
MLD2P4
User’s and Reference

Guide

A guide for the Multi-Level Domain
Decomposition

Parallel Preconditioners Package based on
PSBLAS

Pasqua D’Ambra
ICAR-CNR, Naples, Italy

Daniela di Serafino
Second University of Naples, Italy

Salvatore Filippone
University of Rome “Tor Vergata”, Italy

Software version: 1.0
June 18, 2008

i

Abstract

MLD2P4 (Multi-Level Domain Decomposition
Parallel Preconditioners Package based on PS-
BLAS) is a package of parallel algebraic multi-level precon-
ditioners. It implements various versions of one-level addi-
tive and of multi-level additive and hybrid Schwarz algo-
rithms. In the multi-level case, a purely algebraic approach
is applied to generate coarse-level corrections, so that no
geometric background is needed concerning the matrix to
be preconditioned. The matrix is required to be square,
real or complex, with a symmetric sparsity pattern

MLD2P4 has been designed to provide scalable and
easy-to-use preconditioners in the context of the PSBLAS
(Parallel Sparse Basic Linear Algebra Subprograms) com-
putational framework and can be used in conjuction with
the Krylov solvers available in this framework. MLD2P4
enables the user to easily specify different aspects of a
generic algebraic multilevel Schwarz preconditioner, thus
allowing to search for the “best” preconditioner for the
problem at hand. The package has been designed em-
ploying object-oriented techniques, using Fortran 95 and
MPI, with interfaces to additional external libraries such
as UMFPACK, SuperLU and SuperLU Dist, that can be
exploited in building multi-level preconditioners.

This guide provides a brief description of the function-
alities and the user interface of MLD2P4.

ii

iii

Contents

1 General Overview 1

2 Notational Conventions 3

3 Code Distribution 4

4 Configuring and Building MLD2P4 5

5 Getting Started 6
5.1 Examples . 7

6 User Interface 12
6.1 Subroutine mld precinit 12
6.2 Subroutine mld precset 13

6.2.1 List of the preconditioner parameters . . . 16
6.3 Preconditioner Application 19

7 Advanced Use 21

8 Error Handling 22

9 List of Routines 23

iv

1 General Overview 1

1 General Overview

The Multi-Level Domain Decomposition Parallel Pre-
conditioners Package based on PSBLAS (MLD2P4) pro-
vides multi-level Schwarz preconditioners [?], to be used in the
iterative solutions of sparse linear systems:

Ax = b, (1)

where A is a square, real or complex, sparse matrix with a sym-
metric sparsity pattern. These preconditioners have the following
general features:

• both additive and hybrid multilevel variants, i.e. multiplica-
tive among the levels and additive inside a level, are im-
plemented; the basic additive Schwarz preconditioners are
obtained by considering only one level;

• a purely algebraic approach is used to generate a sequence
of coarse-level corrections to a basic preconditioner, with-
out explicitly using any information on the geometry of
the original problem (e.g. the discretization of a PDE).
The smoothed aggregation technique is applied as algebraic
coarsening strategy [?, ?].

The package is written in Fortran 95, following an object-
oriented approach through the exploitation of features such as
abstract data type creation, functional overloading and dynamic
memory management, while providing a smooth path towards
the integration in legacy application codes. The parallel imple-
mentation is based on a Single Program Multiple Data (SPMD)
paradigm for distributed-memory architectures. Single and dou-
ble precision implementations of MLD2P4 are available for both
the real and the complex case, that can be used through a single
interface. SALVATORE, funziona tutto?

MLD2P4 has been designed to implement scalable and easy-
to-use multilevel preconditioners in the context of the PSBLAS
(Parallel Sparse BLAS) computational framework [10]. PSBLAS
is a library originally developed to address the parallel imple-
mentation of iterative solvers for sparse linear system, by provid-
ing basic linear algebra operators and data management facilities
for distributed sparse matrices; it also includes parallel Krylov
solvers, built on the top of the basic PSBLAS kernels. The pre-
conditioners available in MLD2P4 can be used with these Krylov
solvers. The choice of PSBLAS has been mainly motivated by the

2 MLD2P4 User’s and Reference Guide

need of having a portable and efficient software infrastructure im-
plementing “de facto” standard parallel sparse linear algebra ker-
nels, to pursue goals such as performance, portability, modularity
ed extensibility in the development of the preconditioner pack-
age. On the other hand, the implementation of MLD2P4 has led
to some revisions and extentions of the PSBLAS kernels, leading
to the recent PSBLAS 2.0 version [?]. The inter-process comu-
nication required by MLD2P4 is encapsulated into the PSBLAS
routines, except few cases where MPI [17] is explicitly called.
Therefore, MLD2P4 can be run on any parallel machine where
PSBLAS and MPI implementations are available.

