!   
!   
!                             AMG4PSBLAS version 1.0
!    Algebraic Multigrid Package
!               based on PSBLAS (Parallel Sparse BLAS version 3.7)
!    
!    (C) Copyright 2021 
!  
!        Salvatore Filippone  
!        Pasqua D'Ambra   
!        Fabio Durastante        
!   
!    Redistribution and use in source and binary forms, with or without
!    modification, are permitted provided that the following conditions
!    are met:
!      1. Redistributions of source code must retain the above copyright
!         notice, this list of conditions and the following disclaimer.
!      2. Redistributions in binary form must reproduce the above copyright
!         notice, this list of conditions, and the following disclaimer in the
!         documentation and/or other materials provided with the distribution.
!      3. The name of the AMG4PSBLAS group or the names of its contributors may
!         not be used to endorse or promote products derived from this
!         software without specific written permission.
!   
!    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!    TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!    PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AMG4PSBLAS GROUP OR ITS CONTRIBUTORS
!    BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!    CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!    POSSIBILITY OF SUCH DAMAGE.
!   
module amg_s_pde_mod
  use psb_base_mod, only : psb_spk_, psb_ipk_, psb_desc_type,&
       &  psb_sspmat_type, psb_s_vect_type, szero, sone,&
       &  psb_s_base_sparse_mat, psb_s_base_vect_type, psb_i_base_vect_type

  interface 
    function s_func_3d(x,y,z) result(val)
      import :: psb_spk_
      real(psb_spk_), intent(in) :: x,y,z
      real(psb_spk_) :: val
    end function s_func_3d
  end interface 

  interface amg_gen_pde3d
    module procedure  amg_s_gen_pde3d
  end interface amg_gen_pde3d

  
contains

  function s_null_func_3d(x,y,z) result(val)

    real(psb_spk_), intent(in) :: x,y,z
    real(psb_spk_) :: val

    val = szero

  end function s_null_func_3d

  !
  !  subroutine to allocate and fill in the coefficient matrix and
  !  the rhs. 
  !
  subroutine amg_s_gen_pde3d(ctxt,idim,a,bv,xv,desc_a,afmt,&
       & a1,a2,a3,b1,b2,b3,c,g,info,f,amold,vmold,imold,partition,nrl,iv)
    use psb_base_mod
    use psb_util_mod
    !
    !   Discretizes the partial differential equation
    ! 
    !   a1 dd(u)  a2 dd(u)    a3 dd(u)    b1 d(u)   b2 d(u)  b3 d(u)  
    ! -   ------ -  ------ -  ------ +  -----  +  ------  +  ------ + c u = f
    !      dxdx     dydy       dzdz        dx       dy         dz   
    !
    ! with Dirichlet boundary conditions
    !   u = g 
    !
    !  on the unit cube  0<=x,y,z<=1.
    !
    !
    ! Note that if b1=b2=b3=c=0., the PDE is the  Laplace equation.
    !
    implicit none
    procedure(s_func_3d)  :: b1,b2,b3,c,a1,a2,a3,g
    integer(psb_ipk_)     :: idim
    type(psb_sspmat_type) :: a
    type(psb_s_vect_type) :: xv,bv
    type(psb_desc_type)   :: desc_a
    integer(psb_ipk_)     :: info
    type(psb_ctxt_type)   :: ctxt
    character             :: afmt*5
    procedure(s_func_3d), optional :: f
    class(psb_s_base_sparse_mat), optional :: amold
    class(psb_s_base_vect_type), optional :: vmold 
    class(psb_i_base_vect_type), optional :: imold
    integer(psb_ipk_), optional :: partition, nrl,iv(:)

    ! Local variables.

