
AMG4PSBLAS
User’s and Reference Guide

A guide for the Algebraic MultiGrid
Preconditioners Package based on PSBLAS

Pasqua D’Ambra
IAC-CNR, Italy

Fabio Durastante
University of Pisa and IAC-CNR

Salvatore Filippone
University of Rome Tor-Vergata and IAC-CNR

Software version: 1.0
May 11th, 2021

This page intentionally left blank

i

Abstract

AMG4PSBLAS (ALGEBRAIC MULTIGRID PRECONDITIONERS PACKAGE BASED ON

PSBLAS) is a package of parallel algebraic multilevel preconditioners included in the
PSCToolkit (Parallel Sparse Computation Toolkit) software framework. It is a progress
of a software development project started in 2007, named MLD2P4, which originally
implemented a multilevel version of some domain decomposition preconditioners of
additive-Schwarz type, and was based on a parallel decoupled version of the well
known smoothed aggregation method to generate the multilevel hierarchy of coarser
matrices. In the last years, within the context of the EU-H2020 EoCoE project (Energy
Oriented Center of Excellence), the package was extended for including new algorithms
and functionalities for the setup and application new AMG preconditioners with the
final aims of improving efficiency and scalability when tens of thousands cores are
used, and of boosting reliability in dealing with general symmetric positive definite
linear systems. Due to the significant number of changes and the increase in scope, we
decided to rename the package as AMG4PSBLAS.

AMG4PSBLAS has been designed to provide scalable and easy-to-use precondition-
ers in the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms)
computational framework and can be used in conjuction with the Krylov solvers avail-
able in this framework. Our package is based on a completely algebraic approach;
therefore users level interfaces assume that the system matrix and preconditioners are
represented as PSBLAS distributed sparse matrices. AMG4PSBLAS enables the user to
easily specify different features of an algebraic multilevel preconditioner, thus allowing
to experiment with different preconditioners for the problem and parallel computers at
hand.

The package employs object-oriented design techniques in Fortran 2003, with in-
terfaces to additional third party libraries such as MUMPS, UMFPACK, SuperLU, and
SuperLU Dist, which can be exploited in building multilevel preconditioners. The
parallel implementation is based on a Single Program Multiple Data (SPMD) paradigm;
the inter-process communication is based on MPI and is managed mainly through
PSBLAS.

This guide provides a brief description of the functionalities and the user interface
of AMG4PSBLAS.

This page intentionally left blank

iii

Contents

Abstract i

1 General Overview 1

2 Code Distribution 3

3 Configuring and Building AMG4PSBLAS 4
3.1 Prerequisites . 4
3.2 Optional third party libraries . 5
3.3 Configuration options . 6
3.4 Bug reporting . 10
3.5 Example and test programs . 10

4 Getting Started 11
4.1 Examples . 13
4.2 GPU example . 15

5 User Interface 18
5.1 Method init . 19
5.2 Method set . 20
5.3 Method hierarchy build . 34
5.4 Method smoothers build . 35
5.5 Method build . 36
5.6 Method apply . 37
5.7 Method free . 38
5.8 Method descr . 39
5.9 Auxiliary Methods . 39

5.9.1 Method: dump . 39
5.9.2 Method: clone . 40
5.9.3 Method: sizeof . 40
5.9.4 Method: allocate wrk . 40
5.9.5 Method: free wrk . 41

6 Adding new smoother and solver objects to AMG4PSBLAS 42

7 Error Handling 44

A License 45

B Contributor Covenant Code of Conduct 48

References 51

This page intentionally left blank

1 GENERAL OVERVIEW 1

1 General Overview

The ALGEBRAIC MULTIGRID PRECONDITIONERS PACKAGE BASED ON PSBLAS (AMG-
4PSBLAS) provides parallel Algebraic MultiGrid (AMG) preconditioners (see, e.g.,
[5, 33]), to be used in the iterative solution of linear systems,