MLD2P4 has a layered and modular software architecture
where three main layers can be identified. The lower layer consists
of the PSBLAS kernels, the middle one implements the construc-
tion and application phases of the preconditioners, and the upper
one provides a uniform and easy-to-use interface to all the pre-
conditioners. This architecture allows for different levels of use
of the package: few black-box routines at the upper layer allow
non-expert users to easily build any preconditioner available in
MLD2P4 and to apply it within a PSBLAS Krylov solver. On
the other hand, the routines of the middle and lower layer can be
used and extended by expert users to build new versions of multi-
level Schwarz preconditioners. We provide here a description of
the upper-layer routines, but not of the medium-layer ones.

This guide is organized as follows:organizzazione della guida

1 General Overview 3

2 Notational Conventions

- caratteri tipografici usati nella guida (vedi guida ML recente e
guida Aztec)
- convenzioni sui nomi di routine (differenza tra high-level e medium-
level), strutture dati,
moduli, costanti, etc. (vedi guida psblas)
- versione reale e complessa

4 MLD2P4 User’s and Reference Guide

3 Code Distribution

The MLD2P4 is freely distributable under the following copyright
terms:

MLD2P4 version 1.0
MultiLevel Domain Decomposition Parallel Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 2.3)

(C) Copyright 2008

Salvatore Filippone University of Rome Tor Vergata
Alfredo Buttari University of Rome Tor Vergata
Pasqua D’Ambra ICAR-CNR, Naples
Daniela di Serafino Second University of Naples

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1 General Overview 5

4 Configuring and Building MLD2P4

- uso di GNU autoconf e automake
- software di base necessario (MPI, BLACS, BLAS, PSBLAS -
specificare versioni)
- software opzionale (UMFPACK, SuperLU, SuperLUdist - speci-
ficare versioni e opzioni di configure)
- sistemi operativi e compilatori su cui MLD2P4 e’ stato costruito
con successo
- sono previste opzioni di configurazione per il debugging o per il
profiling?
- albero delle directory

6 MLD2P4 User’s and Reference Guide

5 Getting Started

We describe the basics for building and applying MLD2P4 one-
level and multi-level Schwarz preconditioners with the Krylov
solvers included in PSBLAS []. The following steps are required:

1. Declare the preconditioner data structure. It is a derived
data type, mld_xprec_type,where x may be s, d, c or z,
according to the basic data type of the sparse matrix (s =
real single precision; d = real double precision; c = complex
single precision; z = complex double precision). This data
structure is accessed by the user only through the MLD2P4
routines, following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, ac-
cording to a preconditioner type chosen by the user. This is
performed by the routine mld_precinit, which also sets a
default preconditioner for each preconditioner type selected
by the user. The default preconditioner associated to each
preconditioner type is listed in Table 2; the string used by
mld_precinit to identify each preconditioner type is also
given.

3. Choose a specific preconditioner within the selected precon-
ditioner type, by setting the preconditioner parameters. This
is performed by the routine mld_precset. This routine
must be called only if the user wants to modify the de-
fault values of the parameters associated to the selected
preconditioner type, to obtain a variant of the default pre-
conditioner. An example of use of mld_precset is given in
Section 5.1, Figure 2; a complete list of all the precondi-
tioner parameters and their allowed and default values is
provided in Section 6.

4. Build the preconditioner for a given matrix. This is per-
formed by the routine mld_precbld.

5. Apply the preconditioner at each iteration of a Krylov solver.
This is performed by the routine mld_precaply. When
using the PSBLAS Krylov solvers, this step is completely
transparent to the user, since mld_precaply is called by the
PSBLAS routine implementing the Krylov solver (psb_krylov).

6. Deallocate the preconditioner data structure. This is per-
formed by the routine mld_precfree. This step is com-
plementary to step 1 and should be performed when the
preconditioner is no more used.

1 General Overview 7

A detailed description of the above routines is given in Section 6.
Note that the Fortran 95 module mld_prec_mod must be used

in the program calling the MLD2P4 routines. Furthermore, to ap-
ply MLD2P4 with the Krylov solvers from PSBLAS, the module
psb_krylov_mod must be used too.

Examples showing the basic use of MLD2P4 are reported in
Section 5.1.

Type String Default preconditioner
No preconditioner ’NOPREC’ (Considered only to use the PSBLAS

Krylov solvers with no preconditioner.)
Diagonal ’DIAG’ —
Block Jacobi ’BJAC’ Block Jacobi with ILU(0) on the local

blocks.
Additive Schwarz ’AS’ Restricted Additive Schwarz (RAS),

with overlap 1 and ILU(0) on the local
blocks.