    integer(psb_ipk_), parameter :: nb=20
    type(psb_s_csc_sparse_mat)  :: acsc
    type(psb_s_coo_sparse_mat)  :: acoo
    type(psb_s_csr_sparse_mat)  :: acsr
    real(psb_spk_)           :: zt(nb),x,y,z,xph,xmh,yph,ymh,zph,zmh
    integer(psb_ipk_) :: nnz,nr,nlr,i,j,ii,ib,k, partition_
    integer(psb_lpk_) :: m,n,glob_row,nt
    integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner
    ! For 3D partition
    ! Note: integer control variables going directly into an MPI call
    ! must be 4 bytes, i.e. psb_mpk_
    integer(psb_mpk_) :: npdims(3), npp, minfo
    integer(psb_ipk_) :: npx,npy,npz, iamx,iamy,iamz,mynx,myny,mynz
    integer(psb_ipk_), allocatable :: bndx(:),bndy(:),bndz(:)
    ! Process grid
    integer(psb_ipk_) :: np, iam
    integer(psb_ipk_) :: icoeff
    integer(psb_lpk_), allocatable     :: irow(:),icol(:),myidx(:)
    real(psb_spk_), allocatable :: val(:)
    ! deltah dimension of each grid cell
    ! deltat discretization time
    real(psb_spk_)            :: deltah, sqdeltah, deltah2
    real(psb_spk_), parameter :: rhs=szero,one=sone,zero=szero
    real(psb_dpk_)    :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb
    integer(psb_ipk_) :: err_act
    procedure(s_func_3d), pointer :: f_
    character(len=20)  :: name, ch_err,tmpfmt

    info = psb_success_
    name = 'create_matrix'
    call psb_erractionsave(err_act)

    call psb_info(ctxt, iam, np)


    if (present(f)) then 
      f_ => f
    else
      f_ => s_null_func_3d
    end if

    deltah   = 1.d0/(idim+1)
    sqdeltah = deltah*deltah
    deltah2  = 2.0_psb_spk_* deltah

    if (present(partition)) then
      if ((1<= partition).and.(partition <= 3)) then
        partition_ = partition
      else
        write(*,*) 'Invalid partition choice ',partition,' defaulting to 3'
        partition_ = 3
      end if
    else
      partition_ = 3
    end if
    
    ! initialize array descriptor and sparse matrix storage. provide an
    ! estimate of the number of non zeroes

    m   = (1_psb_lpk_*idim)*idim*idim
    n   = m
    nnz = 7*((n+np-1)/np)
    if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n

    select case(partition_)
    case(1)
      ! A BLOCK partition 
      if (present(nrl)) then 
        nr = nrl
      else
        !
        ! Using a simple BLOCK distribution.
        !
        nt = (m+np-1)/np
        nr = max(0,min(nt,m-(iam*nt)))
      end if

      nt = nr
      call psb_sum(ctxt,nt) 
      if (nt /= m) then 
        write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m
        info = -1
        call psb_barrier(ctxt)
        call psb_abort(ctxt)
        return    
      end if

      !
      ! First example  of use of CDALL: specify for each process a number of
      ! contiguous rows
      ! 
      call psb_cdall(ctxt,desc_a,info,nl=nr)
      myidx = desc_a%get_global_indices()
      nlr = size(myidx)

    case(2)
      ! A  partition  defined by the user through IV
      
      if (present(iv)) then 
        if (size(iv) /= m) then
          write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m
          info = -1
          call psb_barrier(ctxt)
          call psb_abort(ctxt)
          return    
        end if
      else
        write(psb_err_unit,*) iam, 'Initialization error: IV not present'
        info = -1
        call psb_barrier(ctxt)
        call psb_abort(ctxt)
        return    
      end if

      !
      ! Second example  of use of CDALL: specify for each row the
      ! process that owns it 
      ! 
      call psb_cdall(ctxt,desc_a,info,vg=iv)
      myidx = desc_a%get_global_indices()
      nlr = size(myidx)

    case(3)
      ! A 3-dimensional partition

      ! A nifty MPI function will split the process list
      npdims = 0
      call mpi_dims_create(np,3,npdims,info)
      npx = npdims(1)
      npy = npdims(2)
      npz = npdims(3)

      allocate(bndx(0:npx),bndy(0:npy),bndz(0:npz))
      ! We can reuse idx2ijk for process indices as well. 
      call idx2ijk(iamx,iamy,iamz,iam,npx,npy,npz,base=0)
      ! Now let's split the 3D cube in hexahedra
      call dist1Didx(bndx,idim,npx)
      mynx = bndx(iamx+1)-bndx(iamx)
      call dist1Didx(bndy,idim,npy)
      myny = bndy(iamy+1)-bndy(iamy)
      call dist1Didx(bndz,idim,npz)
      mynz = bndz(iamz+1)-bndz(iamz)

