
MLD2P4
User’s and Reference

Guide

A guide for the Multi-Level Domain
Decomposition

Parallel Preconditioners Package based on
PSBLAS

Pasqua D’Ambra
ICAR-CNR, Naples, Italy

Daniela di Serafino
Second University of Naples, Italy

Salvatore Filippone
University of Rome “Tor Vergata”, Italy

Software version: 1.0
June 13, 2008

i

Abstract

MLD2P4 (Multi-Level Domain Decomposition Parallel
Preconditioners Package based on PSBLAS) is a package
of parallel algebraic multi-level preconditioners. It imple-
ments various versions of one-level additive and of multi-
level additive and hybrid Schwarz algorithms. In the multi-
level case, a purely algebraic approach is applied to gen-
erate coarse-level corrections, so that no geometric back-
ground is needed concerning the matrix to be precondi-
tioned. The matrix is required to be square, real or com-
plex, with a symmetric sparsity pattern Non consideri-
amo anche il caso non simmetrico con (A + AT)/2?.

MLD2P4 has been designed to provide scalable and
easy-to-use preconditioners in the context of the PSBLAS
(Parallel Sparse Basic Linear Algebra Subprograms) com-
putational framework and can be used in conjuction with
the Krylov solvers available in this framework. MLD2P4
enables the user to easily specify different aspects of a
generic algebraic multilevel Schwarz preconditioner, thus
allowing to search for the “best” preconditioner for the
problem at hand. The package has been designed em-
ploying object-oriented techniques, using Fortran 95 and
MPI, with interfaces to additional external libraries such
as UMFPACK, SuperLU and SuperLU Dist, that can be
exploited in building multi-level preconditioners.

ii

iii

Contents

1 General Overview 1

2 Notational Conventions 3

3 Code Distribution 4

4 Configuring and Building MLD2P4 5

5 Getting Started 6
5.1 Examples . 7

6 High-Level User Interface 12
6.1 Preconditioner Setup and Building 12

6.1.1 List of the preconditioner parameters . . . 13
6.2 Preconditioner Application 16

7 Advanced Use 18

8 Error Handling 19

9 List of Routines 20

iv

1

1 General Overview

The Multi-Level Domain Decomposition Parallel Preconditioners
Package based on PSBLAS (MLD2P4) provides various versions
of multi-level Schwarz preconditioners [?], to be used in the itera-
tive solutions of sparse linear systems Ax = b, where A is a square,
real or complex, sparse matrix with a symmetric sparsity pattern.
Ma non abbiamo detto che, se il pattern di sparista’ non
e’ simmetrico, lavoriamo su (A + AT)/2? Ma questo vale
solo per l’aggregazione? Dovremmo fare qualcosa di con-
sistente anche con 1-lev Schwarz. Both additive and hybrid
preconditioners, i.e. multiplicative among the levels and additive
inside a level, are implemented; the basic additive Schwarz pre-
conditioners are obtained by considering only one level. A purely
algebraic approach is used to generate a sequence of coarse-level
corrections to a basic preconditioner, without explicitly using any
information on the geometry of the original problem (e.g. the dis-
cretization of a PDE). The smoothed aggregation technique is
applied as algebraic coarsening strategy [].

The package is written in Fortran 95, using object-oriented
techniques, and is based on a distributed-memory parallel pro-
gramming paradigm. SALVATORE, potresti aggiungere due
righe sulla scelta del Fortran 95 e sul semplice interfac-
ciamento con i legacy codes, senza ripetere quello che e’
detto sotto sulla scelta di PSBLAS? Single and double pre-
cision implementations of MLD2P4 are available for both the real
and the complex case, that can be used through a single interface.
SALVATORE, funziona tutto?