Multilevel ’ML’ Multi-level hybrid preconditioner (ad-
ditive on the same level and multi-
plicative through the levels), with post-
smoothing only. Number of levels: 2;
post-smoother: block-Jacobi precondi-
tioner with ILU(0) on the local blocks;
coarsest matrix: distributed among the
processors; corase-level solver: 4 sweeps
of the block-Jacobi solver, with the
UMFPACK LU factorization on the
blocks.

Table 1: Preconditioner types and default choices.

5.1 Examples

The code reported in Figure 1 shows how to set and apply the
MLD2P4 default multi-level preconditioner, i.e. the two-level hy-
brid post-smoothed Schwarz preconditioner, having block-Jacobi
with ILU(0) on the blocks as basic preconditioner, a coarse matrix
distributed among the processors, and four block-Jacobi sweeps,
with the UMFPACK sparse LU factorization on the blocks, as
approximate coarse-level solver. The choice of this precondi-
tioner is made by simply specifying ’ML’ as second argument
of mld_precinit (a call to mld_precset is not needed). The

8 MLD2P4 User’s and Reference Guide

preconditioner is applied with the BiCGSTAB solver provided by
PSBLAS.

The part of the code concerning the reading and assembling
of the sparse matrix and the right-hand side vector, performed
through the PSBLAS routines for sparse matrix and vector man-
agement, is not reported here for brevity; the statements con-
cerning the deallocation of the PSBLAS data structure are ne-
glected too. The complete code can be found in the example pro-
gram file example_ml_default.f90 in the directory XXXXXX
(SPECIFICARE). Note that the modules psb_base_mod and
psb_util_mod at the beginning of the code are required by PS-
BLAS. For details on the use of the PSBLAS routines, see the
PSBLAS User’s Guide [].

Different versions of multilevel preconditioner can be obtained
by changing the default values of the preconditioner parameters.
The code reported in Figure 2 shows how to set a three-level
hybrid Schwarz preconditioner using RAS with overlap 1 as post-
smoother, a coarsest matrix replicated on the processors and the
LU factorization from UMFPACK as coarse-level solver. The
number of levels is specified by using mld_precinit; the other
preconditioner parameters are set by calling mld_precset. Note
that the type of multilevel framework (i.e. multiplicative among
the levels, which corresponds to the hybrid multilevel precondi-
tioner); the type of one-level AS preconditioner used as smoother
(i.e. RAS) and its “position” (i.e. pre-smoother) are not specified
since they are chosen by default when mld_precinit is called.
The construction and the application of the preconditioner are
carried out as for the default multi-level preconditioner.

As a further example, we report in Figure 3 the code concern-
ing the setup of a three-level additive multi-level preconditioner,
using ILU(0) as pre- and post-smoother, a distributed coarsest
matrix and five block-Jacobi sweeps as coarsest-level solver, with
ILU(0) on the local blocks. Again, mld_precset is used only to
set the values of the parameters that are not default values. For
a detailed description of the parameters associated to a precon-
ditioner type, including their allowed and default values, the user
is referred to SPECIFICARE.

An example program including the code fragments shown in
in Figures 2 and 3 is in XXX/.../example_3lev.f90. COM-
PLETARE. Fare un programma solo per i due esempi,
in cui uno e’ commentato e l’altro no. One more example
program, showing the setup and application of a one-level additive
Schwarz preconditioner can be found in XXX/.../example_1lev.f90.
COMPLETARE.

1 General Overview 9

use psb_base_mod
use psb_util_mod
use mld_prec_mod
use psb_krylov_mod

... ...
!
! sparse matrix
type(psb_dspmat_type) :: A

! sparse matrix descriptor
type(psb_desc_type) :: desc_A

! preconditioner
type(mld_dprec_type) :: P

... ...
!
! initialize the parallel environment
call psb_init(ictxt)
call psb_info(ictxt,iam,np)

... ...
!
! read and assemble the matrix A and the right-hand
! side b using PSBLAS routines for sparse matrix /
! vector management
... ...
!
! initialize the default multi-level preconditioner
! (two-level hybrid Schwarz, with ILU(0) as post-smoother
! and 4 Block-Jacobi sweeps, with ILU(0) on the blocks,
! as distributed coarsest-level solver)
call mld_precinit(P,’ML’,info)

!
! build the preconditioner
call psb_precbld(A,P,DESC_A,info)

!
! set the solver parameters and the initial guess
... ...

!
! solve Ax=b with preconditioned BiCGSTAB
call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)
... ...

!
! deallocate the preconditioner
call mld_precfree(P,info)

!
! deallocate other data structures
... ...