      ! How many indices do I own? 
      nlr = mynx*myny*mynz
      allocate(myidx(nlr))
      ! Now, let's generate the list of indices I own
      nr = 0
      do i=bndx(iamx),bndx(iamx+1)-1
        do j=bndy(iamy),bndy(iamy+1)-1
          do k=bndz(iamz),bndz(iamz+1)-1
            nr = nr + 1
            call ijk2idx(myidx(nr),i,j,k,idim,idim,idim)
          end do
        end do
      end do
      if (nr /= nlr) then
        write(psb_err_unit,*) iam,iamx,iamy,iamz, 'Initialization error: NR vs NLR ',&
             & nr,nlr,mynx,myny,mynz
        info = -1
        call psb_barrier(ctxt)
        call psb_abort(ctxt)
      end if

      !
      ! Third example  of use of CDALL: specify for each process
      ! the set of global indices it owns.
      ! 
      call psb_cdall(ctxt,desc_a,info,vl=myidx)

      !
      ! Specify process topology
      !
      block
        !
        ! Use adjcncy methods 
        ! 
        integer(psb_mpk_), allocatable :: neighbours(:)
        integer(psb_mpk_) :: cnt
        logical, parameter :: debug_adj=.true.
        if (debug_adj.and.(np > 1)) then 
          cnt = 0
          allocate(neighbours(np))
          if (iamx < npx-1) then
            cnt = cnt + 1 
            call ijk2idx(neighbours(cnt),iamx+1,iamy,iamz,npx,npy,npz,base=0)
          end if
          if (iamy < npy-1) then
            cnt = cnt + 1 
            call ijk2idx(neighbours(cnt),iamx,iamy+1,iamz,npx,npy,npz,base=0)
          end if
          if (iamz < npz-1) then
            cnt = cnt + 1 
            call ijk2idx(neighbours(cnt),iamx,iamy,iamz+1,npx,npy,npz,base=0)
          end if
          if (iamx >0) then
            cnt = cnt + 1 
            call ijk2idx(neighbours(cnt),iamx-1,iamy,iamz,npx,npy,npz,base=0)
          end if
          if (iamy >0) then
            cnt = cnt + 1 
            call ijk2idx(neighbours(cnt),iamx,iamy-1,iamz,npx,npy,npz,base=0)
          end if
          if (iamz >0) then
            cnt = cnt + 1 
            call ijk2idx(neighbours(cnt),iamx,iamy,iamz-1,npx,npy,npz,base=0)
          end if
          call psb_realloc(cnt, neighbours,info)
          call desc_a%set_p_adjcncy(neighbours)
          !write(0,*) iam,' Check on neighbours: ',desc_a%get_p_adjcncy()
        end if
      end block
      
    case default
      write(psb_err_unit,*) iam, 'Initialization error: should not get here'
      info = -1
      call psb_barrier(ctxt)
      call psb_abort(ctxt)
      return
    end select

    
    if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz)
    ! define  rhs from boundary conditions; also build initial guess 
    if (info == psb_success_) call psb_geall(xv,desc_a,info)
    if (info == psb_success_) call psb_geall(bv,desc_a,info)

    call psb_barrier(ctxt)
    talc = psb_wtime()-t0

    if (info /= psb_success_) then
      info=psb_err_from_subroutine_
      ch_err='allocation rout.'
      call psb_errpush(info,name,a_err=ch_err)
      goto 9999
    end if

    ! we build an auxiliary matrix consisting of one row at a
    ! time; just a small matrix. might be extended to generate 
    ! a bunch of rows per call. 
    ! 
    allocate(val(20*nb),irow(20*nb),&
         &icol(20*nb),stat=info)
    if (info /= psb_success_ ) then 
      info=psb_err_alloc_dealloc_
      call psb_errpush(info,name)
      goto 9999
    endif