MLD2P4 has been designed to implement scalable and easy-
to-use multilevel preconditioners in the context of the PSBLAS
(Parallel Sparse BLAS) computational framework []. PSBLAS is
a library originally developed to address the parallel implementa-
tion of iterative solvers for sparse linear system, by providing basic
linear algebra operators and data management facilities for dis-
tributed sparse matrices; it also includes parallel Krylov solvers,
built on the top of the basic PSBLAS kernels. The precondition-
ers available in MLD2P4 can be used with these Krylov solvers.
The choice of PSBLAS has been mainly motivated by the need of
having a portable and efficient software infrastructure implement-
ing “de facto” standard parallel sparse linear algebra kernels, to
pursue goals such as performance, portability, modularity ed ex-
tensibility in the development of the preconditioner package. On
the other hand, the implementation of MLD2P4 has led to some
revisions and extentions of the PSBLAS kernels, leading to the

2

recent PSBLAS 2.0 version []. The inter-process comunication
required by MLD2P4 is encapsulated into the PSBLAS routines,
except few cases where MPI [] is explicitly called. Therefore,
MLD2P4 can be run on any parallel machine where PSBLAS and
MPI implementations are available.

MLD2P4 has a layered and modular software architecture
where three main layers can be identified. The lower layer consists
of the PSBLAS kernels, the middle one implements the construc-
tion and application phases of the preconditioners, and the upper
one provides a uniform and easy-to-use interface to all the pre-
conditioners. This architecture allows for different levels of use
of the package: few black-box routines at the upper level allow
non-expert users to easily build any preconditioner available in
MLD2P4 and to apply it within a PSBLAS Krylov solver. On
the other hand, the routines of the middle and lower layer can
be used and extended by expert users to build new versions of
multi-level Schwarz preconditioners.

Organizzazione della guida:
dire che per il momento non forniamo anche la documen-
tazione del middle layer, ma lo faremo in seguito

Evidenziare le parole chiave che caratterizzano il nos-
tro package

3

2 Notational Conventions

- caratteri tipografici usati nella guida (vedi guida ML recente e
guida Aztec)
- convenzioni sui nomi di routine (differenza tra high-level e medium-
level), strutture dati,
moduli, costanti, etc. (vedi guida psblas)
- versione reale e complessa

4

3 Code Distribution

The MLD2P4 is freely distributable under the following copyright
terms:

MLD2P4 version 1.0
MultiLevel Domain Decomposition Parallel Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 2.3)

(C) Copyright 2008

Salvatore Filippone University of Rome Tor Vergata
Alfredo Buttari University of Rome Tor Vergata
Pasqua D’Ambra ICAR-CNR, Naples
Daniela di Serafino Second University of Naples

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

5

4 Configuring and Building MLD2P4

- uso di GNU autoconf e automake
- software di base necessario (MPI, BLACS, BLAS, PSBLAS -
specificare versioni)
- software opzionale (UMFPACK, SuperLU, SuperLUdist - speci-
ficare versioni e opzioni di configure)
- sistemi operativi e compilatori su cui MLD2P4 e’ stato costruito
con successo
- sono previste opzioni di configurazione per il debugging o per il
profiling?
- albero delle directory

6

5 Getting Started

We describe the basics for building and applying MLD2P4 one-
level and multi-level Schwarz preconditioners with the Krylov
solvers included in PSBLAS []. The following steps are required:

1. Declare the preconditioner data structure. It is a derived
data type, mld_xprec_type,where x may be s, d, c or z,
according to the basic data type of the sparse matrix (s =
real single precision; s = real double precision; c = complex
single precision; z = complex double precision). This data
structure is accessed by the user only through the MLD2P4
routines, following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, ac-
cording to a preconditioner type chosen by the user. This is
performed by the routine mld_precinit, which also sets a
default preconditioner for each preconditioner type selected
by the user. The default preconditioner associated to each
preconditioner type is listed in Table 1; the string used by
mld_precinit to identify each preconditioner type is also
given.

3. Choose a specific preconditioner within the selected precon-
ditioner type, by setting the preconditioner parameters. This
is performed by the routine mld_precset. A few examples
concerning the use of mld_precset are given in Section 5.1;
a complete list of all the preconditioner parameters and
their allowed values is provided in Section 6.

4. Build the preconditioner for a given matrix. This is per-
formed by the routine mld_precbld.

5. Apply the preconditioner at each iteration of a Krylov solver.
This is performed by the routine mld_precaply. When
using the PSBLAS Krylov solvers, this step is completely
transparent to the user, since mld_precaply is called by the
PSBLAS routine implementing the Krylov solver (psb_krylov).

