
MLD2P4
User’s and Reference Guide

A guide for the Multi-Level Domain Decomposition
Parallel Preconditioners Package based on PSBLAS

Pasqua D’Ambra
IAC-CNR, Naples, Italy

Daniela di Serafino
University of Campania “Luigi Vanvitelli”, Caserta, Italy

Salvatore Filippone
Cranfield University, Cranfield, United Kingdom

Software version: 2.1
March 28, 2017

i

Abstract

MLD2P4 (Multi-Level Domain Decomposition Parallel Preconditioners
Package based on PSBLAS) is a package of parallel algebraic multi-level precon-
ditioners. The first release made available various versions of one-level additive and
multi-level additive and hybrid Schwarz preconditioners. The package has been ex-
tended to include further multi-level cycles and smoothers widely used in multigrid
methods. In the multi-level case, a purely algebraic approach is applied to generate
coarse-level corrections, so that no geometric background is needed concerning the ma-
trix to be preconditioned. The matrix is assumed to be square, real or complex.

MLD2P4 has been designed to provide scalable and easy-to-use preconditioners in
the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms) com-
putational framework and can be used in conjuction with the Krylov solvers available in
this framework. MLD2P4 enables the user to easily specify different features of an al-
gebraic multi-level preconditioner, thus allowing to search for the “best” preconditioner
for the problem at hand.

The package employs object-oriented design techniques in Fortran 2003, with inter-
faces to additional third party libraries such as MUMPS, UMFPACK, SuperLU, and
SuperLU Dist, which can be exploited in building multi-level preconditioners. The par-
allel implementation is based on a Single Program Multiple Data (SPMD) paradigm;
the inter-process communication is based on MPI and is managed mainly through PS-
BLAS.

This guide provides a brief description of the functionalities and the user interface
of MLD2P4.

ii

iii

Contents

Abstract i

1 General Overview 1

2 Code Distribution 3

3 Configuring and Building MLD2P4 4
3.1 Prerequisites . 4
3.2 Optional third party libraries . 4
3.3 Configuration options . 5
3.4 Bug reporting . 9
3.5 Example and test programs . 9

4 Multi-level Domain Decomposition Background 10
4.1 Multi-level Schwarz Preconditioners . 11
4.2 Smoothed Aggregation . 13

5 Getting Started 16
5.1 Examples . 17

6 User Interface 21
6.1 Subroutine init . 22
6.2 Subroutine set . 23
6.3 Subroutine bld . 33
6.4 Subroutine hierarchy bld . 34
6.5 Subroutine smoothers bld . 35
6.6 Subroutine apply . 36
6.7 Subroutine free . 37
6.8 Subroutine descr . 38

7 Adding smoothers and solvers to MLD2P4 39

8 Error Handling 40

A License 41

References 43

iv

1 General Overview 1

1 General Overview

The Multi-Level Domain Decomposition Parallel Preconditioners Pack-
age based on PSBLAS (MLD2P4) provides parallel Algebraic MultiGrid (AMG)
and domain decomposition preconditioners, designed to provide scalable and easy-to-use
preconditioners multi-level Schwarz preconditioners [25, 23], to be used in the iterative
solutions of sparse linear systems:

Ax = b, (1)

where A is a square, real or complex, sparse matrix. Multi-level preconditioners can be
obtained by combining several AMG cycles (V, W, K) with different smoothers (Jacobi,
hybrid forward/backward Gauss-Seidel, block-Jacobi, additive Schwarz methods). An
algebraic approach is used to generate a hierarchy of coarse-level matrices and operators,
without explicitly using any information on the geometry of the original problem, e.g.,
the discretization of a PDE. The smoothed aggregation technique is applied as algebraic
coarsening strategy [1, 27]. Either exact or approximate solvers are available to solve the
coarsest-level system. Specifically, different versions of sparse LU factorizations from
external packages, and native incomplete LU factorizations and iterative block-Jacobi
solvers can be used. All smoothers can be also exploited as one-level preconditioners.

MLD2P4 is written in Fortran 2003, following an object-oriented design through
the exploitation of features such as abstract data type creation, functional overloading,
and dynamic memory management. The parallel implementation is based on a Single
Program Multiple Data (SPMD) paradigm. Single and double precision implementa-
tions of MLD2P4 are available for both the real and the complex case, which can be
used through a single interface.

MLD2P4 has been designed to implement scalable and easy-to-use multilevel precon-
ditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational frame-
work [18, 17]. PSBLAS provides basic linear algebra operators and data management
facilities for distributed sparse matrices, as well as parallel Krylov solvers which can be
coupled with the MLD2P4 preconditioners. The choice of PSBLAS has been mainly
motivated by the need of having a portable and efficient software infrastructure im-
plementing “de facto” standard parallel sparse linear algebra kernels, to pursue goals
such as performance, portability, modularity ed extensibility in the development of the
preconditioner package. On the other hand, the implementation of MLD2P4 has led to
some revisions and extentions of the original PSBLAS kernels. The inter-process comu-
nication required by MLD2P4 is encapsulated into the PSBLAS routines, except few
cases where MPI [24] is explicitly called É ancora cosi???. Therefore, MLD2P4 can
be run on any parallel machine where PSBLAS and MPI implementations are available.

MLD2P4 has a layered and modular software architecture where three main layers
can be identified. The lower layer consists of the PSBLAS kernels, the middle one
implements the construction and application phases of the preconditioners, and the
upper one provides a uniform interface to all the preconditioners. This architecture
allows for different levels of use of the package: few black-box routines at the upper
layer allow non-expert users to easily build any preconditioner available in MLD2P4 and

2 MLD2P4 User’s and Reference Guide

to apply it within a PSBLAS Krylov solver; facilities are also available that allow
more expert users to extend the set of smoothers and solvers for building
new versions of preconditioners.

We note that the user interface of MLD2P4 2.1 (Perche 2.1 e non 2.0???...Ri-
cordarsi di cambiare il configure) has been extended with respect to the previous
versions in order to separate the construction of the multi-level hierarchy from the con-
struction of the smoothers and solvers, and to allow for more flexibility at each level.
The software architecture described in [8] has significantly evolved too, in order to fully
exploit the Fortran 2003 features implemented in PSBLAS 3. However, compatibility
with previous versions has been preserved.

This guide is organized as follows. General information on the distribution of the
source code is reported in Section 2, while details on the configuration and installation
of the package are given in Section 3. A short description of the preconditioners imple-
mented in MLD2P4 is provided in Section 4, to help the users in choosing among them.
The basics for building and applying the preconditioners with the Krylov solvers imple-
mented in PSBLAS are reported in Section 5, where the Fortran codes of a few sample
programs are also shown. A reference guide for the upper-layer routines of MLD2P4,
that are the user interface, is provided in Section 6. The error handling mechanism
used by the package is briefly described in Section 8. The copyright terms concerning
the distribution and modification of MLD2P4 are reported in Appendix A.

2 Code Distribution 3

2 Code Distribution

MLD2P4 is available from the web site

http://www.mld2p4.it

where contact points for further information can be also found. Passiamo subito a
GitHub?

The software is available under a modified BSD license, as specified in Appendix A;
please note that some of the optional third party libraries may be licensed under a
different and more stringent license, most notably the GPL, and this should be taken
into account when treating derived works.

The library defines a version string with the constant

mld_version_string_

whose current value is 2.1.0

4 MLD2P4 User’s and Reference Guide

3 Configuring and Building MLD2P4

In order to build MLD2P4 it is necessary to set up a Makefile with appropriate values
for your system; this is done by means of the configure script. The distribution also
includes the autoconf and automake sources employed to generate the script, but usually
this is not needed to build the software.

MLD2P4 is implemented almost entirely in Fortran 2003, with some interfaces to
external libraries in C; the Fortran compiler must support the Fortran 2003 standard
plus the extension MOLD= feature, which enhances the usability of ALLOCATE. Many
compilers do this; in particular, this is supported by the GNU Fortran compiler, for
which we recommend to use at least version 4.8. The software defines data types and
interfaces for real and complex data, in both single and double precision.

3.1 Prerequisites

The following base libraries are needed:

BLAS [12, 13, 20] Many vendors provide optimized versions of BLAS; if no vendor
version is available for a given platform, the ATLAS software (math-atlas.
sourceforge.net/) may be employed. The reference BLAS from Netlib (www.
netlib.org/blas) are meant to define the standard behaviour of the BLAS in-
terface, so they are not optimized for any particular plaftorm, and should only be
used as a last resort. Note that BLAS computations form a relatively small part
of the MLD2P4/PSBLAS computations; they are however critical when using
preconditioners based on MUMPS, UMFPACK or SuperLU third party libraries.
Note that UMFPACK requires a full LAPACK library; our experience is that
configuring ATLAS for building full LAPACK does not work in the correct way.
Our advice is first to download the LAPACK tarfile from www.netlib.org/lapac

and install it independently of ATLAS. In this case, you need to modify the OPTS
and NOOPT definitions for including -fPIC compilation option in the make.inc
file of the LAPACK library.

MPI [19, 24] A version of MPI is available on most high-performance computing sys-
tems.

PSBLAS [16, 18] Parallel Sparse BLAS (PSBLAS) is available from www.ce.uniroma2.

it/psblas; version 3.4.0 (or later) is required. Indeed, all the prerequisites listed
so far are also prerequisites of PSBLAS.

Please note that the four previous libraries must have Fortran interfaces compatible
with MLD2P4; usually this means that they should all be built with the same compiler
as MLD2P4.

3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these
are optional, but if you enable them some defaults for multi-level preconditioners may

math-atlas.sourceforge.net/
math-atlas.sourceforge.net/
www.netlib.org/blas
www.netlib.org/blas
www.netlib.org/lapac
www.ce.uniroma2.it/psblas
www.ce.uniroma2.it/psblas

3 Configuring and Building MLD2P4 5

change to reflect their presence.

UMFPACK [9] A sparse LU factorization package included in the SuiteSparse library,
available from faculty.cse.tamu.edu/davis/suitesparse.html; it provides se-
quential factorization and triangular system solution for double precision real and
complex data. We tested version 4.5.4. Note that for configuring SuiteSparse
you should provide the right path to the BLAS and LAPACK libraries in the
SuiteSparse_config/SuiteSparse_config.mk file.

MUMPS [10] A sparse LU factorization package available from mumps.enseeiht.fr/;
it provides sequential and parallel factorizations and triangular system solution
for single and double precision, real and complex data. We tested versions 4.10.0
and version 5.0.1.