Ax = b, (1)

where A is a square, real or complex, sparse symmetric positive definite (s.p.d) matrix.
The preconditioners implemented in AMG4PSBLAS are obtained by combining 3

different types of AMG cycles with smoothers and coarsest-level solvers. Available
multigrid cycles include the V-, W-, and a version of a Krylov-type cycle (K-cycle) [5, 29];
they can be combined with Jacobi, hybrid forward/backward Gauss-Seidel, block-
Jacobi and additive Schwarz smoothers with various versions of local incomplete
factorizations and approximate inverses on the blocks. The Jacobi, block-Jacobi and
Gauss-Seidel smoothers are also available in the ℓ1 version [14].

An algebraic approach is used to generate a hierarchy of coarse-level matrices and
operators, without explicitly using any information on the geometry of the original
problem, e.g., the discretization of a PDE. To this end, two different coarsening strategies,
based on aggregation, are available:

• a decoupled version of the smoothed aggregation procedure proposed in [4, 35],
and already included in the previous versions of the package [7, 11];

• a coupled, parallel implementation of the Coarsening based on Compatible
Weighted Matching introduced in [12, 13] and described in detail in [14];

Either exact or approximate solvers can be used on the coarsest-level system. We
provide interfaces to various parallel and sequential sparse LU factorizations from
external packages, sequential native incomplete LU and approximate inverse factor-
izations, parallel weighted Jacobi, hybrid Gauss-Seidel, block-Jacobi solvers and calls
to preconditioned Krylov methods; all smoothers can be also exploited as one-level
preconditioners.

AMG4PSBLAS is written in Fortran 2003, following an object-oriented design
through the exploitation of features such as abstract data type creation, type extension,
functional overloading, and dynamic memory management. The parallel implementa-
tion is based on a Single Program Multiple Data (SPMD) paradigm. Single and double
precision implementations of AMG4PSBLAS are available for both the real and the
complex case, which can be used through a single interface.

AMG4PSBLAS has been designed to implement scalable and easy-to-use multilevel
preconditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational
framework [23, 22]. PSBLAS provides basic linear algebra operators and data man-
agement facilities for distributed sparse matrices, kernels for sequential incomplete
factorizations needed for the parallel block-Jacobi and additive Schwarz smoothers,
and parallel Krylov solvers which can be used with the AMG4PSBLAS preconditioners.
The choice of PSBLAS has been mainly motivated by the need of having a portable

2 AMG4PSBLAS USER’S AND REFERENCE GUIDE

and efficient software infrastructure implementing “de facto” standard parallel sparse
linear algebra kernels, to pursue goals such as performance, portability, modularity ed
extensibility in the development of the preconditioner package. On the other hand, the
implementation of AMG4PSBLAS, which was driven by the need to face the exascale
challenge, has led to some important revisions and extentions of the PSBLAS infras-
tructure. The inter-process comunication required by AMG4PSBLAS is encapsulated
in the PSBLAS routines; therefore, AMG4PSBLAS can be run on any parallel machine
where PSBLAS implementations are available. In the most recent version of PSBLAS
(release 3.7), a plug-in for GPU is included; it includes CUDA versions of main vector
operations and of sparse matrix-vector multiplication, so that Krylov methods coupled
with AMG4PSBLAS preconditioners relying on Jacobi and block-Jacobi smoothers with
sparse approximate inverses on the blocks can be efficiently executed on cluster of
GPUs.

AMG4PSBLAS has a layered and modular software architecture where three main
layers can be identified. The lower layer consists of the PSBLAS kernels, the middle one
implements the construction and application phases of the preconditioners, and the
upper one provides a uniform interface to all the preconditioners. This architecture al-
lows for different levels of use of the package: few black-box routines at the upper layer
allow all users to easily build and apply any preconditioner available in AMG4PSBLAS;
facilities are also available allowing expert users to extend the set of smoothers and
solvers for building new versions of the preconditioners (see Section 6).

