%\section{Bibliography\label{sec:bib}} \begin{thebibliography}{99} \ifpdf \addcontentsline{toc}{section}{\refname} \fi \markboth{\textsc{MLD2P4 User's and Reference Guide}} {\textsc{References}} %\let\refname\relax % \bibitem{MUMPS} P.~R.~Amestoy, C.~Ashcraft, O.~Boiteau, A.~Buttari, J.~L'Excellent, C.~Weisbecker, {\em Improving multifrontal methods by means of block low-rank representations}, SIAM Journal on Scientific Computing, volume 37 (3), 2015, A1452--A1474. See also {\tt http://mumps.enseeiht.fr}. % \bibitem{BERTACCINIFILIPPONE} D. Bertaccini\ and\ S. Filippone, {\em Sparse approximate inverse preconditioners on high performance GPU platforms}, Comput. Math. Appl. {\bf 71} (2016), no.~3, 693--711. % \bibitem{BREZINA_VANEK} M.~Brezina, P.~Van\v{e}k, {\em A Black-Box Iterative Solver Based on a Two-Level Schwarz Method}, Computing, 63, 1999, 233--263. % \bibitem{Briggs2000} W.~L.~Briggs, V.~E.~Henson, S.~F.~McCormick, {\em A Multigrid Tutorial, Second Edition}, SIAM, 2000. % \bibitem{para_04} A.~Buttari, P.~D'Ambra, D.~di Serafino, S.~Filippone, {\em Extending PSBLAS to Build Parallel Schwarz Preconditioners}, in J.~Dongarra, K.~Madsen, J.~Wasniewski, editors, Proceedings of PARA~04 Workshop on State of the Art in Scientific Computing, Lecture Notes in Computer Science, Springer, 2005, 593--602. % \bibitem{aaecc_07} A.~Buttari, P.~D'Ambra, D.~di~Serafino, S.~Filippone, {\em 2LEV-D2P4: a package of high-performance preconditioners for scientific and engineering applications}, Applicable Algebra in Engineering, Communications and Computing, 18 (3) 2007, 223--239. % %Published online: 13 February 2007, {\tt http://dx.doi.org/10.1007/s00200-007-0035-z} % \bibitem{CAI_SARKIS} X.~C.~Cai, M.~Sarkis, {\em A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems}, SIAM Journal on Scientific Computing, 21 (2), 1999, 792--797. % \bibitem{MatchBoxP} U..~V.~Catalyurek, F.~Dobrian, A.~Gebremedhin, M.~Halappanavar, and A.~Pothen, {\em Distributed-memory parallel algorithms for matching and coloring}, in PCO’11 New Trends in Parallel Computing and Optimization, IEEE International Symposium on Parallel and Distributed Processing Workshops, IEEE CS, 2011. % %\bibitem{dd1_94} %T.~Chan and T.~Mathew, %{\em Domain Decomposition Algorithms}, %in A.~Iserles, editor, Acta Numerica 1994, 61--143. %Cambridge University Press. % \bibitem{apnum_07} P.~D'Ambra, S.~Filippone, D.~di~Serafino, {\em On the Development of PSBLAS-based Parallel Two-level Schwarz Preconditioners}, Applied Numerical Mathematics, Elsevier Science, 57 (11-12), 2007, 1181-1196. %published online 3 February 2007, {\tt % http://dx.doi.org/10.1016/j.apnum.2007.01.006} % \bibitem{MLD2P4_TOMS} P.~D'Ambra, D.~di~Serafino, S.~Filippone, \emph{MLD2P4: a Package of Parallel Multilevel Algebraic Domain Decomposition Preconditioners in Fortran 95}, ACM Trans. Math. Softw., 37(3), 2010, art. 30. % \bibitem{DV2013} P.~D'Ambra and P.\,S.~Vassilevski, {\em Adaptive AMG with coarsening based on compatible weighted matching}, Computing and Visualization in Science, 16, (2013) 59--76. % \bibitem{DFV2018} P.~D'Ambra, S.~Filippone and P.\,S.~Vassilevski, {\em BootCMatch: a software package for bootstrap AMG based on graph weighted matching}, ACM Transactions on Mathematical Software, 44, (2018) 39:1--39:25. % \bibitem{DDF2020} P.~D'Ambra, F~Durastante, S.~Filippone, \emph{AMG preconditioners for Linear Solvers towards Extreme Scale}, 2020, \href{https://arxiv.org/abs/2006.16147v3arXiv:2006.16147v2}{arXiv:2006.16147v3}. % \bibitem{UMFPACK} T.~A.~Davis, {\em Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal Method with a Column Pre-ordering Strategy}, ACM Transactions on Mathematical Software, 30, 2004, 196--199. (See also \texttt{http://www.cise.ufl.edu/{\textasciitilde}davis/}) % \bibitem{SUPERLU} J.