    ! loop over rows belonging to current process in a block
    ! distribution.

    call psb_barrier(ctxt)
    t1 = psb_wtime()
    do ii=1, nlr,nb
      ib = min(nb,nlr-ii+1) 
      icoeff = 1
      do k=1,ib
        i=ii+k-1
        ! local matrix pointer 
        glob_row=myidx(i)
        ! compute gridpoint coordinates
        call idx2ijk(ix,iy,iz,glob_row,idim,idim,idim)
        ! x, y, z coordinates
        x = (ix-1)*deltah
        y = (iy-1)*deltah
        z = (iz-1)*deltah
        zt(k) = f_(x,y,z)
        ! internal point: build discretization
        !   
        !  term depending on   (x-1,y,z)
        !
        val(icoeff) = -a1(x,y,z)/sqdeltah-b1(x,y,z)/deltah2
        if (ix == 1) then
          zt(k) = g(szero,y,z)*(-val(icoeff)) + zt(k)
        else
          call ijk2idx(icol(icoeff),ix-1,iy,iz,idim,idim,idim)
          irow(icoeff) = glob_row
          icoeff       = icoeff+1
        endif
        !  term depending on     (x,y-1,z)
        val(icoeff)  = -a2(x,y,z)/sqdeltah-b2(x,y,z)/deltah2
        if (iy == 1) then
          zt(k) = g(x,szero,z)*(-val(icoeff))   + zt(k)
        else
          call ijk2idx(icol(icoeff),ix,iy-1,iz,idim,idim,idim)
          irow(icoeff) = glob_row
          icoeff       = icoeff+1
        endif
        !  term depending on     (x,y,z-1)
        val(icoeff)=-a3(x,y,z)/sqdeltah-b3(x,y,z)/deltah2
        if (iz == 1) then
          zt(k) = g(x,y,szero)*(-val(icoeff))   + zt(k)
        else
          call ijk2idx(icol(icoeff),ix,iy,iz-1,idim,idim,idim)
          irow(icoeff) = glob_row
          icoeff       = icoeff+1
        endif

        !  term depending on     (x,y,z)
        val(icoeff)=(2*sone)*(a1(x,y,z)+a2(x,y,z)+a3(x,y,z))/sqdeltah &
             & + c(x,y,z)
        call ijk2idx(icol(icoeff),ix,iy,iz,idim,idim,idim)
        irow(icoeff) = glob_row
        icoeff       = icoeff+1                  
        !  term depending on     (x,y,z+1)
        val(icoeff)=-a3(x,y,z)/sqdeltah+b3(x,y,z)/deltah2
        if (iz == idim) then
          zt(k) = g(x,y,sone)*(-val(icoeff))   + zt(k)
        else
          call ijk2idx(icol(icoeff),ix,iy,iz+1,idim,idim,idim)
          irow(icoeff) = glob_row
          icoeff       = icoeff+1
        endif
        !  term depending on     (x,y+1,z)
        val(icoeff)=-a2(x,y,z)/sqdeltah+b2(x,y,z)/deltah2
        if (iy == idim) then
          zt(k) = g(x,sone,z)*(-val(icoeff))   + zt(k)
        else
          call ijk2idx(icol(icoeff),ix,iy+1,iz,idim,idim,idim)
          irow(icoeff) = glob_row
          icoeff       = icoeff+1
        endif
        !  term depending on     (x+1,y,z)
        val(icoeff)=-a1(x,y,z)/sqdeltah+b1(x,y,z)/deltah2
        if (ix==idim) then
          zt(k) = g(sone,y,z)*(-val(icoeff))   + zt(k)
        else
          call ijk2idx(icol(icoeff),ix+1,iy,iz,idim,idim,idim)
          irow(icoeff) = glob_row
          icoeff       = icoeff+1
        endif

      end do
      call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info)
      if(info /= psb_success_) exit
      call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info)
      if(info /= psb_success_) exit
      zt(:)=szero
      call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info)
      if(info /= psb_success_) exit
    end do

