in), optional.

The id of the file where the preconditioner description will be printed;
the default is the standard output.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precdescr(p,info [,iout])

7 ERROR HANDLING 39

7 Error Handling

The error handling in MLD2P4 is based on the PSBLAS (version 2) error handling.
Error conditions are signaled via an integer argument info; whenever an error condition
is detected, an error trace stack is built by the library up to the top-level, user-callable
routine. This routine will then decide, according to the user preferences, whether the
error should be handled by terminating the program or by returning the error condition
to the user code, which will then take action, and whether an error message should be
printed. These options may be set by using the PSBLAS error handling routines; for
further details see the PSBLAS User’s Guide [13].

40 MLD2P4 USER’S AND REFERENCE GUIDE

A License

The MLD2P4 is freely distributable under the following copyright terms:

MLD2P4 version 2.1
MultilLevel Domain Decomposition Parallel Preconditioners Package
based on PSBLAS (Parallel Sparse BLAS version 3.4)

(C) Copyright 2008, 2010, 2012, 2017

Salvatore Filippone Cranfield University, Cranfield, UK
Ambra Abdullahi Hassan University of Rome Tor Vergata, Rome, IT

Alfredo Buttari CNRS-IRIT, Toulouse, FR
Pasqua D’Ambra IAC-CNR, Naples, IT
Daniela di Serafino University of Campania L. Vanvitelli, Caserta, IT

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

¢¢“AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

REFERENCES 41

References

[1]

P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L’Excellent, C. Weisbecker,
Improving multifrontal methods by means of block low-rank representations, STAM
Journal on Scientific Computing, volume 37 (3), 2015, A1452-A1474. See also
http://mumps.enseeiht.fr.

M. Brezina, P. Vanék, A Black-Box Iterative Solver Based on a Two-Level Schwarz
Method, Computing, 63, 1999, 233-263.

W. L. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial, Second Edi-
tion, STAM, 2000.

A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Eztending PSBLAS to Build
Parallel Schwarz Preconditioners, in J. Dongarra, K. Madsen, J. Wasniewski, edi-
tors, Proceedings of PARA 04 Workshop on State of the Art in Scientific Comput-
ing, Lecture Notes in Computer Science, Springer, 2005, 593-602.

A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P/4: a package of
high-performance preconditioners for scientific and engineering applications, Ap-
plicable Algebra in Engineering, Communications and Computing, 18 (3) 2007,
223-239.

X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for General
Sparse Linear Systems, SIAM Journal on Scientific Computing, 21 (2), 1999, 792
797.

P. D’Ambra, S. Filippone, D. di Serafino, On the Development of PSBLAS-based
Parallel Two-level Schwarz Preconditioners, Applied Numerical Mathematics, El-
sevier Science, 57 (11-12), 2007, 1181-1196.

P. D’Ambra, D. di Serafino, S. Filippone, MLD2P/: a Package of Parallel Multi-
level Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM Trans.
Math. Softw., 37(3), 2010, art. 30.

T. A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal
Method with a Column Pre-ordering Strategy, ACM Transactions on Mathematical
Software, 30, 2004, 196-199. (See also http://www.cise.ufl.edu/ davis/)

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu, A supern-
odal approach to sparse partial pivoting, STAM Journal on Matrix Analysis and
Applications, 20 (3), 1999, 720-755.

J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, A set of Level 3 Basic
Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 16 (1)
1990, 1-17.

42

[12]

[22]

23]

[24]

[25]

MLD2P4 USER’S AND REFERENCE GUIDE

J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An extended set of
FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Mathemat-
ical Software, 14 (1) 1988, 1-17.

S. Filippone, A. Buttari, PSBLAS-3.0 User’s Guide. A Reference
Guide for the Parallel Sparse BLAS Library, 2012, available from
http://www.ce.uniroma2.it/psblas/.

S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matriz Computa-
tions in Fortran 2003. ACM Transactions on on Mathematical Software, 38 (4),
2012, art. 23.

S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra Com-
putation on Sparse Matrices, ACM Transactions on Mathematical Software, 26 (4),
2000, 527-550.

W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions, MIT
Press, 1998.

C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear Algebra Sub-
programs for FORTRAN usage, ACM Transactions on Mathematical Software, 5
(3), 1979, 308-323.

X. S. Li, J. W. Demmel, SuperLU_DIST: A Scalable Distributed-memory Sparse
Direct Solver for Unsymmetric Linear Systems, ACM Transactions on Mathemat-
ical Software, 29 (2), 2003, 110-140.

Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numerical
Linear Algebra with Applications, 15 (5), 2008, 473-487.

Y. Saad, Iterative methods for sparse linear systems, 2nd edition, STAM, 2003.

B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Fquations, Cambridge University Press,
1996.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference. Volume 1 - The MPI Core, second edition, MIT Press, 1998.

K. Stiiben, An Introduction to Algebraic Multigrid, in A. Schiiller, U. Trottenberg,
C. Oosterlee, Multigrid, Academic Press, 2001.

R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation
Strategies on Massively Parallel Machines, in J. Donnelley, editor, Proceedings of
SuperComputing 2000, Dallas, 2000.

P. Vanék, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed Aggregation for
Second and Fourth Order Elliptic Problems, Computing, 56 (3) 1996, 179-196.

	MLD2P4 User's and Reference Guide
	Abstract
	1 General Overview
	2 Code Distribution
	3 Configuring and Building MLD2P4
	3.1 Prerequisites
	3.2 Optional third party libraries
	3.3 Configuration options
	3.4 Bug reporting
	3.5 Example and test programs

	4 Multigrid Background
	4.1 AMG preconditioners
	4.2 Smoothed Aggregation
	4.3 Smoothers and coarsest-level solvers

	5 Getting Started
	5.1 Examples

	6 User Interface
	6.1 Subroutine init
	6.2 Subroutine set
	6.3 Subroutine build
	6.4 Subroutine hierarchy_build
	6.5 Subroutine smoothers_build
	6.6 Subroutine apply
	6.7 Subroutine free
	6.8 Subroutine descr

	7 Error Handling
	A License
	References