6. Deallocate the preconditioner data structure. This is per-
formed by the routine mld_precfree. This step is com-
plementary to step 1 and should be performed when the
preconditioner is no more used.

A detailed description of the above routines is given in Section 6.

7

Note that the Fortran 95 module mld_prec_mod must be used
in the program calling the MLD2P4 routines. Furthermore, to ap-
ply MLD2P4 with the Krylov solvers from PSBLAS, the module
psb_krylov_mod must be used too.

Examples showing the basic use of MLD2P4 are reported in
Section 5.1.

Type String Default preconditioner
No preconditioner ’NOPREC’ (Considered only to use the PSBLAS

Krylov solvers with no preconditioner.)
Diagonal ’DIAG’ —
Block Jacobi ’BJAC’ Block Jacobi with ILU(0) on the local

blocks.
Additive Schwarz ’AS’ Restricted Additive Schwarz (RAS),

with overlap 1 and ILU(0) on the local
blocks.

Multilevel ’ML’ Multi-level hybrid preconditioner (ad-
ditive on the same level and multi-
plicative through the levels), with post-
smoothing only. Number of levels: 2;
post-smoother: block-Jacobi precondi-
tioner with ILU(0) on the local blocks;
coarsest matrix: distributed among the
processors; corase-level solver: 4 sweeps
of the block-Jacobi solver, with ILU(0)
on the blocks.

Table 1: Preconditioner types and default choices.

5.1 Examples

The code reported below shows how to set and apply the MLD2P4
default multi-level preconditioned, i.e. the two-level hybrid post-
smoothed Schwarz preconditioner, using block-Jacobi with ILU(0)
on the blocks as basic preconditioner, a coarse matrix distributed
among the processors, and four block-Jacobi sweeps with ILU(0)
on the blocks as approximate coarse-level solver. The choice of
this preconditioner is made by simply specifying ’ML’ as second
argument of mld_precinit (a call to mld_precset is not needed).
The preconditioner is applied within the BiCGSTAB solver pro-
vided by PSBLAS.

The part of the code concerning the reading and assembling
of the sparse matrix and the right-hand side vector, performed

8

through the PSBLAS routines for sparse matrix and vector man-
agement, is not reported here for brevity. Other statements con-
cerning the use of PSBLAS are neglected too. The complete code
can be found in the example program file example_2lev_default.f90
in the directory XXXXXX (SPECIFICARE). Note that the
modules psb_base_mod and psb_util_mod at the beginning of
the code are required by PSBLAS. For details on the use of the
PSBLAS routines, see the PSBLAS User’s Guide [].

use psb_base_mod
use psb_util_mod
use mld_prec_mod
use psb_krylov_mod

... ...
!
! sparse matrix
type(psb_dspmat_type) :: A

! sparse matrix descriptor
type(psb_desc_type) :: DESC_A

! preconditioner
type(mld_dprec_type) :: PRE

... ...
!
! initialize the parallel environment
call psb_init(ictxt)
call psb_info(ictxt,iam,np)

... ...
!
! read and assemble the matrix A and the right-hand
! side b using PSBLAS routines for sparse matrix /
! vector management
... ...
!
! initialize the default multi-level preconditioner
! (two-level hybrid post-smoothed Schwarz)
call mld_precinit(PRE,’ML’,info)

!
! build the preconditioner
call psb_precbld(A,PRE,DESC_A,info)

!
! set the solver parameters and the initial guess
... ...

!
! solve Ax=b with preconditioned BiCGSTAB

9

call psb_krylov(’BICGSTAB’,A,PRE,b,x,tol,DESC_A,info)
... ...

!
! cleanup the preconditioner
call mld_precfree(PRE,info)

!
! cleanup other data structures
... ...