!
! exit the parallel environment
call psb_exit(ictxt)
stop

Figure 1: Setup and application of the default multilevel Schwarz
preconditioner.

10 MLD2P4 User’s and Reference Guide

... ...
! setup a three-level hybrid Schwarz preconditioner,
! using RAS with overlap 1 as post-smoother, a coarsest
! matrix replicated on the processors, and the LU
! factorization from UMFPACK as coarse-level solver
call mld_precinit(P,’ML’,info,nlev=3)
call_mld_precset(P,mld_smooth_type_,’AS’,info)
call mld_precset(P,mld_n_ovr_,1,info)
call mld_precset(P,mld_coarse_mat,’REPL’)
call mld_precset(P,mld_coarse_solve,’UMF’)

... ...

Figure 2: Setup of a hybrid three-level Schwarz preconditioner.

... ...
! setup a three-level additive Schwarz preconditioner,
! using ILU(0) as pre- and post-smoother, five block-Jacobi
! sweeps as distributed coarsest-level solver, with ILU(0)
! on the local blocks
call mld_precinit(P,’ML’,info,nlev=3)
call mld_precset(P,mld_ml_type_,’ADD’,info)
call_mld_precset(P,mld_smooth_pos_,’TWOSIDE’,info)
call mld_precset(P,mld_n_ovr_,1,info)
call mld_precset(P,mld_coarse_sweeps,5)
call mld_precset(P,mld_coarse_subsolve,’UMF’)

... ...

Figure 3: Setup of an additive three-level Schwarz preconditioner.

1 General Overview 11

Note. Any PSBLAS-based program using the basic precondi-
tioners implemented in PSBLAS 2.0, i.e. the diagonal and block-
Jacobi ones, can use the diagonal and block-Jacobi precondition-
ers implemented in MLD2P4 without any change in the code.
The PSBLAS-base program must e only recompiled and linked
to the MLD2P4 library.

12 MLD2P4 User’s and Reference Guide

6 User Interface

The basic user interface of MLD2P4 consists of six routines. The
four routines mld_precinit, mld_precset, mld_precbld and mld_precaply
encapsulate all the functionalities for the setup and application
of any one-level and multi-level preconditioner implemented in
the package. The routine mld_precfree deallocates the precon-
ditioner data structure, while mld_precdescr prints a description
of the preconditioner setup by the user.

For each routine, the same user interface is available inde-
pendently of the real or complex case and of the single or dou-
ble precision. However, the appropriate preconditioner data type
to be used with each version of the package must be explicitly
chosen by the user, i.e. a preconditioner data structure of type
mld_xprec_type must be declared, where x = s for real single
precision, x = d for real double precision, x = c for complex single
precision, x = z for complex double precision. A few parameters
defining the preconditioner may be real single or double precision,
depending on the package version (see Section 6.2).

A description of each routine is given in the remainder of this
section.

6.1 Subroutine mld precinit

mld_precinit(p,ptype,info)
mld_precinit(p,ptype,info,nlev)

This routine allocates and initializes the preconditioner data struc-
ture, according to the preconditioner type chosen by the user.

Arguments

p type(mld_xprec_type), intent(inout).
The preconditioner data structure. Note that x must be chosen
according to the real/complex, single/double precision version
of MLD2P4 under use.

ptype character(len=*), intent(in).
The type of preconditioner. Its values are specified in Table 2.

info integer, intent(out).
Error code. See Section 8 for details.

nlev integer, optional, intent(in).
The number of levels of the multilevel preconditioner. If nlev
is not present and ptype=’ML’/’ml’, then nlev=2 is assumed.
Otherwise, nlev is ignored.

1 General Overview 13

6.2 Subroutine mld precset

mld_precset(p,what,val,info)
mld_precset(p,what,val,info,ilev)

This routine sets the parameters defining the preconditioner. More
precisely, the parameter identified by what is assigned the value
contained in val.

Arguments

p type(mld_xprec_type), intent(inout).
The preconditioner data structure. Note that x must be chosen
according to the real/complex, single/double precision version
of MLD2P4 under use.

what integer, intent(in).
The number identifying the parameter to be set. A mnemonic
constant has been associated to each of these numbers, as re-
ported in Table ??.

val integer or character(len=*) or real(1.0) or real(1.0d0),
intent(in).
The value of the parameter to be set. The list of allowed values
and the corresponding data types is given in Table ??.

info integer, intent(out).
Error code. See Section 8 for details.

ilev integer, optional, intent(in).
For the multilevel preconditioner, the level at which the precon-
ditioner parameter has to be set. The levels are numbered in
increasing order starting from the finest one, i.e. level 1 is the
finest level. If ilev is not present, the parameter identified by
what is set at all the appropriate levels (see Table ??).

