next up previous contents
Next: Subroutine mld_precbld Up: User Interface Previous: Subroutine mld_precinit   Contents


Subroutine mld_precset

mld_precset(p,what,val,info)
mld_precset(p,smoother,info)
mld_precset(p,solver,info)

This routine sets the parameters defining the preconditioner. More precisely, the parameter identified by what is assigned the value contained in val. The other two forms of this routine are designed to allow extensions of the library by passing new smoothers and solvers to be employed in the preconditioner.

Arguments

p type(mld_xprec_type), intent(inout).
  The preconditioner data structure. Note that x must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.
what integer, intent(in).
  The number identifying the parameter to be set. A mnemonic constant has been associated to each of these numbers, as reported in Tables 2-5.
val integer or character(len=*) or real(psb_spk_) or real(psb_dpk_), intent(in).
  The value of the parameter to be set. The list of allowed values and the corresponding data types is given in Tables 2-5. When the value is of type character(len=*), it is also treated as case insensitive.
smoother class(mld_x_base_smoother_type)
  The user-defined new smoother to be employed in the preconditioner.
solver class(mld_x_base_solver_type)
  The user-defined new solver to be employed in the preconditioner.
info integer, intent(out).
  Error code. If no error, 0 is returned. See Section 7 for details.


A variety of (one-level and multi-level) preconditioners can be obtained by a suitable setting of the preconditioner parameters. These parameters can be logically divided into four groups, i.e. parameters defining

  1. the type of multi-level preconditioner;
  2. the one-level preconditioner used as smoother;
  3. the aggregation algorithm;
  4. the coarse-space correction at the coarsest level.
A list of the parameters that can be set, along with their allowed and default values, is given in Tables 2-5. For a detailed description of the meaning of the parameters, please refer to Section 4. The smoother and solver objects are arranged in a hierarchical manner; when specifying a new smoother object, its parameters including the contained solver are set to default values, and when a new solver object is specified its defaults are also set, overriding in both cases any previous settings even if explicitly specified.


Table 2: Parameters defining the type of multi-level preconditioner.
what DATA TYPE val DEFAULT COMMENTS
mld_ml_type_ character(len=*) 'ADD' 'MULT' 'MULT' Basic multi-level framework: additive or multiplicative among the levels (always additive inside a level).
mld_smoother_type_ character(len=*) 'DIAG' 'BJAC' 'AS' 'AS' Basic predefined one-level preconditioner (i.e. smoother): diagonal, block Jacobi, AS.
mld_smoother_pos_ character(len=*) 'PRE' 'POST' 'TWOSIDE' 'POST' ``Position'' of the smoother: pre-smoother, post-smoother, pre- and post-smoother.



Table 3: Parameters defining the one-level preconditioner used as smoother.
what DATA TYPE val DEFAULT COMMENTS
mld_sub_ovr_ integer any int. num. $\ge 0$ 1 Number of overlap layers.
mld_sub_restr_ character(len=*) 'HALO' 'NONE' 'HALO' Type of restriction operator: 'HALO' for taking into account the overlap, 'NONE' for neglecting it.
mld_sub_prol_ character(len=*) 'SUM' 'NONE' 'NONE' Type of prolongation operator: 'SUM' for adding the contributions from the overlap, 'NONE' for neglecting them.
mld_sub_solve_ character(len=*) 'ILU' 'MILU' 'ILUT' 'UMF' 'SLU' 'ILU' Predefined local solver: ILU($p$), MILU($p$), ILU($p,t$), LU from UMFPACK, LU from SuperLU (plus triangular solve).
mld_sub_fillin_ integer Any int. num. $\ge 0$ 0 Fill-in level $p$ of the incomplete LU factorizations.
mld_sub_iluthrs_ real(kind_parameter) Any real num. $\ge 0$ 0 Drop tolerance $t$ in the ILU($p,t$) factorization.
mld_sub_ren_ character(len=*) 'RENUM_NONE' 'RENUM_GLOBAL' 'RENUM_NONE' Row and column reordering of the local submatrices: no reordering, reordering according to the global numbering of the rows and columns of the whole matrix.



Table 4: Parameters defining the aggregation algorithm.
what DATA TYPE val DEFAULT COMMENTS
mld_aggr_alg_ character(len=*) 'DEC' 'DEC' Aggregation algorithm. Currently, only the decoupled aggregation is available.
mld_aggr_kind_ character(len=*) 'SMOOTHED' 'NONSMOOTHED' 'SMOOTHED' Type of aggregation: smoothed, nonsmoothed (i.e. using the tentative prolongator).
mld_aggr_thresh_ real(kind_parameter) Any real num. $\in [0, 1]$ 0 Threshold $\theta$ in the aggregation algorithm.
mld_aggr_omega_alg_ character(len=*) 'EIG_EST' 'USER_CHOICE' 'EIG_EST' How the damping parameter $\omega$ in the smoothed aggregation should be computed: either via an estimate of the spectral radius of $D^{-1}A$, or explicily specified by the user.
mld_aggr_eig_ character(len=*) 'A_NORMI' 'A_NORMI' How to estimate the spectral radius of $D^{-1}A$. Currently only the infinity norm estimate is available.
mld_aggr_omega_val_ real(kind_parameter) Any nonnegative real num. $4/(3\rho(D^{-1}A))$ Damping parameter $\omega$ in the smoothed aggregation algorithm. It must be set by the user if USER_CHOICE was specified for mld_aggr_omega_alg_, otherwise it is computed by the library, using the selected estimate of the spectral radius $\rho(D^{-1}A)$ of $D^{-1}A$.



Table 5: Parameters defining the coarse-space correction at the coarsest level.
what DATA TYPE val DEFAULT COMMENTS
mld_coarse_mat_ character(len=*) 'DISTR' 'REPL' 'DISTR' Coarsest matrix: distributed among the processors or replicated on each of them.
mld_coarse_solve_ character(len=*) 'BJAC' 'UMF' 'SLU' 'SLUDIST' 'BJAC' Solver used at the coarsest level: block Jacobi, sequential LU from UMFPACK, sequential LU from SuperLU, distributed LU from SuperLU_Dist. 'SLUDIST' requires the coarsest matrix to be distributed, while 'UMF' and 'SLU' require it to be replicated.
mld_coarse_subsolve_ character(len=*) 'ILU' 'MILU' 'ILUT' 'UMF' 'SLU' See note Solver for the diagonal blocks of the coarse matrix, in case the block Jacobi solver is chosen as coarsest-level solver: ILU($p$), MILU($p$), ILU($p,t$), LU from UMFPACK, LU from SuperLU, plus triangular solve.
mld_coarse_sweeps_ integer Any int. num. $> 0$ 4 Number of Block-Jacobi sweeps when 'BJAC' is used as coarsest-level solver.
mld_coarse_fillin_ integer Any int. num. $\ge 0$ 0 Fill-in level $p$ of the incomplete LU factorizations.
mld_coarse_iluthrs_ real(kind_parameter) Any real. num. $\ge 0$ 0 Drop tolerance $t$ in the ILU($p,t$) factorization.
Note: defaults for mld_coarse_subsolve_ are chosen as
single precision version: 'SLU' if installed, 'ILU' otherwise
double precision version: 'UMF' if installed, else 'SLU' if installed, 'ILU' otherwise



next up previous contents
Next: Subroutine mld_precbld Up: User Interface Previous: Subroutine mld_precinit   Contents