!
! exit the parallel environment
call psb_exit(ictxt)
stop

MODIFICARE TUTTA LA PARTE CHE SEGUE:
- solo istruzioni diverse dall’esempio precedente (essen-
zialmente il setting del precondizionatore, magari con
piu’ chiamate a precset;
- lasciare l’osservazione sulla specifica esplicita del nu-
mero di livelli;
- rimandare al paragrafo successivo per una decrizione
accurata di tutti i parametri;
- lasciare l’osservazione sui vecchi utenti di PSBLAS.

In the following we describe the general procedure for setting
and building one of the MLD2P4 preconditioners. The user has
first to prepare the preconditioner data structure by using the
routine mld_precinit. Input parameters for this routine include
a string parameter, needed to define the preconditioner type, and
an optional integer parameter specifying the number of the levels
in the case of a multi-level preconditioner. Note that if the op-
tional parameter is not present and a multi-level preconditioner
has been chosen, a two-level preconditioner is set. On the other
hand, the integer parameter is ignored if the type of the precon-
ditioner is not multilevel. In Table 1 we report both the possible
choices for the preconditioner type and the related default pre-
conditioners.

The user of MLD2P4 may set a lot of parameters for one-level
and multi-level Schwarz, in order to define a different precondi-
tioner than that of default choices. The parameters can be set
through the routine mld_precset. The APIs of mld_precinit
and mld_precset as well as the complete list of the parame-
ters that can be set with the corresponding allowed values are
reported in Section 6. In the following a simple code for a three-
level hybrid post-smoothed Schwarz preconditioner, using RAS

10

with overlap 1 as local preconditioner, with ILU(0) on the local
blocks, a distributed coarse matrix, four block-Jacobi sweeps with
the UMFPACK LU factorization on the blocks as coarse-matrix
solver, is reported. Note that for the multi-level precondition-
ers, the levels are numbered in increasing order starting from the
finest one, i.e. level 1 is the finest level. For more details, see the
test program example2.f90 in xxxx(directory dei test).

use psb_base_mod
use psb_util_mod
use mld_prec_mod
use psb_krylov_mod

... ...
!
! sparse matrix
type(psb_dspmat_type) :: A

! sparse matrix descriptor
type(psb_desc_type) :: DESC_A

! preconditioner data
type(mld_dprec_type) :: PRE

... ...
!
! initialization of the parallel environment

call psb_init(ictxt)
call psb_info(ictxt,iam,np)

... ...
! read and assemble the matrix A and the right-hand
! side vector b using PSBLAS routines for sparse
! matrix/vector management
... ...
! prepare the three-level hybrid post-smoothed Schwarz
! using RAS with overlap 1 as local preconditioner
!
call mld_precinit(PRE,’ML’,info,nlev=3)
call mld_precset(PRE,mld_n_ovr_,novr=1,info,ilev=1)
call mld_precset(PRE,mld_sub_restr_,psb_halo_,info,ilev=1)

NOTA: e’ PROPRIO BRUTTO "PSB_HALO_", BISOGNEREBBE AVERE COSTANTI CHE HANNO IL PREFISSO MLD!
!
! build preconditioner
call psb_precbld(A,PRE,DESC_A,info)

!

11

! set solver parameters and initial guess
... ...

! solve Ax=b with preconditioned BiCGSTAB

call psb_krylov(’BICGSTAB’,A,PRE,b,x,tol,DESC_A,info)
... ...

!
! cleanup storage and exit
!
call mld_precfree(PRE,info)

!
call psb_gefree(b,DESC_A,info)
call psb_gefree(x,DESC_A,info)
call psb_spfree(A,DESC_A,info)
call psb_cdfree(DESC_A,info)

!
call psb_exit(ictxt)
stop

Remark for users with PSBLAS-based legacy codes:
when MLD2P4 is installed, a PSBLAS user, with a PSBLAS-
based legacy code calling base preconditioners included in PS-
BLAS (NOPREC, DIAG and BJAC), is able to use the same
preconditioners without changes to the code, if she/he includes
in her/his program the file psb_prec_mod.

12

6 High-Level User Interface

At the upper layer of MLD2P4, five black-box routines encapsu-
late all the functionalities for the construction and the application
of any of the multi-level preconditioners. In the following we give
the details of the above routines. Note that for each routine are
available four different versions depending on involved data types:
Real-Single/Double Precision, Complex-Single/Double Precision.