    tgen = psb_wtime()-t1
    if(info /= psb_success_) then
      info=psb_err_from_subroutine_
      ch_err='insert rout.'
      call psb_errpush(info,name,a_err=ch_err)
      goto 9999
    end if

    deallocate(val,irow,icol)

    call psb_barrier(ctxt)
    t1 = psb_wtime()
    call psb_cdasb(desc_a,info,mold=imold)
    tcdasb = psb_wtime()-t1
    call psb_barrier(ctxt)
    t1 = psb_wtime()
    if (info == psb_success_) then 
      if (present(amold)) then 
        call psb_spasb(a,desc_a,info,mold=amold)
      else
        call psb_spasb(a,desc_a,info,afmt=afmt)
      end if
    end if
    call psb_barrier(ctxt)
    if(info /= psb_success_) then
      info=psb_err_from_subroutine_
      ch_err='asb rout.'
      call psb_errpush(info,name,a_err=ch_err)
      goto 9999
    end if
    if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold)
    if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold)
    if(info /= psb_success_) then
      info=psb_err_from_subroutine_
      ch_err='asb rout.'
      call psb_errpush(info,name,a_err=ch_err)
      goto 9999
    end if
    tasb = psb_wtime()-t1
    call psb_barrier(ctxt)
    ttot = psb_wtime() - t0 

    call psb_amx(ctxt,talc)
    call psb_amx(ctxt,tgen)
    call psb_amx(ctxt,tasb)
    call psb_amx(ctxt,ttot)
    if(iam == psb_root_) then
      tmpfmt = a%get_fmt()
      write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')&
           &   tmpfmt
      write(psb_out_unit,'("-allocation  time : ",es12.5)') talc
      write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen
      write(psb_out_unit,'("-desc asbly  time : ",es12.5)') tcdasb
      write(psb_out_unit,'("- mat asbly  time : ",es12.5)') tasb
      write(psb_out_unit,'("-total       time : ",es12.5)') ttot

    end if
    call psb_erractionrestore(err_act)
    return

9999 call psb_error_handler(ctxt,err_act)

    return
  end subroutine amg_s_gen_pde3d

  !
  ! functions parametrizing the differential equation 
  !  
  function b1(x,y,z)
    use psb_base_mod, only : psb_spk_, sone
    real(psb_spk_) :: b1
    real(psb_spk_), intent(in) :: x,y,z
    b1=szero
  end function b1
  function b2(x,y,z)
    use psb_base_mod, only : psb_spk_, sone
    real(psb_spk_) ::  b2
    real(psb_spk_), intent(in) :: x,y,z
    b2=szero
  end function b2
  function b3(x,y,z)
    use psb_base_mod, only : psb_spk_, sone
    real(psb_spk_) ::  b3
    real(psb_spk_), intent(in) :: x,y,z      
    b3=szero
  end function b3
  function c(x,y,z)
    use psb_base_mod, only : psb_spk_, sone
    real(psb_spk_) ::  c
    real(psb_spk_), intent(in) :: x,y,z      
    c=szero
  end function c
  function a1(x,y,z)
    use psb_base_mod, only : psb_spk_, sone
    real(psb_spk_) ::  a1   
    real(psb_spk_), intent(in) :: x,y,z
    a1=sone
  end function a1
  function a2(x,y,z)
    use psb_base_mod, only : psb_spk_, sone
    real(psb_spk_) ::  a2
    real(psb_spk_), intent(in) :: x,y,z
    a2=sone
  end function a2
  function a3(x,y,z)
    use psb_base_mod, only : psb_spk_, sone
    real(psb_spk_) ::  a3
    real(psb_spk_), intent(in) :: x,y,z
    a3=sone
  end function a3
  function g(x,y,z)
    use psb_base_mod, only : psb_spk_, sone, szero
    real(psb_spk_) ::  g
    real(psb_spk_), intent(in) :: x,y,z
    g = szero
    if (x == sone) then
      g = sone
    else if (x == szero) then 
      g = exp(y**2-z**2)
    end if
  end function g
end module amg_s_pde_mod