SuperLU [11] A sparse LU factorization package available from crd.lbl.gov/~xiaoye/

SuperLU/; it provides sequential factorization and triangular system solution for
single and double precision, real and complex data. We tested version 4.3 and 5.0.
If you installed BLAS from ATLAS, remember to define the BLASLIB variable
in the make.inc file.

SuperLU Dist [21] A sparse LU factorization package available from the same site
as SuperLU; it provides parallel factorization and triangular system solution for
double precision real and complex data. We tested version 3.3 and 4.2. If you
installed BLAS from ATLAS, remember to define the BLASLIB variable in the
make.inc file and to add the -std=c99 option to the C compiler options. Note
that this library requires the ParMETIS library for parallel graph partitioning
and fill-reducing matrix ordering available from glaros.dtc.umn.edu/gkhome/

metis/parmetis/overview.

3.3 Configuration options

CONTROLLARE HELP DEL CONFIGURE: Versione MLD2P4, Versione
PSBLAS, Influential Environmental Variables???

To build MLD2P4 the first step is to use the configure script in the main directory
to generate the necessary makefile(s).

As a minimal example consider the following:

./configure --with-psblas=PSB-INSTALL-DIR

which assumes that the various MPI compilers and support libraries are available in
the standard directories on the system, and specifies only the PSBLAS install directory
(note that the latter directory must be specified with an absolute path). The full set
of options may be looked at by issuing the command ./configure --help, which
produces:

‘configure’ configures MLD2P4 2.0 to adapt to many kinds of systems.

faculty.cse.tamu.edu/davis/suitesparse.html
mumps.enseeiht.fr/
crd.lbl.gov/~xiaoye/SuperLU/
crd.lbl.gov/~xiaoye/SuperLU/
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

6 MLD2P4 User’s and Reference Guide

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as

VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, --help display this help and exit

--help=short display options specific to this package

--help=recursive display the short help of all the included packages

-V, --version display version information and exit

-q, --quiet, --silent do not print ‘checking...’ messages

--cache-file=FILE cache test results in FILE [disabled]

-C, --config-cache alias for ‘--cache-file=config.cache’

-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

--prefix=PREFIX install architecture-independent files in PREFIX

[/usr/local]

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]

By default, ‘make install’ will install all the files in

‘/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify

an installation prefix other than ‘/usr/local’ using ‘--prefix’,

for instance ‘--prefix=$HOME’.

For better control, use the options below.

Fine tuning of the installation directories:

--bindir=DIR user executables [EPREFIX/bin]

--sbindir=DIR system admin executables [EPREFIX/sbin]

--libexecdir=DIR program executables [EPREFIX/libexec]

--sysconfdir=DIR read-only single-machine data [PREFIX/etc]

--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]

--localstatedir=DIR modifiable single-machine data [PREFIX/var]

--libdir=DIR object code libraries [EPREFIX/lib]

--includedir=DIR C header files [PREFIX/include]

--oldincludedir=DIR C header files for non-gcc [/usr/include]

--datarootdir=DIR read-only arch.-independent data root [PREFIX/share]

--datadir=DIR read-only architecture-independent data [DATAROOTDIR]

3 Configuring and Building MLD2P4 7

--infodir=DIR info documentation [DATAROOTDIR/info]

--localedir=DIR locale-dependent data [DATAROOTDIR/locale]

--mandir=DIR man documentation [DATAROOTDIR/man]

--docdir=DIR documentation root [DATAROOTDIR/doc/mld2p4]

--htmldir=DIR html documentation [DOCDIR]

--dvidir=DIR dvi documentation [DOCDIR]

--pdfdir=DIR pdf documentation [DOCDIR]

--psdir=DIR ps documentation [DOCDIR]

Optional Features:

--disable-option-checking ignore unrecognized --enable/--with options

--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-serial Specify whether to enable a fake mpi library to run

in serial mode.

Optional Packages:

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-psblas=DIR The install directory for PSBLAS, for example,

--with-psblas=/opt/packages/psblas-3.3

--with-psblas-incdir=DIR

Specify the directory for PSBLAS includes.

--with-psblas-libdir=DIR

Specify the directory for PSBLAS library.

--with-extra-libs List additional link flags here. For example,

--with-extra-libs=-lspecial_system_lib or

--with-extra-libs=-L/path/to/libs

--with-mumps=LIBNAME Specify the libname for MUMPS. Default: "-lsmumps

-ldmumps -lcmumps -lzmumps -lmumps_common -lpord"

--with-mumpsdir=DIR Specify the directory for MUMPS library and

includes. Note: you will need to add auxiliary

libraries with --extra-libs; this depends on how

MUMPS was configured and installed, at a minimum you

will need SCALAPACK and BLAS

--with-mumpsincdir=DIR Specify the directory for MUMPS includes.

--with-mumpslibdir=DIR Specify the directory for MUMPS library.

--with-umfpack=LIBNAME Specify the library name for UMFPACK and its support

libraries. Default: "-lumfpack -lamd"

--with-umfpackdir=DIR Specify the directory for UMFPACK library and

includes.

--with-umfpackincdir=DIR

Specify the directory for UMFPACK includes.

--with-umfpacklibdir=DIR

8 MLD2P4 User’s and Reference Guide

Specify the directory for UMFPACK library.

--with-superlu=LIBNAME Specify the library name for SUPERLU library.

Default: "-lsuperlu"

--with-superludir=DIR Specify the directory for SUPERLU library and

includes.

--with-superluincdir=DIR

Specify the directory for SUPERLU includes.

--with-superlulibdir=DIR

Specify the directory for SUPERLU library.

--with-superludist=LIBNAME

Specify the libname for SUPERLUDIST library.

Requires you also specify SuperLU. Default:

"-lsuperlu_dist"

--with-superludistdir=DIR

Specify the directory for SUPERLUDIST library and

includes.

--with-superludistincdir=DIR

Specify the directory for SUPERLUDIST includes.

--with-superludistlibdir=DIR

Specify the directory for SUPERLUDIST library.

Some influential environment variables:

FC Fortran compiler command

FCFLAGS Fortran compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -l<library>

CC C compiler command

CFLAGS C compiler flags

CPPFLAGS C/C++/Objective C preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>

CPP C preprocessor

MPICC MPI C compiler command

F77 Fortran 77 compiler command

FFLAGS Fortran 77 compiler flags

MPIF77 MPI Fortran 77 compiler command

MPIFC MPI Fortran compiler command

Use these variables to override the choices made by ‘configure’ or to help

it to find libraries and programs with nonstandard names/locations.

Report bugs to <bugreport@mld2p4.it>.

For instance, if a user has built and installed PSBLAS 3.4 under the /opt directory and

3 Configuring and Building MLD2P4 9

is using the SuiteSparse package (which includes UMFPACK), then MLD2P4 might be
configured with:

./configure --with-psblas=/opt/psblas-3.4/ \

--with-umfpackincdir=/usr/include/suitesparse/

Once the configure script has completed execution, it will have generated the file
Make.inc which will then be used by all Makefiles in the directory tree; this file will be
copied in the install directory under the name Make.inc.MLD2P4.

To use the MUMPS solver package, the user has to add the appropriate options
to the configure script; by default we are looking for the libraries -ldmumps -lsmumps

-lzmumps -lzmumps -mumps_common -lpord. MUMPS often uses additional packages
such as ScaLAPACK, ParMETIS, SCOTCH, as well as enabling OpenMP; in such cases
it is necessary to add linker options with the --with-extra-libs configure option.

To build the library the user will now enter

make

followed (optionally) by

make install

3.4 Bug reporting

If you find any bugs in our codes, please let us know at (DECIDERE A CHI FARE IL
BUG REPORTING) bugreport@mld2p4.it ; be aware that the amount of information
needed to reproduce a problem in a parallel program may vary quite a lot.

3.5 Example and test programs

The package contains the examples and tests directories; both of them are further
divided into fileread and pdegen subdirectories. Their purpose is as follows:

examples contains a set of simple example programs with a predefined choice of precon-
ditioners, selectable via integer values. These are intended to get an acquaintance
with the multilevel preconditioners.

tests contains a set of more sophisticated examples that will allow the user, via the
input files in the runs subdirectories, to experiment with the full range of precon-
ditioners implemented in the library.

The fileread directories contain sample programs that read sparse matrices from
files, according to the Matrix Market or the Harwell-Boeing storage format; the pdegen

instead generate matrices in full parallel mode from the discretization of a sample PDE.

10 MLD2P4 User’s and Reference Guide

4 Multi-level Domain Decomposition Background

Domain Decomposition (DD) preconditioners, coupled with Krylov iterative solvers, are
widely used in the parallel solution of large and sparse linear systems. These precondi-
tioners are based on the divide and conquer technique: the matrix to be preconditioned
is divided into submatrices, a “local” linear system involving each submatrix is (ap-
proximately) solved, and the local solutions are used to build a preconditioner for the
whole original matrix. This process often corresponds to dividing a physical domain
associated to the original matrix into subdomains, e.g. in a PDE discretization, to (ap-
proximately) solving the subproblems corresponding to the subdomains and to building
an approximate solution of the original problem from the local solutions [6, 7, 23].

Additive Schwarz preconditioners are DD preconditioners using overlapping sub-
matrices, i.e. with some common rows, to couple the local information related to the
submatrices (see, e.g., [23]). The main motivation for choosing Additive Schwarz pre-
conditioners is their intrinsic parallelism. A drawback of these preconditioners is that
the number of iterations of the preconditioned solvers generally grows with the num-
ber of submatrices. This may be a serious limitation on parallel computers, since the
number of submatrices usually matches the number of available processors. Optimal
convergence rates, i.e. iteration numbers independent of the number of submatrices, can
be obtained by correcting the preconditioner through a suitable approximation of the
original linear system in a coarse space, which globally couples the information related
to the single submatrices.

Two-level Schwarz preconditioners are obtained by combining basic (one-level) Sch-
warz preconditioners with a coarse-level correction. In this context, the one-level pre-
conditioner is often called ‘smoother’. Different two-level preconditioners are obtained
by varying the choice of the smoother and of the coarse-level correction, and the way
they are combined [23]. The same reasoning can be applied starting from the coarse-
level system, i.e. a coarse-space correction can be built from this system, thus obtaining
multi-level preconditioners.

It is worth noting that optimal preconditioners do not necessarily correspond to
minimum execution times. Indeed, to obtain effective multi-level preconditioners a
tradeoff between optimality of convergence and the cost of building and applying the
coarse-space corrections must be achieved. The choice of the number of levels, i.e. of
the coarse-space corrections, also affects the effectiveness of the preconditioners. One
more goal is to get convergence rates as less sensitive as possible to variations in the
matrix coefficients.