6.1 Preconditioner Setup and Building

The setup of a MLD2P4 preconditioner is obtained by using the
mld_precinit routine, which allocates and initializes the precon-
ditioner data structure. The API of this routine as well as the
description of the arguments is reported in Fig. 1. Note that the
allowed values for the ptype argument are reported in Table 1
(Sec. 5).

mld_precinit(p,ptype,info,nlev)

Arguments:
p type(mld_dprec_type), input/output.

The preconditioner data structure.
ptype character, input. The type of preconditioner.
info integer, output. Error code.
nlev integer, optional, input.

The number of levels of the multilevel preconditioner.
If nlev is not present and ptype=‘ML’/‘ml’,
then nlev=2 is assumed.
Otherwise, nlev is ignored.

Figure 1: API of the routine for preconditioner allocation and
inizialization.

mld_precfree(p,info)

Arguments:
p - type(mld_dprec_type), input/output.

The preconditioner data structure to be deallocated.
info - integer, output.

Error code.

Figure 2: API of the routine for preconditioner deallocation.

A twin routine for deallocation of the preconditioner data
structure is the mld_precfree routine, whose API is reported

13

in Fig. 2. As mentioned in Section ??, a multi-level precondi-
tioner is a combination of coarse-level corrections and one-level
preconditioner (or smoothers). Different combinations of these
components together with different type of one-level precondi-
tioner as well as different algorithms to build and apply coarse-
level corrections allow to the user of defining different multi-level
preconditioners. The user of MLD2P4 may specify the type of
multi-level framework (additive or multiplicative), details on the
aggregation algorithm, details on the type and the way for apply-
ing the one-level preconditioner (as pre-smoother, post-smoother
or both), the coarsest matrix storage (distributed or replicated),
the type of the solver to be employed at the coarsest level and
related details, by setting some parameters through the routine
mld_precset (see Section 6.1.1). The API of this routine is re-
ported in Fig. 3. Finally, to build a preconditioner, according

mld_precset(p,what,val,info,ilev)

Arguments:
p - type(mld_dprec_type), input/output.

The preconditioner data structure.
what - integer, input.

The number identifying the parameter to be set.
A mnemonic constant has been associated to each of these
numbers.

val - integer/character, input.
The value of the parameter to be set.

info - integer, output.
Error code.

ilev - integer, optional, input.
For the multilevel preconditioner, the level at which the
preconditioner parameter has to be set.
If nlev is not present, the parameter identified by ’what’
is set at all the appropriate levels.

Figure 3: API of the routine for preconditioner setup.

to the requirements made trough the routines mld_precinit and
mld_precset, a user of MLD2P4 have to call the prec_build
routine, whose API is reported in Figure 4.

6.1.1 List of the preconditioner parameters

In the following we report the list of possible parameters to be set
through the mld_precset routine, in order to choose the type of
multi-level preconditioner. The parameters are classified depend-

14

mld_precbld(a,desc_a,prec,info)

Arguments:
a - type(psb_dspmat_type).

The sparse matrix structure containing the local part of the
matrix to be preconditioned.

desc_a - type(psb_desc_type), input.
The communication descriptor of a.

p - type(mld_dprec_type), input/output.
The preconditioner data structure containing the local part
of the preconditioner to be built.

info - integer, output.
Error code.

Figure 4: API of the routine for preconditioner building.

ing on their scope. Note that for character data both uppercase
and lowercase strings are allowed.

Parameter (what) Allowed values (val)
mld_ml_type_ ’ADD’, ’MULT’

Define the type of multi-level preconditioner.
mld_prec_type_ ’DIAG’, ’BJAC’, ’AS’

Define the smoother at a certain level.
mld_smooth_pos_ ’PRE’, ’POST’, ’BOTH’

Define the way to apply the smoother.

Table 2: Parameters for preconditioner type.