A variety of (one-level and multi-level) preconditioner can be ob-
tained by a suitable setting of the preconditioner parameters.
These parameters can be logically divided into four groups, i.e.
parameters defining

1. the basic structure of the multi-level preconditioner;

2. the one-level preconditioner to be used as smoother;

3. the aggregation algorithm;

4. the coarse-space correction at the coarsest level.

A list of the parameters that can be set, along with their
allowed and default values, and the levels at which their are ap-
propriate is given in Table ??. Note that the routines allows to

14 MLD2P4 User’s and Reference Guide

set different features of the preconditioner at each level through
the use of ilev. This should be done by users with experience
in the field of multi-level preconditioners. Non-expert users are
recommended to call mld_precset without specifying ilev.

1 General Overview 15

QUESTA TABELLA VA RUOTATA DI 90 GRADI E
SUDDIVISA IN DUE TABELLE, TOGLIENDO SMALL

what data type val ilev comments
basic structure of the multi-level preconditioner

mld_ml_type_ character(len=*) ’ADD’,
’MULT’

2,...,nlev basic multi-level framework: additive or
multiplicative among the levels (always
additive inside a level); when ilev is
present, it refers only to the combina-
tion of levels ilev-1 and ilev.

mld_baseprec_type_ character(len=*) ’DIAG’,
’BJAC’,
’AS’

1,...,nlev-1 basic one-level preconditioner
(i.e. smoother) of the multi-level
preconditioner CAMBIARE
NOME COSTANTE; ora e’
mld prec type, ma questo puo’
generare confusione!

mld_smooth_pos_ character(len=*) ’PRE’,
’POST’,
’BOTH’

2,...,nlev “position” of the smoother: pre-
smoother, post-smoother, pre-/post-
smoother per l’utente NON HA
SENSO settarlo ai livelli 2,..., nlev;
l’utente deve specificare un livello
tra 1 e nlev-1 e la precset deve
shiftare il livello tenendo conto
della struttura del tipo di dato
precondizionatore

basic one-level preconditioner (smoother)
mld_n_ovr
mld_sub_restr_
mld_sub_prol_
mld_sub_solve_
mld_sub_fillin_ MODIFICA: fill in −− > fillin
mld_sub_thresh_ AGGIUNGERE THRESHOLD

ILU(t)
mld_sub_ren_ MANCA COSTANTE STRINGA

ASSOCIATA
aggregation algorithm

mld_aggr_alg_
mld_aggr_kind_
mld_aggr_thresh_
mld_aggr_eig_ NON E’ DEFINITA LA

STRINGA CORRISPONDENTE
a mld max norm

coarse-space correction at the coarsest level
mld_coarse_mat_
mld_coarse_solve_ VEDI OSSERVAZIONI EMAIL

15-16/06/08
mld_coarse_subsolve_ VEDI OSSERVAZIONI EMAIL

15-16/06/08
mld_coarse_sweeps_
mld_coarse_fillin_ MODIFICA: fill in −− > fillin
mld_coarse_thresh_ AGGIUNGERE THRESHOLD

ILU(t)

Table 2: Parameters defining the preconditioner.

16 MLD2P4 User’s and Reference Guide

===

mld_precfree(p,info)

Arguments:
p - type(mld_dprec_type), input/output.

The preconditioner data structure to be deallocated.
info - integer, output.

Error code.

Figure 4: API of the routine for preconditioner deallocation.

A twin routine for deallocation of the preconditioner data
structure is the mld_precfree routine, whose API is reported
in Fig. 4. As mentioned in Section ??, a multi-level precondi-
tioner is a combination of coarse-level corrections and one-level
preconditioner (or smoothers). Different combinations of these
components together with different type of one-level precondi-
tioner as well as different algorithms to build and apply coarse-
level corrections allow to the user of defining different multi-level
preconditioners. The user of MLD2P4 may specify the type of
multi-level framework (additive or multiplicative), details on the
aggregation algorithm, details on the type and the way for apply-
ing the one-level preconditioner (as pre-smoother, post-smoother
or both), the coarsest matrix storage (distributed or replicated),
the type of the solver to be employed at the coarsest level and
related details, by setting some parameters through the routine
mld_precset (see Section 6.2.1). The API of this routine is re-
ported in Fig. 5. Finally, to build a preconditioner, according
to the requirements made trough the routines mld_precinit and
mld_precset, a user of MLD2P4 have to call the prec_build
routine, whose API is reported in Figure 6.