~W.~Demmel, S.~C.~Eisenstat, J.~R.~Gilbert, X.~S.~Li, J.~W.~H.~Liu, {\em A supernodal approach to sparse partial pivoting}, SIAM Journal on Matrix Analysis and Applications, 20 (3), 1999, 720--755. % \bibitem{blas3} J.~J.~Dongarra, J.~Du Croz, I.~S.~Duff, S.~Hammarling, \emph{A set of Level 3 Basic Linear Algebra Subprograms}, ACM Transactions on Mathematical Software, 16 (1) 1990, 1--17. % \bibitem{blas2} J.~J.~Dongarra, J.~Du Croz, S.~Hammarling, R.~J.~Hanson, \emph{An extended set of FORTRAN Basic Linear Algebra Subprograms}, ACM Transactions on Mathematical Software, 14 (1) 1988, 1--17. % %\bibitem{BLACS} %J.~J.~Dongarra, R.~C.~Whaley, %{\em A User's Guide to the BLACS v.~1.1}, %Lapack Working Note 94, Tech.\ Rep.\ UT-CS-95-281, University of %Tennessee, March 1995 (updated May 1997). % %\bibitem{EFSTATHIOU} %E.~Efstathiou, J.~G.~Gander, %{\em Why Restricted Additive Schwarz Converges Faster than Additive Schwarz}, %BIT Numerical Mathematics, 43 (5), 2003, 945--959. % \bibitem{PSBLASGUIDE} S.~Filippone, A.~Buttari, {\em PSBLAS 3.5.0 User's Guide. A Reference Guide for the Parallel Sparse BLAS Library}, 2012, available from \texttt{https://github.com/sfilippone/psblas3/tree/master/docs}. % \bibitem{PSBLAS3} S.~Filippone, A.~Buttari, {\em Object-Oriented Techniques for Sparse Matrix Computations in Fortran 2003}. ACM Transactions on on Mathematical Software, 38 (4), 2012, art.~23. % \bibitem{psblas_00} S.~Filippone, M.~Colajanni, {\em PSBLAS: A Library for Parallel Linear Algebra Computation on Sparse Matrices}, ACM Transactions on Mathematical Software, 26 (4), 2000, 527--550. % \bibitem{GrHeJi:16} S. Gratton, P. Henon, P. Jiranek and X. Vasseur, {\em Reducing complexity of algebraic multigrid by aggregation}, Numerical Lin. Algebra with Applications, 2016, 23:501-518 % \bibitem{MPI2} W.~Gropp, S.~Huss-Lederman, A.~Lumsdaine, E.~Lusk, B.~Nitzberg, W.~Saphir, M.~Snir, {\em MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions}, MIT Press, 1998. % \bibitem{blas1} C.~L.~Lawson, R.~J.~Hanson, D.~Kincaid, F.~T.~Krogh, \emph{Basic Linear Algebra Subprograms for FORTRAN usage}, ACM Transactions on Mathematical Software, 5 (3), 1979, 308--323. % \bibitem{SUPERLUDIST} X.~S.~Li, J.~W.~Demmel, {\em SuperLU\_DIST: A Scalable Distributed-memory Sparse Direct Solver for Unsymmetric Linear Systems}, ACM Transactions on Mathematical Software, 29 (2), 2003, 110--140. % \bibitem{Notay2008} Y.~Notay, P.~S.~Vassilevski, {\em Recursive Krylov-based multigrid cycles}, Numerical Linear Algebra with Applications, 15 (5), 2008, 473--487. % \bibitem{Saad_book} Y.~Saad, {\em Iterative methods for sparse linear systems}, 2nd edition, SIAM, 2003. % \bibitem{dd2_96} B.~Smith, P.~Bjorstad, W.~Gropp, {\em Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations}, Cambridge University Press, 1996. % \bibitem{MPI1} M.~Snir, S.~Otto, S.~Huss-Lederman, D.~Walker, J.~Dongarra, {\em MPI: The Complete Reference. Volume 1 - The MPI Core}, second edition, MIT Press, 1998. % \bibitem{Stuben_01} K.~St\"{u}ben, {\em An Introduction to Algebraic Multigrid}, in A.~Sch\"{u}ller, U.~Trottenberg, C.~Oosterlee, Multigrid, Academic Press, 2001. % \bibitem{TUMINARO_TONG} R.~S.~Tuminaro, C.~Tong, {\em Parallel Smoothed Aggregation Multigrid: Aggregation Strategies on Massively Parallel Machines}, in J. Donnelley, editor, Proceedings of SuperComputing 2000, Dallas, 2000. % \bibitem{VANEK_MANDEL_BREZINA} P.~Van\v{e}k, J.~Mandel, M.~Brezina, {\em Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems}, Computing, 56 (3) 1996, 179--196. % \end{thebibliography}