In order to build a coarse matrix from a fine one, this ver-
sion of MLD2P4 implements the smoothed aggregation algorithm
described in Section ??. However, since for nonsymmetric prob-
lems the application of a correct smoothed procedure is yet an
open problem [?], the user may also choose to apply a nons-
moothed aggregation technique, where the prolongator operator
from the coarse to fine-space vertices is the simple piecewice con-
stant interpolation (the tentative prolongator) operator defined
in Section ??. The coarsening scheme takes into account possible
anisotropic features of the problems, by using a threshold level
to be used for dropping matrix coefficients during the process.
The parallel implementation of the coarsening algorithm is based
on a decoupled approach, where each process applies the coars-
ening scheme to its own local data. The uncoupled scheme can
be applied to the matrix A + AT , in the case of matrices with
nonsymmetric sparsity pattern. In the Table 6.1.1 we list the pa-
rameters that the user can specify for the aggregation algorithm.

15

Parameter Allowed values
(what) (val)
mld_aggr_alg_ ’DEC’, ’SYMDEC’

Define the aggregation scheme
Now, only decoupled aggregation is available
(if ’SYMDEC’ is set, the symmetric part of the matrix is considered)

mld_aggr_kind_ ’SMOOTH’, ’RAW’
Define the type of aggregation technique (smoothed or nonsmoothed).

mld_aggr_thresh_ Dropping threshold in aggregation.
Default 0.0

mld_aggr_eig_ NON E’ DEFINITA LA STRINGA CORRISPONDENTE a mldmaxnorm
Define the algorithm to evaluate the maximum eigenvalue
of D−1A for smoothed aggregation. Now only the A-norm of the
matrix is available.

Table 3: Parameters for aggregation type.

Some options are available for the system involving the coars-
est matrix. Indeed, this matrix can be replicated or distributed
among the processors. In the former case, various versions of
incomplete LU (ILU) factorizations of the coarsest matrix are
available in order to solve the coarsest system. In the current
version of MLD2P4, the following factorizations are available [?]:

ILU(k): ILU factorization with fill-in level k;

MILU(k): modified ILU factorization with fill-in level k;

ILU(k,t): ILU with threshold t and k additional entries in each
row of the L and U factors with respect to the initial sparsity
pattern.

Furthermore, interfaces to UMFPACK [?], version 4.4, and to
SuperLU package [?], version 3.0, have been also available to deal
with the coarsest system, when the coarsest matrix is replicated
among the processors. On the other hand, to solve the coarsest-
level system when the coarsest matrix is distributed, a block-
Jacobi routine has been developed. It uses the different versions
of ILU or the LU factorization on the coarse matrix diagonal
blocks held by the processors. In the case of distributed coarsest
matrix is also available an interface to SupeLU dist [?], version
2.0, for distributed sparse factorization and solve. See the Table
6.1.1 for details.

When a Schwarz algorithm is considered as smoother at a cer-
tain level or as one-level preconditioner, the user may set many

16

Parameter Allowed values
(what) (val)
mld_coarse_mat_ ’DISTR’, ’REPL’

Coarse Matrix: distributed or replicated
mld_coarse_solve_ ’ILU’, ’MILU’, ’ILUT’, ’SLU’, ’UMF’, SLUDIST’, BJAC????

Available Coarse solver.
Only SLUDIST e BJAC can be used when coarse matrix is distributed

mld_coarse_BJAC_sweeps_ (NON VA BENE mldcoarsesweeps) number of Block-Jacobi sweeps when BJAC is used as coarsest solver
mld_coarse_fill_in_ level of fill-in in MILU and ILU factorization

E IL THRESHOLD PER ILUT?