Two main approaches can be used to build coarse-space corrections. The geometric
approach applies coarsening strategies based on the knowledge of some physical grid
associated to the matrix and requires the user to define grid transfer operators from the
fine to the coarse levels and vice versa. This may result difficult for complex geome-
tries; furthermore, suitable one-level preconditioners may be required to get efficient
interplay between fine and coarse levels, e.g. when matrices with highly varying coef-
ficients are considered. The algebraic approach builds coarse-space corrections using
only matrix information. It performs a fully automatic coarsening and enforces the

4 Multi-level Domain Decomposition Background 11

interplay between the fine and coarse levels by suitably choosing the coarse space and
the coarse-to-fine interpolation [25].

MLD2P4 uses a pure algebraic approach for building the sequence of coarse matrices
starting from the original matrix. The algebraic approach is based on the smoothed
aggregation algorithm [1, 27]. A decoupled version of this algorithm is implemented,
where the smoothed aggregation is applied locally to each submatrix [26]. In the next
two subsections we provide a brief description of the multi-level Schwarz preconditioners
and of the smoothed aggregation technique as implemented in MLD2P4. For further
details the reader is referred to [2, 3, 4, 8, 23].

4.1 Multi-level Schwarz Preconditioners

The Multilevel preconditioners implemented in MLD2P4 are obtained by combining AS
preconditioners with coarse-space corrections; therefore we first provide a sketch of the
AS preconditioners.

Given the linear system (1), where A = (aij) ∈ <n×n is a nonsingular sparse matrix
with a symmetric nonzero pattern, let G = (W,E) be the adjacency graph of A, where
W = {1, 2, . . . , n} and E = {(i, j) : aij 6= 0} are the vertex set and the edge set of G,
respectively. Two vertices are called adjacent if there is an edge connecting them. For
any integer δ > 0, a δ-overlap partition of W can be defined recursively as follows. Given
a 0-overlap (or non-overlapping) partition of W , i.e. a set of m disjoint nonempty sets
W 0
i ⊂W such that ∪mi=1W

0
i = W , a δ-overlap partition of W is obtained by considering

the sets W δ
i ⊃W

δ−1
i obtained by including the vertices that are adjacent to any vertex

in W δ−1
i .

Let nδi be the size of W δ
i and Rδi ∈ <n

δ
i×n the restriction operator that maps a vector

v ∈ <n onto the vector vδi ∈ <n
δ
i containing the components of v corresponding to the

vertices in W δ
i . The transpose of Rδi is a prolongation operator from <nδi to <n. The

matrix Aδi = RδiA(Rδi)
T ∈ <nδi×nδi can be considered as a restriction of A corresponding

to the set W δ
i .

The classical one-level AS preconditioner is defined by

M−1
AS =

m∑
i=1

(Rδi)
T (Aδi)

−1Rδi ,

where Aδi is assumed to be nonsingular. Its application to a vector v ∈ <n within a
Krylov solver requires the following three steps:

1. restriction of v as vi = Rδi v, i = 1, . . . ,m;

2. solution of the linear systems Aδiwi = vi, i = 1, . . . ,m;

3. prolongation and sum of the wi’s, i.e. w =
∑m

i=1(R
δ
i)
Twi.

Note that the linear systems at step 2 are usually solved approximately, e.g. using
incomplete LU factorizations such as ILU(p), MILU(p) and ILU(p, t) [22, Chapter 10].

12 MLD2P4 User’s and Reference Guide

A variant of the classical AS preconditioner that outperforms it in terms of conver-
gence rate and of computation and communication time on parallel distributed-memory
computers is the so-called Restricted AS (RAS) preconditioner [5, 15]. It is obtained
by zeroing the components of wi corresponding to the overlapping vertices when ap-
plying the prolongation. Therefore, RAS differs from classical AS by the prolongation
operators, which are substituted by (R̃0

i)
T ∈ <nδi×n, where R̃0

i is obtained by zeroing
the rows of Rδi corresponding to the vertices in W δ

i \W 0
i :

M−1
RAS =

m∑
i=1

(R̃0
i)
T (Aδi)

−1Rδi .

Analogously, the AS variant called AS with Harmonic extension (ASH) is defined by

M−1
ASH =

m∑
i=1

(Rδi)
T (Aδi)

−1R̃0
i .

We note that for δ = 0 the three variants of the AS preconditioner are all equal to the
block-Jacobi preconditioner.

As already observed, the convergence rate of the one-level Schwarz preconditioned
iterative solvers deteriorates as the number m of partitions of W increases [7, 23]. To
reduce the dependency of the number of iterations on the degree of parallelism we may
introduce a global coupling among the overlapping partitions by defining a coarse-space
approximation AC of the matrix A. In a pure algebraic setting, AC is usually built with
the Galerkin approach. Given a set WC of coarse vertices, with size nC , and a suitable
restriction operator RC ∈ <nC×n, AC is defined as

AC = RCAR
T
C

and the coarse-level correction matrix to be combined with a generic one-level AS
preconditioner M1L is obtained as

M−1
C = RTCA

−1
C RC ,

where AC is assumed to be nonsingular. The application of M−1
C to a vector v corre-

sponds to a restriction, a solution and a prolongation step; the solution step, involving
the matrix AC , may be carried out also approximately.

The combination of MC and M1L may be performed in either an additive or a mul-
tiplicative framework. In the former case, the two-level additive Schwarz preconditioner
is obtained:

M−1
2LA = M−1

C +M−1
1L .

Applying M−1
2L−A to a vector v within a Krylov solver corresponds to applying M−1

C

and M−1
1L to v independently and then summing up the results.

In the multiplicative case, the combination can be performed by first applying the
smoother M−1

1L and then the coarse-level correction operator M−1
C :

w = M−1
1L v,

z = w +M−1
C (v −Aw);

4 Multi-level Domain Decomposition Background 13

this corresponds to the following two-level hybrid pre-smoothed Schwarz preconditioner:

M−1
2LH−PRE = M−1

C +
(
I −M−1

C A
)
M−1

1L .

On the other hand, by applying the smoother after the coarse-level correction, i.e. by
computing

w = M−1
C v,

z = w +M−1
1L (v −Aw),

the two-level hybrid post-smoothed Schwarz preconditioner is obtained:

M−1
2LH−POST = M−1

1L +
(
I −M−1

1L A
)
M−1
C .

One more variant of two-level hybrid preconditioner is obtained by applying the smoother
before and after the coarse-level correction. In this case, the preconditioner is symmetric
if A, M1L and MC are symmetric.

As previously noted, on parallel computers the number of submatrices usually
matches the number of available processors. When the size of the system to be precon-
ditioned is very large, the use of many processors, i.e. of many small submatrices, often
leads to a large coarse-level system, whose solution may be computationally expensive.
On the other hand, the use of few processors often leads to local sumatrices that are
too expensive to be processed on single processors, because of memory and/or com-
puting requirements. Therefore, it seems natural to use a recursive approach, in which
the coarse-level correction is re-applied starting from the current coarse-level system.
The corresponding preconditioners, called multi-level preconditioners, can significantly
reduce the computational cost of preconditioning with respect to the two-level case (see
[23, Chapter 3]). Additive and hybrid multilevel preconditioners are obtained as direct
extensions of the two-level counterparts. For a detailed descrition of them, the reader
is referred to [23, Chapter 3]. The algorithm for the application of a multi-level hybrid
post-smoothed preconditioner M to a vector v, i.e. for the computation of w = M−1v,
is reported, for example, in Figure 1. Here the number of levels is denoted by nlev
and the levels are numbered in increasing order starting from the finest one, i.e. the
finest level is level 1; the coarse matrix and the corresponding basic preconditioner at
each level l are denoted by Al and Ml, respectively, with A1 = A, while the related
restriction operator is denoted by Rl.

4.2 Smoothed Aggregation

In order to define the restriction operator RC , which is used to compute the coarse-
level matrix AC , MLD2P4 uses the smoothed aggregation algorithm described in [1, 27].
The basic idea of this algorithm is to build a coarse set of vertices WC by suitably
grouping the vertices of W into disjoint subsets (aggregates), and to define the coarse-
to-fine space transfer operator RTC by applying a suitable smoother to a simple piecewise
constant prolongation operator, to improve the quality of the coarse-space correction.

Three main steps can be identified in the smoothed aggregation procedure:

14 MLD2P4 User’s and Reference Guide

v1 = v;

for l = 2, nlev do

! transfer vl−1 to the next coarser level
vl = Rlvl−1

endfor

! apply the coarsest-level correction

ynlev = A−1
nlevvnlev

for l = nlev − 1, 1,−1 do

! transfer yl+1 to the next finer level
yl = RT

l+1yl+1;

! compute the residual at the current level
rl = vl −A−1

l yl;

! apply the basic Schwarz preconditioner to the residual
rl = M−1

l rl

! update yl
yl = yl + rl

endfor

w = y1;

Figure 1: Application of the multi-level hybrid post-smoothed preconditioner.

1. coarsening of the vertex set W , to obtain WC ;

2. construction of the prolongator RTC ;

3. application of RC and RTC to build AC .

To perform the coarsening step, we have implemented the aggregation algorithm
sketched in [4]. According to [27], a modification of this algorithm has been actually
considered, in which each aggregate Nr is made of vertices of W that are strongly coupled
to a certain root vertex r ∈W , i.e.

Nr =
{
s ∈W : |ars| > θ

√
|arrass|

}
∪ {r} ,

for a given θ ∈ [0, 1]. Since this algorithm has a sequential nature, a decoupled version
of it has been chosen, where each processor i independently applies the algorithm to
the set of vertices W 0

i assigned to it in the initial data distribution. This version is
embarrassingly parallel, since it does not require any data communication. On the other
hand, it may produce non-uniform aggregates near boundary vertices, i.e. near vertices
adjacent to vertices in other processors, and is strongly dependent on the number of
processors and on the initial partitioning of the matrix A. Nevertheless, this algorithm
has been chosen for the implementation in MLD2P4, since it has been shown to produce
good results in practice [3, 4, 26].

4 Multi-level Domain Decomposition Background 15

The prolongator PC = RTC is built starting from a tentative prolongator P ∈ <n×nC ,
defined as

P = (pij), pij =

{
1 if i ∈ V j

C

0 otherwise
. (2)

PC is obtained by applying to P a smoother S ∈ <n×n:

PC = SP, (3)

in order to remove oscillatory components from the range of the prolongator and hence
to improve the convergence properties of the multi-level Schwarz method [1, 25]. A
simple choice for S is the damped Jacobi smoother:

S = I − ωD−1A, (4)

where the value of ω can be chosen using some estimate of the spectral radius of D−1A
[1].