6.2.1 List of the preconditioner parameters

In the following we report the list of possible parameters to be set
through the mld_precset routine, in order to choose the type of
multi-level preconditioner. The parameters are classified depend-
ing on their scope. Note that for character data both uppercase
and lowercase strings are allowed.

In order to build a coarse matrix from a fine one, this ver-
sion of MLD2P4 implements the smoothed aggregation algorithm
described in Section ??. However, since for nonsymmetric prob-
lems the application of a correct smoothed procedure is yet an

1 General Overview 17

mld_precset(p,what,val,info,ilev)

Arguments:
p - type(mld_dprec_type), input/output.

The preconditioner data structure.
what - integer, input.

The number identifying the parameter to be set.
A mnemonic constant has been associated to each of these
numbers.

val - integer/character, input.
The value of the parameter to be set.

info - integer, output.
Error code.

ilev - integer, optional, input.
For the multilevel preconditioner, the level at which the
preconditioner parameter has to be set.
If nlev is not present, the parameter identified by ’what’
is set at all the appropriate levels.

Figure 5: API of the routine for preconditioner setup.

open problem [?], the user may also choose to apply a nons-
moothed aggregation technique, where the prolongator operator
from the coarse to fine-space vertices is the simple piecewice con-
stant interpolation (the tentative prolongator) operator defined
in Section ??. The coarsening scheme takes into account possible
anisotropic features of the problems, by using a threshold level
to be used for dropping matrix coefficients during the process.
The parallel implementation of the coarsening algorithm is based
on a decoupled approach, where each process applies the coars-
ening scheme to its own local data. The uncoupled scheme can
be applied to the matrix A + AT , in the case of matrices with
nonsymmetric sparsity pattern. In the Table 6.2.1 we list the pa-
rameters that the user can specify for the aggregation algorithm.

Some options are available for the system involving the coars-
est matrix. Indeed, this matrix can be replicated or distributed
among the processors. In the former case, various versions of
incomplete LU (ILU) factorizations of the coarsest matrix are
available in order to solve the coarsest system. In the current
version of MLD2P4, the following factorizations are available [?]:

ILU(k): ILU factorization with fill-in level k;

MILU(k): modified ILU factorization with fill-in level k;

18 MLD2P4 User’s and Reference Guide

mld_precbld(a,desc_a,prec,info)

Arguments:
a - type(psb_dspmat_type).

The sparse matrix structure containing the local part of the
matrix to be preconditioned.

desc_a - type(psb_desc_type), input.
The communication descriptor of a.

p - type(mld_dprec_type), input/output.
The preconditioner data structure containing the local part
of the preconditioner to be built.

info - integer, output.
Error code.

Figure 6: API of the routine for preconditioner building.

Parameter Allowed values
(what) (val)
mld_aggr_alg_ ’DEC’, ’SYMDEC’

Define the aggregation scheme
Now, only decoupled aggregation is available
(if ’SYMDEC’ is set, the symmetric part of the matrix is considered)

mld_aggr_kind_ ’SMOOTH’, ’RAW’
Define the type of aggregation technique (smoothed or nonsmoothed).

mld_aggr_thresh_ Dropping threshold in aggregation.
Default 0.0

mld_aggr_eig_ NON E’ DEFINITA LA STRINGA CORRISPONDENTE a mldmaxnorm
Define the algorithm to evaluate the maximum eigenvalue
of D−1A for smoothed aggregation. Now only the A-norm of the
matrix is available.

Table 3: Parameters for aggregation type.

ILU(k,t): ILU with threshold t and k additional entries in each
row of the L and U factors with respect to the initial sparsity
pattern.

Furthermore, interfaces to UMFPACK [?], version 4.4, and to
SuperLU package [?], version 3.0, have been also available to deal
with the coarsest system, when the coarsest matrix is replicated
among the processors. On the other hand, to solve the coarsest-
level system when the coarsest matrix is distributed, a block-
Jacobi routine has been developed. It uses the different versions
of ILU or the LU factorization on the coarse matrix diagonal
blocks held by the processors. In the case of distributed coarsest
matrix is also available an interface to SupeLU dist [?], version
2.0, for distributed sparse factorization and solve. See the Table

1 General Overview 19

6.2.1 for details.

Parameter Allowed values
(what) (val)
mld_coarse_mat_ ’DISTR’, ’REPL’

Coarse Matrix: distributed or replicated
mld_coarse_solve_ ’ILU’, ’MILU’, ’ILUT’, ’SLU’, ’UMF’, SLUDIST’, BJAC????