Table 4: Parameters for coarsest matrix solver.

parameters in order to choose the type of additive Schwarz ver-
sion (AS,RAS,ASH), the number of overlaps as well as the local
solver. All the parameters are reported in Table 6.1.1. Its worth

Parameter Allowed values
(what) (val)
mld_n_ovr_ Number of overlaps
mld_sub_restr_ ’HALO’, ’NONE’
mld_sub_prol_ ’SUM’, ’NONE’
mld_sub_solve_ ’ILU’, ’MILU’, ’ILUT’, ’SLU’, ’UMF’
mld_sub_ren_ MANCANO LE STRINGHE
mld_sub_fill_in_ level of fill-in in local diagonal blocks, when ILU-type factorizations are used

Table 5: Parameters for Schwarz smoother/preconditioner type.

noting that, the classical AS method corresponds to the couple
of values ’HALO’ and ’SUM’ of the argument val, for the values
mld_sub_restr_ and mld_sub_prol_ of the argument what, re-
spectively. While, the RAS method corresponds to the couple of
values ’NONE’ and ’SUM’ and ASH method corresponds to the
couple of values ’HALO’ and ’NONE’.

6.2 Preconditioner Application

Once the preconditioner has been built, it may be applied at each
iteration of a Krylov solver by calling the routine mld_precaply
(CAMBIARE NOME ROUTINE NEL SOFTWARE EVITANDO
L’UNDERSCORE), whose API is shown in Figure 5. This rou-
tine computes y = op(M−1) x, where M is the previously built
preconditioner, stored in the prec data structure, and op denotes
the matrix itself or its transpose, according to the value of trans.
Note that this routine is called within the PSBLAS-based Krylov
solver available in the PSBLAS library (see the PSBLAS User’s
Guide for details), therefore, the use of this routine is generally

17

transparent to the MLD2P4 user.

mld_precaply(prec,x,y,desc_data,info,trans,work)

Arguments:
prec - type(mld_dprec_type), input.

The preconditioner data structure containing the local part
of the preconditioner to be applied.

x - real(psb_dpk_), dimension(:), input.
The local part of the vector X in Y := op(M^(-1)) * X.

y - real(psb_dpk_), dimension(:), output.
The local part of the vector Y in Y := op(M^(-1)) * X.

desc_data - type(psb_desc_type), input.
The communication descriptor associated to the matrix to be
preconditioned.

info - integer, output.
Error code.

trans - character(len=1), optional.
If trans=’N’,’n’ then op(M^(-1)) = M^(-1);
if trans=’T’,’t’ then op(M^(-1)) = M^(-T) (transpose of M^(-1)).

work - real(psb_dpk_), dimension (:), optional, target.
Workspace. Its size must be at
least 4*psb_cd_get_local_cols(desc_data).

Figure 5: API of the routine for preconditioner application.

18

7 Advanced Use

- MLD2P4 software architecture
- preconditioner data structure (descrizione ”dettagliata”) + pos-
sibilita’ di settare singolarmente i vari livelli (possibilita’ accen-
nata solamente nella precedente descrizione di precset)
- descrizione routine medium level (con introduzione sulle poten-
zialita’ di ampliamento (?), offerte da queto strato software)

19

8 Error Handling

Error handling - Breve descrizione con rinvio alla guida di PS-
BLAS

20

9 List of Routines

Elenco (ordine alfabetico) di tutte le routine, con rinvio (ipertes-
tuale e num. pag.) alla descrizione di ciascuna in qualche para-
grafo precedente (una specie di indice analitico, che rimanda alle
routine descritte precedentemente nei rispettivi paragrafi)

21

References

[1] Bella, G., Filippone, S., De Maio, A., Testa, M.: A Simula-
tion Model for Forest Fires. In: Dongarra, J., Madsen, K.,
Wasniewski, J. (eds.): Proceedings of PARA 04 Workshop
on State of the Art in Scientific Computing. Lecture Notes
in Computer Science, 3732. Berlin: Springer, 2005

[2] A. Buttari, D. di Serafino, P. D’Ambra, S. Filippone,2LEV-
D2P4: a package of high-performance preconditioners, Ap-
plicable Algebra in Engineering, Communications and Com-
puting, Volume 18, Number 3, May, 2007, pp. 223-239

[3] P. D’Ambra, S. Filippone, D. Di Serafino On the Develop-
ment of PSBLAS-based Parallel Two-level Schwarz Precon-
ditioners Applied Numerical Mathematics, Elsevier Science,
Volume 57, Issues 11-12, November-December 2007, Pages
1181-1196.