16 MLD2P4 User’s and Reference Guide

5 Getting Started

We describe the basics for building and applying MLD2P4 one-level and multi-level
(i.e., AMG) preconditioners with the Krylov solvers included in PSBLAS [16]. The
following steps are required:

1. Declare the preconditioner data structure. It is a derived data type, mld_xprec_
type, where x may be s, d, c or z, according to the basic data type of the sparse
matrix (s = real single precision; d = real double precision; c = complex single
precision; z = complex double precision). This data structure is accessed by the
user only through the MLD2P4 routines, following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, according to a precon-
ditioner type chosen by the user. This is performed by the routine init, which
also sets defaults for each preconditioner type selected by the user. The precondi-
tioner types and the defaults associated with them are given in Table 1, where the
strings used by init to identify the preconditioner types are also given. Note that
these strings are valid also if uppercase letters are substituted by corresponding
lowercase ones.

3. Modify the selected preconditioner type, by properly setting preconditioner param-
eters. This is performed by the routine set. This routine must be called only if
the user wants to modify the default values of the parameters associated with the
selected preconditioner type, to obtain a variant of that preconditioner. Examples
of use of set are given in Section 5.1; a complete list of all the preconditioner pa-
rameters and their allowed and default values is provided in Section 6, Tables 2-8.

4. Build the preconditioner for a given matrix. If the selected preconditioner is multi-
level, then two steps must be performed, as specified next.

4.1 Build the aggregation hierarchy for a given matrix. This is performed by the
routine hierarchy_bld.

4.2 Build the preconditioner for a given matrix. This is performed by the routine
smoothers_bld.

If the selected preconditioner is one-level, it is built in a single step, performed by
the routine bld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is performed by
the routine aply. When using the PSBLAS Krylov solvers, this step is completely
transparent to the user, since aply is called by the PSBLAS routine implementing
the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine free.
This step is complementary to step 1 and should be performed when the precon-
ditioner is no more used.

5 Getting Started 17

All the previous routines are available as methods of the preconditioner object. A
detailed description of them is given in Section 6. Examples showing the basic use of
MLD2P4 are reported in Section 5.1.

type string default preconditioner

No preconditioner ’NOPREC’ Considered only to use the PSBLAS Krylov
solvers with no preconditioner.

Diagonal ’DIAG’ or
’JACOBI’

Diagonal preconditioner. For any zero diagonal
entry of the matrix to be preconditioned, the cor-
responding entry of he preconditioner is set to 1.

Block Jacobi ’BJAC’ Block-Jacobi with ILU(0) on the local blocks.

Additive Schwarz ’AS’ Restricted Additive Schwarz (RAS), with over-
lap 1 and ILU(0) on the local blocks.

Multilevel ’ML’ V-cycle with one hybrid forward Gauss-Seidel
(GS) sweep as pre-smoother and one hybrid back-
ward GS sweep as post-smoother, basic smoothed
aggregation as coarsening algorithm, and LU
(plus triangular solve) as coarsest-level solver.
See the default values in Tables 2-8 for further
details of the preconditioner.

Table 1: Preconditioner types, corresponding strings and default choices.

Note that the module mld_prec_mod, containing the definition of the preconditioner
data type and the interfaces to the routines of MLD2P4, must be used in any program
calling such routines. The modules psb_base_mod, for the sparse matrix and commu-
nication descriptor data types, and psb_krylov_mod, for interfacing with the Krylov
solvers, must be also used (see Section 5.1).

Remark 1. Coarsest-level solvers based on the LU factorization, such as those
implemented in UMFPACK, MUMPS, SuperLU, and SuperLU Dist, usually lead to
smaller numbers of preconditioned Krylov iterations than inexact solvers, when the
linear system comes from a standard discretization of basic scalar elliptic PDE problems.
However, this does not necessarily correspond to the smallest execution time on parallel
computers.

5.1 Examples

The code reported in Figure 2 shows how to set and apply the default multi-level
preconditioner available in the real double precision version of MLD2P4 (see Table 1).
This preconditioner is chosen by simply specifying ’ML’ as second argument of P%init
(a call to P%set is not needed) and is applied with the CG solver provided by PSBLAS
(the matrix of the system to be solved is assumed to be positive definite). As previously

18 MLD2P4 User’s and Reference Guide

observed, the modules psb_base_mod, mld_prec_mod and psb_krylov_mod must be
used by the example program.

The part of the code concerning the reading and assembling of the sparse matrix
and the right-hand side vector, performed through the PSBLAS routines for sparse
matrix and vector management, is not reported here for brevity; the statements con-
cerning the deallocation of the PSBLAS data structure are neglected too. The complete
code can be found in the example program file mld_dexample_ml.f90, in the directory
examples/fileread of the MLD2P4 implementation (see Section 3.5). A sample test
problem along with the relevant input data is available in examples/fileread/runs.
For details on the use of the PSBLAS routines, see the PSBLAS User’s Guide [16].

The setup and application of the default multi-level preconditioner for the real
single precision and the complex, single and double precision, versions are obtained with
straightforward modifications of the previous example (see Section 6 for details). If these
versions are installed, the corresponding codes are available in examples/fileread/.

Different versions of the multi-level preconditioner can be obtained by changing
the default values of the preconditioner parameters. The code reported in Figure 3
shows how to set a V-cycle preconditioner which applies 1 block-Jacobi sweep as pre-
and post-smoother, and solves the coarsest-level system with 8 block-Jacobi sweeps.
Note that the ILU(0) factorization (plus triangular solve) is used as local solver for
the block-Jacobi sweeps, since this is the default associated with block-Jacobi and
set by P%init. Furthermore, specifying block-Jacobi as coarsest-level solver implies
that the coarsest-level matrix is distributed among the processes. Figure 4 shows how
to set a W-cycle preconditioner which applies no pre-smoother and 2 Gauss-Seidel
sweeps as post-smoother, and solves the coarsest-level system with the multifrontal LU
factorization implemented in MUMPS. It is specified that the coarsest-level matrix is
distributed, since MUMPS can be used on both replicated and distributed matrices,
and by default it is used on replicated ones. Note the use of the parameter pos to
specify a property only for the pre-smoother or the post-smoother (see Section 6.2
for more details). Note also that a Krylov method different from CG must be used
to solve the preconditioned system, since the preconditione in nonsymmetric. The
code fragments shown in Figures 3 and 4 are included in the example program file
mld_dexample_ml.f90 too.

Finally, Figure 5 shows the setup of a one-level additive Schwarz preconditioner,
i.e., RAS with overlap 2. The corresponding example program is available in the file
mld_dexample_1lev.f90.

For all the previous preconditioners, example programs where the sparse matrix
and the right-hand side are generated by discretizing a PDE with Dirichlet boundary
conditions are also available in the directory examples/pdegen.

5 Getting Started 19

use psb_base_mod

use mld_prec_mod

use psb_krylov_mod

... ...

!

! sparse matrix

type(psb_dspmat_type) :: A

! sparse matrix descriptor

type(psb_desc_type) :: desc_A

! preconditioner

type(mld_dprec_type) :: P

! right-hand side and solution vectors

type(psb_d_vect_type) :: b, x

... ...

!

! initialize the parallel environment

call psb_init(ictxt)

call psb_info(ictxt,iam,np)

... ...

!

! read and assemble the spd matrix A and the right-hand side b

! using PSBLAS routines for sparse matrix / vector management

... ...

!

! initialize the default multi-level preconditioner, i.e. V-cycle

! with basic smoothed aggregation, 1 hybrid forward/backward

! GS sweep as pre/post-smoother and UMFPACK as coarsest-level

! solver

call P%init(P,’ML’,info)

!

! build the preconditioner

call P%hierarchy_bld(A,desc_A,P,info)

call P%smoothers_bld(A,desc_A,P,info)

!

! set the solver parameters and the initial guess

... ...

!

! solve Ax=b with preconditioned CG

call psb_krylov(’CG’,A,P,b,x,tol,desc_A,info)

... ...

!

! deallocate the preconditioner

call P%free(P,info)

!

! deallocate other data structures

... ...

!

! exit the parallel environment

call psb_exit(ictxt)

stop

Figure 2: setup and application of the default multi-level preconditioner (example 1).

20 MLD2P4 User’s and Reference Guide

... ...

! build a V-cycle preconditioner with 1 block-Jacobi sweep (with

! ILU(0) on the blocks) as pre- and post-smoother, and 8 block-Jacobi

! sweeps (with ILU(0) on the blocks) as coarsest-level solver

call P%init(P,’ML’,info)

call_P%set(P,’SMOOTHER_TYPE’,’BJAC’,info)

call P%set(P,’COARSE_SOLVE’,’BJAC’,info)

call P%set(P,’COARSE_SWEEPS’,8,info)

call P%hierarchy_bld(A,desc_A,P,info)

call P%smoothers_bld(A,desc_A,P,info)

... ...

Figure 3: setup of a multi-level preconditioner

... ...

! build a W-cycle preconditioner with 2 Gauss-Seidel sweeps as

! post-smoother (and no pre-smoother), a distributed coarsest

! matrix, and MUMPS as coarsest-level solver

call P%init(P,’ML’,info)

call P%set(’ML_TYPE’,’WCYCLE’,info)

call P%set(’SMOOTHER_TYPE’,’GS’,info)

call P%set(’SMOOTHER_SWEEPS’,0,info,pos=’PRE’)

call P%set(’SMOOTHER_SWEEPS’,2,info,pos=’POST’)

call P%set(’COARSE_SOLVE’,’MUMPS’,info)

call P%set(’COARSE_MAT’,’DIST’,info)

call P%hierarchy_bld(A,desc_A,P,info)

call P%smoothers_bld(A,desc_A,P,info)

... ...

! solve Ax=b with preconditioned CG

call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)

Figure 4: setup of a multi-level preconditioner

... ...

! set RAS with overlap 2 and ILU(0) on the local blocks

call P%init(P,’AS’,info)

call P%set(P,’SUB_OVR’,2,info)

call P%bld(A,desc_A,P,info)

... ...

Figure 5: setup of a one-level Schwarz preconditioner.

6 User Interface 21

6 User Interface

The basic user interface of MLD2P4 consists of eight routines. The six routines init,
set, hierarchy_bld, smoothers_bld, bld, and apply encapsulate all the functional-
ities for the setup and the application of any multi-level and one-level preconditioner
implemented in the package. The routine free deallocates the preconditioner data
structure, while descr prints a description of the preconditioner setup by the user.