This guide is organized as follows. General information on the distribution of the
source code is reported in Section 2, while details on the configuration and installation
of the package are given in Section 3. The basics for building and applying the precon-
ditioners with the Krylov solvers implemented in PSBLAS are reported in Section 4,
where the Fortran codes of a few sample programs are also shown. A reference guide
for the user interface routines is provided in Section 5. Information on the extension of
the package through the addition of new smoothers and solvers is reported in Section 6.
The error handling mechanism used by the package is briefly described in Section 7.
The copyright terms concerning the distribution and modification of AMG4PSBLAS
are reported in Appendix A.

2 CODE DISTRIBUTION 3

2 Code Distribution

AMG4PSBLAS is available from the web site

https://psctoolkit.github.io/products/amg4psblas/

where contact points for further information can be also found.
The software is available under a modified BSD license, as specified in Appendix A;

please note that some of the optional third party libraries may be licensed under a
different and more stringent license, most notably the GPL, and this should be taken
into account when treating derived works.

The library defines a version string with the constant

amg_version_string_

whose current value is 1.0.

Contributors

• Pasqua D’Ambra, IAC-CNR, IT;

• Fabio Durastante, University of Pisa and IAC-CNR, IT;

• Salvatore Filippone, University of Rome Tor-Vergata and IAC-CNR, IT;

Citing AMG4PSBLAS

When use the library, please cite the following:

https://psctoolkit.github.io/products/amg4psblas/

4 AMG4PSBLAS USER’S AND REFERENCE GUIDE

3 Configuring and Building AMG4PSBLAS

In order to build AMG4PSBLAS it is necessary to set up a Makefile with appropriate
system-dependent variables; this is done by means of the configure script. The dis-
tribution also includes the autoconf and automake sources employed to generate the
script, but usually this is not needed to build the software.

AMG4PSBLAS is implemented almost entirely in Fortran 2003, with some interfaces
to external libraries in C; the Fortran compiler must support the Fortran 2003 standard
plus the extension MOLD= feature, which enhances the usability of ALLOCATE. Most
Fortran compilers provide this feature; in particular, this is supported by the GNU
Fortran compiler, for which we recommend to use at least version 4.8. The software
defines data types and interfaces for real and complex data, in both single and double
precision.

Building AMG4PSBLAS requires some base libraries (see Section 3.1); interfaces to
optional third-party libraries, which extend the functionalities of AMG4PSBLAS (see
Section 3.2), are also available. A number of Linux distributions (e.g., Ubuntu, Fedora,
CentOS) provide precompiled packages for the prerequisite and optional software. In
many cases these packages are split between a runtime part and a “developer” part; in
order to build AMG4PSBLAS you need both. A description of the base and optional
software used by AMG4PSBLAS is given in the next sections.

3.1 Prerequisites

The following base libraries are needed:

BLAS [18, 19, 26] Many vendors provide optimized versions of BLAS; if no vendor ver-
sion is available for a given platform, the ATLAS software (math-atlas.sourceforge
.net) may be employed. The reference BLAS from Netlib (www.netlib.org/blas)
are meant to define the standard behaviour of the BLAS interface, so they are not
optimized for any particular platform, and should only be used as a last resort.
Note that BLAS computations form a relatively small part of the AMG4PSBLAS/-
PSBLAS; however they are critical when using preconditioners based on the
MUMPS, UMFPACK or SuperLU third party libraries. UMFPACK requires a full
LAPACK library; our experience is that configuring ATLAS for building full LA-
PACK does not always work in the expected way. Our advice is first to download
the LAPACK tarfile from www.netlib.org/lapack and install it independently of
ATLAS. In this case, you need to modify the OPTS and NOOPT definitions for
including -fPIC compilation option in the make.inc file of the LAPACK library.

MPI [25, 32] A version of MPI is available on most high-performance computing
systems.