[4] A. Buttari, P. D’Ambra, D. di Serafino and S. Filippone,
Extending PSBLAS to Build Parallel Schwarz Precondition-
ers, in , J. Dongarra, K. Madsen, J. Wasniewski, editors,
Proceedings of PARA 04 Workshop on State of the Art in
Scientific Computing, pp. 593–602, Lecture Notes in Com-
puter Science, Springer, 2005.

[5] X.C. Cai and O. B. Widlund, Domain Decomposition Algo-
rithms for Indefinite Elliptic Problems, SIAM Journal on Sci-
entific and Statistical Computing, 13(1), pp. 243–258, 1992.

[6] T. Chan and T. Mathew, Domain Decomposition Algorithms,
in A. Iserles, editor, Acta Numerica 1994, pp. 61–143, 1994.
Cambridge University Press.

[7] J. J. Dongarra and R. C. Whaley, A User’s Guide to the
BLACS v. 1.1, Lapack Working Note 94, Tech. Rep. UT-
CS-95-281, University of Tennessee, March 1995 (updated
May 1997).

[8] I. Duff, M. Marrone, G. Radicati and C. Vittoli, Level 3
Basic Linear Algebra Subprograms for Sparse Matrices: a
User Level Interface, ACM Transactions on Mathematical
Software, 23(3), pp. 379–401, 1997.

[9] I. Duff, M. Heroux and R. Pozo, An Overview of the Sparse
Basic Linear Algebra Subprograms: the New Standard from

22

the BLAS Technical Forum, ACM Transactions on Mathe-
matical Software, 28(2), pp. 239–267, 2002.

[10] S. Filippone and M. Colajanni, PSBLAS: A Library for Par-
allel Linear Algebra Computation on Sparse Matrices, ACM
Transactions on Mathematical Software, 26(4), pp. 527–550,
2000.

[11] S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Li-
brary of Sparse Linear Algebra in a Fluid Dynamics Applica-
tions Code on Linux Clusters, in G. Joubert, A. Murli, F. Pe-
ters, M. Vanneschi, editors, Parallel Computing - Advances
& Current Issues, pp. 441–448, Imperial College Press, 2002.

[12] Karypis, G. and Kumar, V., METIS: Unstructured Graph
Partitioning and Sparse Matrix Ordering System. Min-
neapolis, MN 55455: University of Minnesota, De-
partment of Computer Science, 1995. Internet Address:
http://www.cs.umn.edu/~karypis.

[13] Lawson, C., Hanson, R., Kincaid, D. and Krogh, F., Basic
Linear Algebra Subprograms for Fortran usage, ACM Trans.
Math. Softw. vol. 5, 38–329, 1979.

[14] Machiels, L. and Deville, M. Fortran 90: An entry to object-
oriented programming for the solution of partial differential
equations. ACM Trans. Math. Softw. vol. 23, 32–49.

[15] Metcalf, M., Reid, J. and Cohen, M. Fortran 95/2003 ex-
plained. Oxford University Press, 2004.

[16] B. Smith, P. Bjorstad and W. Gropp, Domain Decomposi-
tion: Parallel Multilevel Methods for Elliptic Partial Differ-
ential Equations, Cambridge University Press, 1996.

[17] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Don-
garra, MPI: The Complete Reference. Volume 1 - The MPI
Core, second edition, MIT Press, 1998.

[18] M. Brezina and P. Vaněk, A Black-Box Iterative Solver Based
on a Two-Level Schwarz Method, Computing, 1999, 63, 233-
263.

[19] P. Vaněk, J. Mandel and M. Brezina, Algebraic Multigrid by
Smoothed Aggregation for Second and Fourth Order Elliptic
Problems, Computing, 1996, 56, 179-196.

	MLD2P4 User's and Reference Guide
	1 General Overview
	2 Notational Conventions
	3 Code Distribution
	4 Configuring and Building MLD2P4
	5 Getting Started
	5.1 Examples

	6 High-Level User Interface
	6.1 Preconditioner Setup and Building
	6.1.1 List of the preconditioner parameters

	6.2 Preconditioner Application

	7 Advanced Use
	8 Error Handling
	9 List of Routines