All the routines are available as methods of the preconditioner object. For each
routine, the same user interface is overloaded with respect to the real/ complex case
and the single/double precision; arguments with appropriate data types must be passed
to the routine, i.e.,

• the sparse matrix data structure, containing the matrix to be preconditioned,
must be of type psb_xspmat_type with x = s for real single precision, x = d

for real double precision, x = c for complex single precision, x = z for complex
double precision;

• the preconditioner data structure must be of type mld_xprec_type, with x = s,
d, c, z, according to the sparse matrix data structure;

• the arrays containing the vectors v and w involved in the preconditioner applica-
tion w = M−1v must be of type psb_xvect_type with x = s, d, c, z, in a manner
completely analogous to the sparse matrix type;

• real parameters defining the preconditioner must be declared according to the
precision of the sparse matrix and preconditioner data structures (see Section 6.2).

A description of each routine is given in the remainder of this section.

22 MLD2P4 User’s and Reference Guide

6.1 Subroutine init

call p%init(ptype,info)

This routine allocates and initializes the preconditioner p, according to the precondi-
tioner type chosen by the user.

Arguments

ptype character(len=*), intent(in).
The type of preconditioner. Its values are specified in Table 1.
Note that the strings are case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precinit(p,ptype,info)

6 User Interface 23

6.2 Subroutine set

call p%set(what,val,info [,ilev, ilmax, pos])

This routine sets the parameters defining the preconditioner p. More precisely, the
parameter identified by what is assigned the value contained in val.

Arguments

what integer, intent(in) or character(len=*).
The parameter to be set. It can be specified by a predefined constant,
or through its name; the string is case-insensitive. See also Tables 2-8.

val integer or character(len=*) or real(psb_spk_) or
real(psb_dpk_), intent(in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Tables 2-8. When the value is of
type character(len=*), it is also treated as case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

ilev integer, optional, intent(in).
For the multi-level preconditioner, the level at which the preconditioner
parameter has to be set. The levels are numbered in increasing order
starting from the finest one, i.e., level 1 is the finest level. If ilev is not
present, the parameter identified by what is set at all the appropriate
levels (see Tables 2-8).

ilmax integer, optional, intent(in).
For the multi-level preconditioner, when both ilev and ilmax are
present, the settings are applied at all levels ilev:ilmax. When ilev

is present but ilmax is not, then the default is ilmax=ilev. The levels
are numbered in increasing order starting from the finest one, i.e., level
1 is the finest level.

pos charater(len=*), optional, intent(in).
Whether the other arguments apply only to the pre-smoother (’PRE’) or
to the post-smoother (’POST’). If pos is not present, the other arguments
are applied to both smoothers. If the preconditioner is one-level or the
parameter identified by what does not concern the smoothers, pos is
ignored.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precset(p,what,val,info)

However, in this case the optional arguments ilev, ilmax, and pos cannot be used.

24 MLD2P4 User’s and Reference Guide

A variety of preconditioners can be obtained by a suitable setting of the precon-
ditioner parameters. These parameters can be logically divided into four groups, i.e.,
parameters defining

1. the type of multi-level cycle and how many cycles must be applied;

2. the aggregation algorithm;

3. the coarse-space correction at the coarsest level (for multi-level preconditioners
only);

4. the smoother of the multi-level preconditioners, or the one-level preconditioner.

A list of the parameters that can be set, along with their allowed and default values,
is given in Tables 2-8. For a description of the meaning of the parameters, please refer
also to Section 4.

Remark 2. A smoother is usually obtained by combining two objects: a smoother
(mld_smoother_type_) and a local solver (mld_sub_solve_), as specified in Tables 7-
8. For example, the block-Jacobi smoother using ILU(0) on the blocks is obtained by
combining the block-Jacobi smoother object with the ILU(0) solver object. Similarly,
the hybrid Gauss-Seidel smoother (see Note in Table 7) is obtained by combining the
block-Jacobi smoother object with a single sweep of the Gauss-Seidel solver object,
while the point-Jacobi smoother is the result of combining the block-Jacobi smoother
object with a single sweep of the pointwise-Jacobi solver object. However, for sim-
plicity, shortcuts are provided to set point-Jacobi, hybrid (forward) Gauss-Seidel, and
hybrid backward Gauss-Seidel, i.e., the previous smoothers can be defined by setting
only mld_smoother_type_ to appropriate values (see Tables 7), i.e., without setting
mld_sub_solve_ too.

The smoother and solver objects are arranged in a hierarchical manner. When
specifying a smoother object, its parameters, including the local solver, are set to their
default values, and when a solver object is specified, its defaults are also set, overriding
in both cases any previous settings even if explicitly specified. Therefore if the user sets
a smoother, and wishes to use a solver different from the default one, the call to set the
solver must come after the call to set the smoother.

Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi
coarsest-level solvers, and shortcuts are available in this case too (see Table 5).

Remark 3. In general, a coarsest-level solver cannot be used with both the repli-
cated and distributed coarsest-matrix layout, and vice versa; therefore, setting the
solver after the layout may change the layout, and setting the layout after the solver
may change the solver, if the choices of the two parameters do not agree.

More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be
replicated, while SuperLU Dist requires it to be distributed. In these cases, setting
the coarsest-level solver implies that the layout is redefined according to the solver,
ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel and

6 User Interface 25

block-Jacobi can be applied to replicated and distributed matrices, thus their choice
does not modify any previously specified layout. It is worth noting that, when the
matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers
reduce to the corresponding local solver objects (see Remark 2). For the point-Jacobi
and Gauss-Seidel solvers, these objects correspond to a single point-Jacobi sweep and
a single Gauss-Seidel sweep, respectively, which are very poor solvers.

On the other hand, the distributed layout can be used with any solver but UMF-
PACK and SuperLU; therefore, if any of these two solvers has already been selected,
the coarsest-level solver is changed to block-Jacobi, with the previously chosen solver
applied to the local blocks. Likewise, the replicated layout can be used with any solver
but SuperLu Dist; therefore, if SuperLu Dist has been previously set, the coarsest-level
solver is changed to the default sequential solver.

26 MLD2P4 User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

m
l
d
_
m
l
_
c
y
c
l
e
_

M
L
_
C
Y
C
L
E

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
V
C
Y
C
L
E
’

’
W
C
Y
C
L
E
’

’
K
C
Y
C
L
E
’

’
M
U
L
T
’

’
A
D
D
’

’
V
C
Y
C
L
E
’

M
u

lti-level
cy

cle:
V

-cy
cle,

W
-cy

cle,
K

-
cy

cle,
h
y
b

rid
M

u
ltip

licativ
e

S
ch

w
arz,

an
d

A
d

d
itive

S
ch

w
arz.

N
ote

th
at

h
y
b

rid
M

u
ltip

licative
S

ch
w

arz
is

eq
u

ivalen
t

to
V

-cy
cle

an
d

is
in

clu
d

ed
for

com
p

atib
ility

w
ith

p
rev

iou
s

v
ersion

s
of

M
L

D
2P

4.

m
l
d
_
o
u
t
e
r
_
s
w
e
e
p
s
_

O
U
T
E
R
_
S
W
E
E
P
S

i
n
t
e
g
e
r

A
n
y

in
teger

n
u

m
b

er
≥

1
1

N
u

m
b

er
of

m
u

lti-level
cy

cles.

T
a
b

le
2:

P
a
ra

m
eters

d
efi

n
in

g
th

e
m

u
lti-level

cy
cle

an
d

th
e

n
u

m
b

er
of

cy
cles

to
b

e
ap

p
lied

.

6 User Interface 27
w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

m
l
d
_
m
i
n
_
c
o
a
r
s
e
_
s
i
z
e
_

M
I
N
_
C
O
A
R
S
E
_
S
I
Z
E

i
n
t
e
g
e
r

A
n
y

n
u

m
b

er
>

0
b4

0
3√
n
c,

w
h

er
e
n

is
th

e
d

im
en

si
on

of
th

e
m

at
ri

x
at

th
e

fi
n

es
t

le
ve

l

C
oa

rs
e

si
ze

th
re

sh
ol

d
.

T
h

e
ag

gr
eg

at
io

n
st

op
s

if
th

e
gl

ob
al

n
u

m
b

er
of

va
ri

ab
le

s
of

th
e

co
m

p
u

te
d

co
ar

se
st

m
at

ri
x

is
lo

w
er

th
an

or
eq

u
al

to
th

is
th

re
sh

ol
d

(s
ee

N
ot

e)
.

m
l
d
_
m
i
n
_
c
r
_
r
a
t
i
o
_

M
I
N
_
C
R
_
R
A
T
I
O

r
e
a
l

A
n
y

n
u

m
b

er
>

1
1.

5
M

in
im

u
m

co
ar

se
n

in
g

ra
ti

o.
T

h
e

ag
gr

eg
a-

ti
on

st
op

s
if

th
e

ra
ti

o
b

et
w

ee
n

th
e

m
a-

tr
ix

d
im

en
si

on
s

at
tw

o
co

n
se

cu
ti

ve
le

v
el

s
is

lo
w

er
th

an
or

eq
u

al
to

th
is

th
re

sh
ol

d
(s

ee
N

ot
e)

.

m
l
d
_
m
a
x
_
l
e
v
s
_

M
A
X
_
L
E
V
S

i
n
t
e
g
e
r

A
n
y

in
te

ge
r

n
u

m
b

er
>

1
20

M
ax

im
u

m
n
u

m
b

er
of

le
ve

ls
.