PSBLAS [21, 23] Parallel Sparse BLAS (PSBLAS) is available from psctoolkit.github.io/
products/psblas/; version 3.7.0 (or later) is required. Indeed, all the prerequisites
listed so far are also prerequisites of PSBLAS.

http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net
http://www.netlib.org/blas
http://www.netlib.org/lapack
https://psctoolkit.github.io/products/psblas/
https://psctoolkit.github.io/products/psblas/

3 CONFIGURING AND BUILDING AMG4PSBLAS 5

Please note that the four previous libraries must have Fortran interfaces compatible
with AMG4PSBLAS; usually this means that they should all be built with the same
compiler being used for AMG4PSBLAS.

If you want to use the PSBLAS support for NVIDIA GPUs, you will also need a
working version of the CUDA Toolkit that is compatible with the compiler choice made
to compile PSBLAS and AMG4PSBLAS. After that you will need to have configured
and compiled the PSBLAS library with the options:

./configure --enable-cuda --with-cudadir=${CUDA_HOME} --with-cudacc=xx,yy,zz

Previous versions required you to have the auxiliary libraries SPGPU and PSBLAS-EXT
compiled, this is no longer necessary because they have been integrated into PSBLAS
and are compiled by activating the previous flags during configuration. See also Sec 4.2.

3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these
are optional, but if you enable them some defaults for multilevel preconditioners may
change to reflect their presence.

UMFPACK [16] A sparse LU factorization package included in the SuiteSparse library,
available from faculty.cse.tamu.edu/davis/suitesparse.html; it provides se-
quential factorization and triangular system solution for double precision real and
complex data. We tested version 4.5.4 of SuiteSparse. Note that for configuring
SuiteSparse you should provide the right path to the BLAS and LAPACK libraries
in the SuiteSparse_config/SuiteSparse_config.mk file.

MUMPS [2] A sparse LU factorization package available from mumps.enseeiht.fr; it
provides sequential and parallel factorizations and triangular system solution for
single and double precision, real and complex data. We tested versions 4.10.0 and
5.0.1.

SuperLU [17] A sparse LU factorization package available from crd.lbl.gov/~xiaoye/

SuperLU/; it provides sequential factorization and triangular system solution for
single and double precision, real and complex data. We tested versions 4.3 and
5.0. If you installed BLAS from ATLAS, remember to define the BLASLIB variable
in the make.inc file.

SuperLU Dist [28] A sparse LU factorization package available from the same site
as SuperLU; it provides parallel factorization and triangular system solution for
double precision real and complex data. We tested versions 3.3 and 4.2. If you
installed BLAS from ATLAS, remember to define the BLASLIB variable in the
make.inc file and to add the -std=c99 option to the C compiler options. Note
that this library requires the ParMETIS library for parallel graph partitioning
and fill-reducing matrix ordering, available from glaros.dtc.umn.edu/gkhome/

metis/parmetis/overview.

faculty.cse.tamu.edu/davis/suitesparse.html
mumps.enseeiht.fr
crd.lbl.gov/~xiaoye/SuperLU/
crd.lbl.gov/~xiaoye/SuperLU/
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

6 AMG4PSBLAS USER’S AND REFERENCE GUIDE

3.3 Configuration options

In order to build AMG4PSBLAS, the first step is to use the configure script in the main
directory to generate the necessary makefile.

As a minimal example consider the following:

./configure --with-psblas=PSB-INSTALL-DIR

which assumes that the various MPI compilers and support libraries are available in the
standard directories on the system, and specifies only the PSBLAS install directory (note
that the latter directory must be specified with an absolute path). The full set of options
may be looked at by issuing the command ./configure --help, which produces:

`configure' configures AMG4PSBLAS 1.0.0 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as

VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, --help display this help and exit

--help=short display options specific to this package

--help=recursive display the short help of all the included packages

-V, --version display version information and exit

-q, --quiet, --silent do not print `checking ...' messages

--cache-file=FILE cache test results in FILE [disabled]

-C, --config-cache alias for `--cache-file=config.cache'

-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or `..']