Available Coarse solver.
Only SLUDIST e BJAC can be used when coarse matrix is distributed

mld_coarse_BJAC_sweeps_ (NON VA BENE mldcoarsesweeps) number of Block-Jacobi sweeps when BJAC is used as coarsest solver
mld_coarse_fill_in_ level of fill-in in MILU and ILU factorization

E IL THRESHOLD PER ILUT?

Table 4: Parameters for coarsest matrix solver.

When a Schwarz algorithm is considered as smoother at a cer-
tain level or as one-level preconditioner, the user may set many
parameters in order to choose the type of additive Schwarz ver-
sion (AS,RAS,ASH), the number of overlaps as well as the local
solver. All the parameters are reported in Table 6.2.1. Its worth

Parameter Allowed values
(what) (val)
mld_n_ovr_ Number of overlaps
mld_sub_restr_ ’HALO’, ’NONE’
mld_sub_prol_ ’SUM’, ’NONE’
mld_sub_solve_ ’ILU’, ’MILU’, ’ILUT’, ’SLU’, ’UMF’
mld_sub_ren_ MANCANO LE STRINGHE
mld_sub_fill_in_ level of fill-in in local diagonal blocks, when ILU-type factorizations are used

Table 5: Parameters for Schwarz smoother/preconditioner type.

noting that, the classical AS method corresponds to the couple
of values ’HALO’ and ’SUM’ of the argument val, for the values
mld_sub_restr_ and mld_sub_prol_ of the argument what, re-
spectively. While, the RAS method corresponds to the couple of
values ’NONE’ and ’SUM’ and ASH method corresponds to the
couple of values ’HALO’ and ’NONE’.

6.3 Preconditioner Application

Once the preconditioner has been built, it may be applied at each
iteration of a Krylov solver by calling the routine mld_precaply
(CAMBIARE NOME ROUTINE NEL SOFTWARE EVITANDO
L’UNDERSCORE), whose API is shown in Figure 7. This rou-
tine computes y = op(M−1) x, where M is the previously built
preconditioner, stored in the prec data structure, and op denotes
the matrix itself or its transpose, according to the value of trans.

20 MLD2P4 User’s and Reference Guide

Note that this routine is called within the PSBLAS-based Krylov
solver available in the PSBLAS library (see the PSBLAS User’s
Guide for details), therefore, the use of this routine is generally
transparent to the MLD2P4 user.

mld_precaply(prec,x,y,desc_data,info,trans,work)

Arguments:
prec - type(mld_dprec_type), input.

The preconditioner data structure containing the local part
of the preconditioner to be applied.

x - real(psb_dpk_), dimension(:), input.
The local part of the vector X in Y := op(M^(-1)) * X.

y - real(psb_dpk_), dimension(:), output.
The local part of the vector Y in Y := op(M^(-1)) * X.

desc_data - type(psb_desc_type), input.
The communication descriptor associated to the matrix to be
preconditioned.

info - integer, output.
Error code.

trans - character(len=1), optional.
If trans=’N’,’n’ then op(M^(-1)) = M^(-1);
if trans=’T’,’t’ then op(M^(-1)) = M^(-T) (transpose of M^(-1)).

work - real(psb_dpk_), dimension (:), optional, target.
Workspace. Its size must be at
least 4*psb_cd_get_local_cols(desc_data).

Figure 7: API of the routine for preconditioner application.

1 General Overview 21

7 Advanced Use

- MLD2P4 software architecture
- preconditioner data structure (descrizione ”dettagliata”) + pos-
sibilita’ di settare singolarmente i vari livelli (possibilita’ accen-
nata solamente nella precedente descrizione di precset)
- descrizione routine medium level (con introduzione sulle poten-
zialita’ di ampliamento (?), offerte da queto strato software)

22 MLD2P4 User’s and Reference Guide

8 Error Handling

Error handling - Breve descrizione con rinvio alla guida di PS-
BLAS

1 General Overview 23

9 List of Routines

Elenco (ordine alfabetico) di tutte le routine, con rinvio (ipertes-
tuale e num. pag.) alla descrizione di ciascuna in qualche para-
grafo precedente (una specie di indice analitico, che rimanda alle
routine descritte precedentemente nei rispettivi paragrafi)

24 MLD2P4 User’s and Reference Guide

1 General Overview 25

References

[1] Bella, G., Filippone, S., De Maio, A., Testa, M.: A Simula-
tion Model for Forest Fires. In: Dongarra, J., Madsen, K.,
Wasniewski, J. (eds.): Proceedings of PARA 04 Workshop
on State of the Art in Scientific Computing. Lecture Notes
in Computer Science, 3732. Berlin: Springer, 2005

[2] A. Buttari, D. di Serafino, P. D’Ambra, S. Filippone,2LEV-
D2P4: a package of high-performance preconditioners, Ap-
plicable Algebra in Engineering, Communications and Com-
puting, Volume 18, Number 3, May, 2007, pp. 223-239

[3] P. D’Ambra, S. Filippone, D. Di Serafino On the Develop-
ment of PSBLAS-based Parallel Two-level Schwarz Precon-
ditioners Applied Numerical Mathematics, Elsevier Science,
Volume 57, Issues 11-12, November-December 2007, Pages
1181-1196.