T
h

e
ag

gr
eg

a-
ti

on
st

op
s

if
th

e
n
u

m
b

er
of

le
v
el

s
re

ac
h

es
th

is
va

lu
e

(s
ee

N
ot

e)
.

m
l
d
_
p
a
r
_
a
g
g
r
_
a
l
g
_

P
A
R
_
A
G
G
R

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
D
E
C
’
,

’
S
Y
M
D
E
C
’

’
D
E
C
’

P
ar

al
le

l
ag

gr
eg

at
io

n
al

go
ri

th
m

.
C

u
rr

en
tl

y,
on

ly
th

e
d

ec
ou

p
le

d
ag

gr
eg

a-
ti

on
(D
E
C
)

is
av

ai
la

b
le

;
th

e
S
Y
M
D
E
C

op
-

ti
on

ap
p

li
es

d
ec

ou
p

le
d

ag
gr

eg
at

io
n

to
th

e
sp

ar
si

ty
p
at

te
rn

of
A

+
A
T

.

m
l
d
_
a
g
g
r
_
t
y
p
e
_

A
G
G
R
_
T
Y
P
E

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
V
M
B
’

’
V
M
B
’

T
y
p

e
of

ag
gr

eg
at

io
n

al
go

ri
th

m
:

cu
r-

re
n
tl

y,
th

e
sc

al
ar

ag
gr

eg
at

io
n

al
go

ri
th

m
b
y

V
an

ěk
,

M
an

d
el

an
d

B
re

zi
n

a
is

im
p

le
-

m
en

te
d

[2
7]

.

m
l
d
_
a
g
g
r
_
p
r
o
l
_

A
G
G
R
_
P
R
O
L

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
S
M
O
O
T
H
E
D
’
,

’
U
N
S
M
O
O
T
H
E
D
’

’
S
M
O
O
T
H
E
D
’

P
ro

lo
n

ga
to

r
u

se
d

b
y

th
e

ag
gr

eg
at

io
n

al
-

go
ri

th
m

:
sm

o
ot

h
ed

or
u

n
sm

o
ot

h
ed

(i
.e

.,
te

n
ta

ti
ve

p
ro

lo
n

ga
to

r)
.

N
o
te

.
T

h
e

ag
g
re

ga
ti

on
al

go
ri

th
m

st
op

s
w

h
en

at
le

as
t

on
e

of
th

e
fo

ll
ow

in
g

cr
it

er
ia

is
m

et
:

th
e

co
ar

se
si

ze
th

re
sh

ol
d

,
th

e
m

ax
im

u
m

co
ar

se
n

in
g

ra
ti

o
,

or
th

e
m

ax
im

u
m

n
u

m
b

er
of

le
ve

ls
is

re
ac

h
ed

.
T

h
er

ef
or

e,
th

e
ac

tu
al

n
u

m
b

er
of

le
ve

ls
m

ay
b

e
sm

a
ll

er
th

a
n

th
e

sp
ec

ifi
ed

m
a
x
im

u
m

n
u

m
b

er
of

le
v
el

s.

T
ab

le
3
:

P
ar

am
et

er
s

d
efi

n
in

g
th

e
ag

gr
eg

at
io

n
al

go
ri

th
m

.

28 MLD2P4 User’s and Reference Guide
w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

m
l
d
_
a
g
g
r
_
o
r
d
_

A
G
G
R
_
O
R
D

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
N
A
T
U
R
A
L
’

’
D
E
G
R
E
E
’

’
N
A
T
U
R
A
L
’

In
itial

ord
erin

g
of

in
d

ices
for

th
e

aggre-
gation

algorith
m

:
eith

er
n

atu
ral

ord
er-

in
g

or
sorted

b
y

d
escen

d
in

g
d
egrees

of
th

e
n

o
d

es
in

th
e

m
atrix

grap
h

.

m
l
d
_
a
g
g
r
_
t
h
r
e
s
h
_

A
G
G
R
_
T
H
R
E
S
H

r
e
a
l
(

kin
d

pa
ra

m
eter

)
A

n
y

real
n
u

m
b

er∈
[0,1]

0.05
T

h
e

th
resh

old
θ

in
th

e
aggregation

al-
gorith

m
(see

N
ote).

m
l
d
_
a
g
g
r
_
o
m
e
g
a
_
a
l
g
_

A
G
G
R
_
O
M
E
G
A
_
A
L
G

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
E
I
G
E
S
T
’

’
U
S
E
R
C
H
O
I
C
E
’

’
E
I
G
E
S
T
’

H
ow

th
e

d
am

p
in

g
p

aram
eter

ω
in

th
e

sm
o
oth

ed
aggregation

is
ob

tain
ed

:
ei-

th
er

v
ia

an
estim

ate
of

th
e

sp
ectral

ra-
d

iu
s

of
D

−
1A

,
or

ex
p

licily
sp

ecifi
ed

b
y

th
e

u
ser.

m
l
d
_
a
g
g
r
_
e
i
g
_

A
G
G
R
_
E
I
G

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
A
N
O
R
M
I
’

’
A
N
O
R
M
I
’

H
ow

to
estim

ate
th

e
sp

ectral
rad

iu
s

of
D

−
1A

.
C

u
rren

tly
on

ly
th

e
in

fi
n

ity
n

orm
estim

ate
is

availab
le.

m
l
d
_
a
g
g
r
_
o
m
e
g
a
_
v
a
l
_

A
G
G
R
_
O
M
E
G
A
_
V
A
L

r
e
a
l
(

kin
d

pa
ra

m
eter

)
A

n
y

real
n
u

m
b

er
>

0
4
/(3ρ

(D
−
1A

))
D

am
p

in
g

p
aram

eter
ω

in
th

e
sm

o
oth

ed
aggregation

algorith
m

.
It

m
u

st
b

e
set

b
y

th
e

u
ser

if
U
S
E
R
_
C
H
O
I
C
E

w
as

sp
ec-

ifi
ed

for
m
l
d
_
a
g
g
r
_
o
m
e
g
a
_
a
l
g
_
,

oth
er-

w
ise

it
is

com
p

u
ted

b
y

th
e

lib
rary,

u
sin

g
th

e
selected

estim
ate

of
th

e
sp

ectral
ra-

d
iu

s
ρ
(D

−
1A

)
of
D

−
1A

.

m
l
d
_
a
g
g
r
_
f
i
l
t
e
r
_

A
G
G
R
_
F
I
L
T
E
R

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
F
I
L
T
E
R
’

’
N
O
F
I
L
T
E
R
’

’
N
O
F
I
L
T
E
R
’

M
atrix

u
sed

in
com

p
u

tin
g

th
e

sm
o
oth

ed
p

rolon
gator:

fi
ltered

or
u

n
fi

ltered
.

N
o
te

.
D

iff
eren

t
th

resh
o
ld

s
at

d
iff

eren
t

levels,
su

ch
as

th
ose

u
sed

in
[27,

S
ection

5.1],
can

b
e

easily
set

b
y

in
vok

in
g

th
e

rou
-

tin
e
s
e
t

w
ith

th
e

p
a
ra

m
eter

i
l
e
v
.

T
a
b

le
4:

P
a
ra

m
eters

d
efi

n
in

g
th

e
aggregation

algorith
m

(con
tin

u
ed

).

6 User Interface 29
w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

m
l
d
_
c
o
a
r
s
e
_
m
a
t
_

C
O
A
R
S
E
_
M
A
T

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
D
I
S
T
’

’
R
E
P
L
’

’
R
E
P
L
’

C
oa

rs
es

t
m

at
ri

x
la

yo
u

t:
d

is
tr

ib
u

te
d

am
on

g
th

e
p

ro
-

ce
ss

es
or

re
p

li
ca

te
d

on
ea

ch
of

th
em

.

m
l
d
_
c
o
a
r
s
e
_
s
o
l
v
e
_

C
O
A
R
S
E
_
S
O
L
V
E

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
M
U
M
P
S
’

’
U
M
F
’

’
S
L
U
’

’
S
L
U
D
I
S
T
’

’
J
A
C
O
B
I
’

’
G
S
’

’
B
J
A
C
’

S
ee

N
ot

e
1

S
ol

ve
r

u
se

d
at

th
e

co
ar

se
st

le
v
el

:
se

q
u

en
ti

al
L

U
fr

om
M

U
M

P
S

,
U

M
F

P
A

C
K

,
or

S
u

p
er

L
U

(p
lu

s
tr

i-
an

gu
la

r
so

lv
e)

;
d

is
tr

ib
u
te

d
L

U
fr

om
M

U
M

P
S

or
S

u
p

er
L

U
D

is
t

(p
lu

s
tr

ia
n

gu
la

r
so

lv
e)

;
p

oi
n
t-

J
ac

ob
i,

h
y
b

ri
d

G
au

ss
-S

ei
d

el
(s

ee
N

ot
e

2)
or

b
lo

ck
-J

ac
ob

i.
N

ot
e

th
at

U
M
F

an
d
S
L
U

re
q
u

ir
e

th
e

co
ar

se
st

m
at

ri
x

to
b

e
re

p
li

ca
te

d
,
S
L
U
D
I
S
T
,
J
A
C
O
B
I
,
G
S

an
d
B
J
A
C

re
-

q
u

ir
e

it
to

b
e

d
is

tr
ib

u
te

d
,
M
U
M
P
S

ca
n

b
e

u
se

d
w

it
h

ei
th

er
a

re
p

li
ca

te
d

or
a

d
is

tr
ib

u
te

d
m

at
ri

x
.

W
h

en
an

y
of

th
e

p
re

v
io

u
s

so
lv

er
s

is
sp

ec
ifi

ed
,

th
e

m
at

ri
x

la
yo

u
t

is
se

t
to

a
d

ef
au

lt
va

lu
e

w
h

ic
h

al
lo

w
s

th
e

u
se

va
lu

e
U

M
F

P
A

C
K

an
d

S
u

p
er

L
U

D
is

t
ar

e
av

ai
la

b
le

on
ly

in
d
ou

b
le

p
re

ci
si

on
.

m
l
d
_
c
o
a
r
s
e
_
s
u
b
s
o
l
v
e
_

C
O
A
R
S
E
_
S
U
B
S
O
L
V
E

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
I
L
U
’

’
I
L
U
T
’

’
M
I
L
U
’

’
M
U
M
P
S
’

’
S
L
U
’

’
U
M
F
’

S
ee

N
ot

e
1

S
ol

ve
r

fo
r

th
e

d
ia

go
n

al
b

lo
ck

s
of

th
e

co
ar

se
m

at
ri

x
,

in
ca

se
th

e
b

lo
ck

J
ac

ob
i

so
lv

er
is

ch
os

en
as

co
ar

se
st

-
le

ve
l

so
lv

er
:

IL
U

(p
),

IL
U

(p
,t

),
M

IL
U

(p
),

L
U

fr
om

M
U

M
P

S
,

S
u

p
er

L
U

or
U

M
F

P
A

C
K

(p
lu

s
tr

ia
n

gu
la

r
so

lv
e)

.
N

ot
e

th
at

U
M

F
P

A
C

K
an

d
S

u
p

er
L

U
D

is
t

ar
e

av
ai

la
b

le
on

ly
in

d
ou

b
le

p
re

ci
si

on
.

N
o
te

1
.

D
ef

au
lt

s
fo

r
m
l
d
c
o
a
r
s
e
s
o
l
v
e

an
d
m
l
d
c
o
a
r
s
e
s
u
b
s
o
l
v
e

ar
e

ch
os

en
in

th
e

fo
ll

ow
in

g
or

d
er

:
si

n
g
le

p
re

ci
si

o
n

ve
rs

io
n

–
M
U
M
P
S

if
in

st
a
ll

ed
,

th
en

S
L
U

if
in

st
al

le
d

,
I
L
U

ot
h

er
w

is
e;

d
o
u

b
le

p
re

ci
si

on
ve

rs
io

n
–
U
M
F

if
in

st
al

le
d

,
th

en
M
U
M
P
S

if
in

st
al

le
d

,
th

en
S
L
U

if
in

st
al

le
d

,
I
L
U

ot
h

er
w

is
e.

N
o
te

2
.

T
h

e
h
y
b

ri
d

G
au

ss
-S

ei
d

el
m

et
h

o
d

is
b

et
w

ee
n

th
e

G
au

ss
-S

ei
d
el

an
d

J
ac

ob
i

m
et

h
o
d

s:
at

ea
ch

it
er

at
io

n
,

th
e

p
ro

ce
ss

-
es

u
se

th
e

m
o
st

re
ce

n
t

va
lu

es
of

th
ei

r
ow

n
lo

ca
l

va
ri

ab
le

s,
an

d
th

e
va

lu
es

of
th

e
n

on
-l

o
ca

l
va

ri
ab

le
s

co
m

p
u

te
d

at
th

e
p

re
v
i-

ou
s

it
er

a
ti

o
n

.

T
a
b

le
5:

P
a
ra

m
et

er
s

d
efi

n
in

g
th

e
co

ar
se

-s
p

ac
e

co
rr

ec
ti

on
at

th
e

co
ar

se
st

le
ve

l.

30 MLD2P4 User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

m
l
d
_
c
o
a
r
s
e
_
s
w
e
e
p
s
_

C
O
A
R
S
E
_
S
W
E
E
P
S

i
n
t
e
g
e
r

A
n
y

in
teger

n
u

m
b

er
>

0
10

N
u

m
b

er
of

sw
eep

s
w

h
en

J
A
C
O
B
I
,
G
S

or
B
J
A
C

is
ch

osen
as

coarsest-lev
el

solver.

m
l
d
_
c
o
a
r
s
e
_
f
i
l
l
i
n
_

C
O
A
R
S
E
_
F
I
L
L
I
N

i
n
t
e
g
e
r

A
n
y

in
teger

n
u

m
b

er
≥

0
0

F
ill-in

level
p

of
th

e
IL

U
factorization

s.

m
l
d
_
c
o
a
r
s
e
_
i
l
u
t
h
r
s
_

C
O
A
R
S
E
_
I
L
U
T
H
R
S

r
e
a
l
(

kin
d

pa
ra

m
eter

)
A

n
y

real
n
u

m
b

er
≥

0
0

D
rop

toleran
ce

t
in

th
e

IL
U

(p
,t)

factoriza-
tion

.

T
a
b

le
6:

P
a
ra

m
eters

d
efi

n
in

g
th

e
coarse-sp

ace
correction

at
th

e
coarsest

level
(con

tin
u

ed
).

6 User Interface 31

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

m
l
d
_
s
m
o
o
t
h
e
r
_
t
y
p
e
_

S
M
O
O
T
H
E
R
_
T
Y
P
E

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
J
A
C
O
B
I
’

’
G
S
’

’
B
G
S
’

’
B
J
A
C
’

’
A
S
’

’
F
B
G
S
’

T
y
p

e
o
f

sm
o
o
th

er
u

se
d

in
th

e
m

u
lt

i-
le

ve
l

p
re

co
n

d
it

io
n

er
:

p
o
in

t-
J
a
co

b
i,

h
y
b

ri
d

(f
o
rw

a
rd

)
G

a
u

ss
-S

ei
d

el
,

h
y
b

ri
d

b
a
ck

w
a
rd

G
a
u

ss
-S

ei
d

el
,

b
lo

ck
-J

a
co

b
i,

a
n

d
A

d
d

it
iv

e
S

ch
w

a
rz

.
S

ee
N

o
te

fo
r

d
et

a
il

s
o
n

h
y
b

ri
x

G
a
u

ss
-S

ei
d

el
.

It
is

ig
n

o
re

d
b
y

o
n

e-
le

ve
l

p
re

co
n

d
it

io
n

er
s.

m
l
d
_
s
u
b
_
s
o
l
v
e
_

S
U
B
_
S
O
L
V
E

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
J
A
C
O
B
I
’

’
G
S
’

’
B
G
S
’

’
I
L
U
’

’
I
L
U
T
’

’
M
I
L
U
’

’
M
U
M
P
S
’

’
S
L
U
’

’
U
M
F
’

G
S

a
n

d
B
G
S

fo
r

p
re

-
a
n

d
p

o
st

-s
m

o
o
th

er
s

o
f

m
u

lt
i-

le
ve

l
p

re
co

n
d

i-
ti

o
n

er
s,

re
sp

ec
ti

ve
ly

I
L
U

fo
r

b
lo

ck
-J

a
co

b
i

a
n

d
A

d
d

it
iv

e
S

ch
w

a
rz

o
n

e-
le

ve
l

p
re

co
n

d
it

io
n

-
er

s

T
h

e
lo

ca
l

so
lv

er
to

b
e

u
se

d
w

it
h

th
e

sm
o
o
th

er
o
r

o
n

e-
le

v
el

p
re

co
n

d
it

io
n

er
(s

ee
R

em
a
rk

2
,

p
a
g
e

2
4
):

p
o
in

t-
J
a
co

b
i,

h
y
b

ri
d

(f
o
rw

a
rd

)
G

a
u

ss
-S

ei
d

el
,

h
y
b

ri
d

b
a
ck

w
a
rd

G
a
u

ss
-S

ei
d

el
,

IL
U

(p
),

IL
U

(p
,t

),
M

IL
U

(p
),

L
U

fr
o
m

M
U

M
P

S
,

S
u

p
er

L
U

o
r

U
M

F
-

P
A

C
K

(p
lu

s
tr

ia
n

g
u

la
r

so
lv

e)
.

S
ee

N
o
te

fo
r

d
et

a
il

s
o
n

h
y
b

ri
d

G
a
u

ss
-S

ei
d

el
.

m
l
d
_
m
o
o
t
h
e
r
_
s
w
e
e
p
s
_

S
M
O
O
T
H
E
R
_
S
W
E
E
P
S

i
n
t
e
g
e
r

A
n
y

in
te

g
er

n
u

m
b

er
≥

0
1

N
u

m
b

er
o
f

sw
ee

p
s

o
f

th
e

sm
o
o
th

er
o
r

o
n

e-
le

ve
l

p
re

co
n

d
it

io
n

er
.

In
th

e
m

u
lt

i-
le

ve
l

ca
se

,
n

o
p

re
-s

m
o
th

er
o
r

p
o
st

-s
m

o
o
th

er
is

u
se

d
if

th
is

p
a
ra

m
et

er
is

se
t

to
0

to
-

g
et

h
er

w
it

h
p
o
s
=
’
P
R
E
’

o
r
p
o
s
=
’
P
O
S
T
,

re
-

sp
ec

ti
ve

ly
.

m
l
d
_
s
u
b
_
o
v
r
_

S
U
B
_
O
V
R

i
n
t
e
g
e
r

A
n
y

in
te

g
er

n
u

m
b

er
≥

0
1

N
u

m
b

er
o
f

ov
er

la
p

la
ye

rs
,

fo
r

A
d

d
it

iv
e

S
ch

w
a
rz

o
n

ly
.

N
o
te

.
T

h
e

h
y
b

ri
d

G
au

ss
-S

ei
d

el
m

et
h

o
d

is
b

et
w

ee
n

th
e

G
a
u

ss
-S

ei
d

el
a
n

d
J
a
co

b
i

m
et

h
o
d

s:
a
t

ea
ch

it
er

a
ti

o
n

,
th

e
p

ro
ce

ss
es

u
se

th
e

m
os

t
re

ce
n
t

va
lu

es
of

th
ei

r
ow

n
lo

ca
l

va
ri

ab
le

s,
a
n

d
th

e
va

lu
es

o
f

th
e

n
o
n

-l
o
ca

l
va

ri
a
b

le
s

co
m

p
u

te
d

a
t

th
e

p
re

v
io

u
s

it
er

a
ti

o
n

.

T
a
b

le
7:

P
a
ra

m
et

er
s

d
efi

n
in

g
th

e
sm

o
ot

h
er

or
th

e
d

et
ai

ls
of

th
e

on
e-

le
ve

l
p

re
co

n
d

it
io

n
er

.

32 MLD2P4 User’s and Reference Guide

w
h
a
t

d
a
t
a
t
y
p
e

v
a
l

d
e
fa

u
lt

c
o
m
m
e
n
t
s

m
l
d
_
s
u
b
_
r
e
s
t
r
_

S
U
B
_
R
E
S
T
R

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
H
A
L
O
’

’
N
O
N
E
’

’
H
A
L
O
’

T
y
p

e
of

restriction
op

erator,
for

A
d

d
itive

S
ch

w
arz

on
ly

:
H
A
L
O

for
tak

in
g

in
to

accou
n
t

th
e

overlap
,
N
O
N
E

for
n

eglectin
g

it.
m
l
d
_
s
u
b
_
p
r
o
l
_

S
U
B
_
P
R
O
L

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
S
U
M
’

’
N
O
N
E
’

’
N
O
N
E
’

T
y
p

e
of

p
rolon

gation
op

erator,
for

A
d

d
itiv

e
S

ch
w

arz
on

ly
:
S
U
M

for
ad

d
in

g
th

e
con

trib
u

tion
s

fro
m

th
e

overlap
,
N
O
N
E

for
n

eglectin
g

th
em

.
m
l
d
_
s
u
b
_
f
i
l
l
i
n
_

S
U
B
_
F
I
L
L
I
N

i
n
t
e
g
e
r

A
n
y

in
teg

er
n
u

m
b

er
≥

0
0

F
ill-in

level
p

of
th

e
in

com
p

lete
L

U
factoriza-

tio
n

s.
m
l
d
_
s
u
b
_
i
l
u
t
h
r
s
_

S
U
B
_
I
L
U
T
H
R
S

r
e
a
l
(

kin
d

pa
ra

m
eter

)
A

n
y

rea
l

n
u

m
-

b
er
≥

0
0

D
rop

toleran
ce
t

in
th

e
IL

U
(p
,t)

factorization
.

T
a
b

le
8:

P
a
ra

m
eters

d
efi

n
in

g
th

e
sm

o
oth

er
or

th
e

d
etails

of
th

e
on

e-level
p

recon
d

ition
er

(con
tin

u
ed

).