[4] A. Buttari, P. D’Ambra, D. di Serafino and S. Filippone,
Extending PSBLAS to Build Parallel Schwarz Precondition-
ers, in , J. Dongarra, K. Madsen, J. Wasniewski, editors,
Proceedings of PARA 04 Workshop on State of the Art in
Scientific Computing, pp. 593–602, Lecture Notes in Com-
puter Science, Springer, 2005.

[5] X.C. Cai and O. B. Widlund, Domain Decomposition Algo-
rithms for Indefinite Elliptic Problems, SIAM Journal on Sci-
entific and Statistical Computing, 13(1), pp. 243–258, 1992.

[6] T. Chan and T. Mathew, Domain Decomposition Algorithms,
in A. Iserles, editor, Acta Numerica 1994, pp. 61–143, 1994.
Cambridge University Press.

[7] J. J. Dongarra and R. C. Whaley, A User’s Guide to the
BLACS v. 1.1, Lapack Working Note 94, Tech. Rep. UT-
CS-95-281, University of Tennessee, March 1995 (updated
May 1997).

[8] I. Duff, M. Marrone, G. Radicati and C. Vittoli, Level 3
Basic Linear Algebra Subprograms for Sparse Matrices: a
User Level Interface, ACM Transactions on Mathematical
Software, 23(3), pp. 379–401, 1997.

[9] I. Duff, M. Heroux and R. Pozo, An Overview of the Sparse
Basic Linear Algebra Subprograms: the New Standard from

26 MLD2P4 User’s and Reference Guide

the BLAS Technical Forum, ACM Transactions on Mathe-
matical Software, 28(2), pp. 239–267, 2002.

[10] S. Filippone and M. Colajanni, PSBLAS: A Library for Par-
allel Linear Algebra Computation on Sparse Matrices, ACM
Transactions on Mathematical Software, 26(4), pp. 527–550,
2000.

[11] S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Li-
brary of Sparse Linear Algebra in a Fluid Dynamics Applica-
tions Code on Linux Clusters, in G. Joubert, A. Murli, F. Pe-
ters, M. Vanneschi, editors, Parallel Computing - Advances
& Current Issues, pp. 441–448, Imperial College Press, 2002.

[12] Karypis, G. and Kumar, V., METIS: Unstructured Graph
Partitioning and Sparse Matrix Ordering System. Min-
neapolis, MN 55455: University of Minnesota, De-
partment of Computer Science, 1995. Internet Address:
http://www.cs.umn.edu/~karypis.

[13] Lawson, C., Hanson, R., Kincaid, D. and Krogh, F., Basic
Linear Algebra Subprograms for Fortran usage, ACM Trans.
Math. Softw. vol. 5, 38–329, 1979.

[14] Machiels, L. and Deville, M. Fortran 90: An entry to object-
oriented programming for the solution of partial differential
equations. ACM Trans. Math. Softw. vol. 23, 32–49.

[15] Metcalf, M., Reid, J. and Cohen, M. Fortran 95/2003 ex-
plained. Oxford University Press, 2004.

[16] B. Smith, P. Bjorstad and W. Gropp, Domain Decomposi-
tion: Parallel Multilevel Methods for Elliptic Partial Differ-
ential Equations, Cambridge University Press, 1996.

[17] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Don-
garra, MPI: The Complete Reference. Volume 1 - The MPI
Core, second edition, MIT Press, 1998.

[18] M. Brezina and P. Vaněk, A Black-Box Iterative Solver Based
on a Two-Level Schwarz Method, Computing, 1999, 63, 233-
263.

[19] P. Vaněk, J. Mandel and M. Brezina, Algebraic Multigrid by
Smoothed Aggregation for Second and Fourth Order Elliptic
Problems, Computing, 1996, 56, 179-196.

	MLD2P4 User's and Reference Guide
	1 General Overview
	2 Notational Conventions
	3 Code Distribution
	4 Configuring and Building MLD2P4
	5 Getting Started
	5.1 Examples

	6 User Interface
	6.1 Subroutine mld_precinit
	6.2 Subroutine mld_precset
	6.2.1 List of the preconditioner parameters

	6.3 Preconditioner Application

	7 Advanced Use
	8 Error Handling
	9 List of Routines