6 User Interface 33

6.3 Subroutine bld

call p%bld(a,desc_a,info)

This routine builds the one-level preconditioner p according to the requirements made
by the user through the routines init and set (see Sections 6.4 and 6.5 for multi-level
preconditioners).

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [16].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [16].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precbld(p,what,val,info)

In this case, the routine can be used to build multi-level preconditioners too.

34 MLD2P4 User’s and Reference Guide

6.4 Subroutine hierarchy bld

call p%hierarchy_bld(a,desc_a,info)

This routine builds the hierarchy of matrices and restriction/prolongation operators
for the multi-level preconditioner p, according to the requirements made by the user
through the routines init and set.

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [16].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [16].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

6 User Interface 35

6.5 Subroutine smoothers bld

call p%smoothers_bld(a,desc_a,p,info)

This routine builds the smoothers and the coarsest-level solvers for the multi-level
preconditioner p, according to the requirements made by the user through the routines
init and set, and based on the aggregation hierarchy produced by a previous call to
hierarchy_bld (see Section 6.4).

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.
See the PSBLAS User’s Guide for details [16].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [16].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

36 MLD2P4 User’s and Reference Guide

6.6 Subroutine apply

call p%apply(x,y,desc_a,info [,trans,work])

This routine computes y = op(M−1)x, where M is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its transpose, according to the
value of trans. Note that, when MLD2P4 is used with a Krylov solver from PSBLAS,
p%apply is called within the PSBLAS routine psb_krylov and hence it is completely
transparent to the user.

Arguments

x type(kind parameter), dimension(:), intent(in).
The local part of the vector x. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version
of MLD2P4 under use.

y type(kind parameter), dimension(:), intent(out).
The local part of the vector y. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version
of MLD2P4 under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

trans character(len=1), optional, intent(in).

If trans = ’N’,’n’ then op(M−1) = M−1; if trans = ’T’,’t’

then op(M−1) = M−T (transpose of M−1); if trans = ’C’,’c’ then
op(M−1) = M−C (conjugate transpose of M−1).

work type(kind parameter), dimension(:), optional, target.
Workspace. Its size should be at least 4 * psb_cd_get_local_

cols(desc_a) (see the PSBLAS User’s Guide). Note that type and
kind parameter must be chosen according to the real/complex, sin-
gle/double precision version of MLD2P4 under use.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precaply(p,what,val,info)

6 User Interface 37

6.7 Subroutine free

call p%free(p,info)

This routine deallocates the preconditioner data structure p.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precfree(p,info)

38 MLD2P4 User’s and Reference Guide

6.8 Subroutine descr

call p%descr(info, [iout])

This routine prints a description of the preconditioner p to the standard output or to
a file. It must be called after hierachy_bld and smoothers_bld, or bld, have been
called.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 8 for details.

iout integer, intent(in), optional.
The id of the file where the preconditioner description will be printed;
the default is the standard output.

For compatibility with the previous versions of MLD2P4, this routine can be also
invoked as follows:

call mld_precdescr(p,info [,iout])

6 User Interface 39

7 Adding smoothers and solvers to MLD2P4

Da ampliare e completare - SALVATORE.

Completely new smoother and/or solver classes derived from the base objects in the
library may be used without recompiling the library itself. Once the new smoother/solver
class has been developed, the user can declare a variable of that new type in the appli-
cation, and pass that variable to the p%set(solver,info) call; the new solver object
is then dynamically included in the preconditioner structure.

If the user has developed a new type of smoother and/or solver by extending one
of the base MLD2P4 types, and has declared a variable of the new type in the main
program, it is possible to pass the new smoother/solver variable to the setup routine
as follows:

call p%set(smoother,info [,ilev, ilmax,pos])

call p%set(solver,info [,ilev, ilmax,pos])

In this way, the variable will act as a mold to which the preconditioner will conform,
even though the MLD2P4 library is not modified, and thus has no direct knowledge
about the new type.

smootherclass(mld_x_base_smoother_type)

The user-defined new smoother to be employed in the preconditioner.
solver class(mld_x_base_solver_type)

The user-defined new solver to be employed in the preconditioner.

40 MLD2P4 User’s and Reference Guide

8 Error Handling

The error handling in MLD2P4 is based on the PSBLAS (version 2) error handling.
Error conditions are signaled via an integer argument info; whenever an error condition
is detected, an error trace stack is built by the library up to the top-level, user-callable
routine. This routine will then decide, according to the user preferences, whether the
error should be handled by terminating the program or by returning the error condition
to the user code, which will then take action, and whether an error message should be
printed. These options may be set by using the PSBLAS error handling routines; for
further details see the PSBLAS User’s Guide [16].

A License 41

A License

The MLD2P4 is freely distributable under the following copyright terms:

MLD2P4 version 2.1

MultiLevel Domain Decomposition Parallel Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 3.4)

(C) Copyright 2008, 2010, 2012, 2017

Salvatore Filippone Cranfield University

Ambra Abdullahi Hassan University of Rome Tor Vergata

Alfredo Buttari CNRS-IRIT, Toulouse

Pasqua D’Ambra ICAR-CNR, Naples

Daniela di Serafino Second University of Naples

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may

not be used to endorse or promote products derived from this

software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

42 MLD2P4 User’s and Reference Guide

References 43

References

[1] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a Two-Level Schwarz
Method, Computing, 63, 1999, 233–263.

[2] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending PSBLAS to Build
Parallel Schwarz Preconditioners, in , J. Dongarra, K. Madsen, J. Wasniewski,
editors, Proceedings of PARA 04 Workshop on State of the Art in Scientific Com-
puting, Lecture Notes in Computer Science, Springer, 2005, 593–602.

[3] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a package of
high-performance preconditioners for scientific and engineering applications, Ap-
plicable Algebra in Engineering, Communications and Computing, 18, 3, 2007,
223–239.

[4] P. D’Ambra, S. Filippone, D. di Serafino, On the Development of PSBLAS-based
Parallel Two-level Schwarz Preconditioners, Applied Numerical Mathematics, El-
sevier Science, 57, 11-12, 2007, 1181-1196.

[5] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for General
Sparse Linear Systems, SIAM Journal on Scientific Computing, 21, 2, 1999, 792–
797.

[6] X. C. Cai, O. B. Widlund, Domain Decomposition Algorithms for Indefinite Elliptic
Problems, SIAM Journal on Scientific and Statistical Computing, 13, 1, 1992, 243–
258.

[7] T. Chan and T. Mathew, Domain Decomposition Algorithms, in A. Iserles, editor,
Acta Numerica 1994, 61–143. Cambridge University Press.

[8] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of Parallel Multi-
level Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM Trans.
Math. Softw., 37(3), 2010.

[9] T.A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal
Method with a Column Pre-ordering Strategy, ACM Transactions on Mathematical
Software, 30, 2004, 196–199. (See also http://www.cise.ufl.edu/ davis/)

[10] P.R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L’Excellent, C. Weis-
becker Improving multifrontal methods by means of block low-rank represen-
tations, SIAM SISC, volume 37, number 3, pages A1452-A1474. (See also
http://mumps.enseeiht.fr)

[11] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li and J.W.H. Liu, A supern-
odal approach to sparse partial pivoting, SIAM Journal on Matrix Analysis and
Applications, 20, 3, 1999, 720–755.

44 MLD2P4 User’s and Reference Guide

[12] J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, A set of Level 3 Basic
Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 16,
1990, 1–17.

[13] J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An extended set of
FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Mathemat-
ical Software, 14, 1988, 1–17.

[14] J. J. Dongarra and R. C. Whaley, A User’s Guide to the BLACS v. 1.1, Lapack
Working Note 94, Tech. Rep. UT-CS-95-281, University of Tennessee, March 1995
(updated May 1997).

[15] E. Efstathiou, J. G. Gander, Why Restricted Additive Schwarz Converges Faster
than Additive Schwarz, BIT Numerical Mathematics, 43, 2003, 945–959.

[16] S. Filippone, A. Buttari, PSBLAS-3.0 User’s Guide. A Reference
Guide for the Parallel Sparse BLAS Library, 2012, available from
http://www.ce.uniroma2.it/psblas/.

[17] Salvatore Filippone and Alfredo Buttari. Object-Oriented Techniques for Sparse
Matrix Computations in Fortran 2003. ACM Trans. on Math Software, 38(4), 2012.

[18] S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra Com-
putation on Sparse Matrices, ACM Transactions on Mathematical Software, 26, 4,
2000, 527–550.

[19] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions, MIT
Press, 1998.

[20] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear Algebra Sub-
programs for FORTRAN usage, ACM Transactions on Mathematical Software, 5,
1979, 308–323.

[21] X. S. Li, J. W. Demmel, SuperLU DIST: A Scalable Distributed-memory Sparse
Direct Solver for Unsymmetric Linear Systems, ACM Transactions on Mathemat-
ical Software, 29, 2, 2003, 110–140.

[22] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, 2003

[23] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations, Cambridge University Press,
1996.

[24] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference. Volume 1 - The MPI Core, second edition, MIT Press, 1998.

[25] K. Stüben, An Introduction to Algebraic Multigrid, in A. Schüller, U. Trottenberg,
C. Oosterlee, Multigrid, Academic Press, 2001.

References 45

[26] R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation
Strategies on Massively Parallel Machines, in J. Donnelley, editor, Proceedings of
SuperComputing 2000, Dallas, 2000.

[27] P. Vaněk, J. Mandel and M. Brezina, Algebraic Multigrid by Smoothed Aggregation
for Second and Fourth Order Elliptic Problems, Computing, 56, 1996, 179-196.

	MLD2P4 User's and Reference Guide
	Abstract
	1 General Overview
	2 Code Distribution
	3 Configuring and Building MLD2P4
	3.1 Prerequisites
	3.2 Optional third party libraries
	3.3 Configuration options
	3.4 Bug reporting
	3.5 Example and test programs

	4 Multi-level Domain Decomposition Background
	4.1 Multi-level Schwarz Preconditioners
	4.2 Smoothed Aggregation

	5 Getting Started
	5.1 Examples

	6 User Interface
	6.1 Subroutine init
	6.2 Subroutine set
	6.3 Subroutine bld
	6.4 Subroutine hierarchy_bld
	6.5 Subroutine smoothers_bld
	6.6 Subroutine apply
	6.7 Subroutine free
	6.8 Subroutine descr

	7 Adding smoothers and solvers to MLD2P4
	8 Error Handling
	A License
	References