Installation directories:

--prefix=PREFIX install architecture-independent files in PREFIX

[/usr/local]

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]

By default, `make install' will install all the files in

`/usr/local/bin', `/usr/local/lib' etc. You can specify

an installation prefix other than `/usr/local' using `--prefix',

for instance `--prefix=$HOME'.

For better control, use the options below.

Fine tuning of the installation directories:

--bindir=DIR user executables [EPREFIX/bin]

--sbindir=DIR system admin executables [EPREFIX/sbin]

3 CONFIGURING AND BUILDING AMG4PSBLAS 7

--libexecdir=DIR program executables [EPREFIX/libexec]

--sysconfdir=DIR read-only single-machine data [PREFIX/etc]

--sharedstatedir=DIR modifiable architecture-independent data

[PREFIX/com]↪→

--localstatedir=DIR modifiable single-machine data [PREFIX/var]

--libdir=DIR object code libraries [EPREFIX/lib]

--includedir=DIR C header files [PREFIX/include]

--oldincludedir=DIR C header files for non-gcc [/usr/include]

--datarootdir=DIR read-only arch.-independent data root

[PREFIX/share]↪→

--datadir=DIR read-only architecture-independent data

[DATAROOTDIR]↪→

--infodir=DIR info documentation [DATAROOTDIR/info]

--localedir=DIR locale-dependent data [DATAROOTDIR/locale]

--mandir=DIR man documentation [DATAROOTDIR/man]

--docdir=DIR documentation root [DATAROOTDIR/doc/amg4psblas]

--htmldir=DIR html documentation [DOCDIR]

--dvidir=DIR dvi documentation [DOCDIR]

--pdfdir=DIR pdf documentation [DOCDIR]

--psdir=DIR ps documentation [DOCDIR]

Program names:

--program-prefix=PREFIX prepend PREFIX to installed program

names↪→

--program-suffix=SUFFIX append SUFFIX to installed program names

--program-transform-name=PROGRAM run sed PROGRAM on installed program

names↪→

Optional Features:

--disable-option-checking ignore unrecognized --enable/--with options

--disable-FEATURE do not include FEATURE (same as

--enable-FEATURE=no)↪→

--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-silent-rules less verbose build output (undo: "make V=1")

--disable-silent-rules verbose build output (undo: "make V=0")

--enable-dependency-tracking

do not reject slow dependency extractors

--disable-dependency-tracking

speeds up one-time build

--enable-serial Specify whether to enable a fake mpi library to run

in serial mode.

Optional Packages:

--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-psblas=DIR The install directory for PSBLAS, for example,

--with-psblas=/opt/packages/psblas-3.5

--with-psblas-incdir=DIR

Specify the directory for PSBLAS C includes.

8 AMG4PSBLAS USER’S AND REFERENCE GUIDE

--with-psblas-moddir=DIR

Specify the directory for PSBLAS Fortran modules.

--with-psblas-libdir=DIR

Specify the directory for PSBLAS library.

--with-ccopt additional [CCOPT] flags to be added: will prepend

to [CCOPT]

--with-fcopt additional [FCOPT] flags to be added: will prepend

to [FCOPT]

--with-libs List additional link flags here. For example,

--with-libs=-lspecial_system_lib or

--with-libs=-L/path/to/libs

--with-clibs additional [CLIBS] flags to be added: will prepend

to [CLIBS]

--with-flibs additional [FLIBS] flags to be added: will prepend

to [FLIBS]

--with-library-path additional [LIBRARYPATH] flags to be added: will

prepend to [LIBRARYPATH]

--with-include-path additional [INCLUDEPATH] flags to be added: will

prepend to [INCLUDEPATH]

--with-module-path additional [MODULE_PATH] flags to be added: will

prepend to [MODULE_PATH]

--with-extra-libs List additional link flags here. For example,

--with-extra-libs=-lspecial_system_lib or

--with-extra-libs=-L/path/to/libs

--with-blas=<lib> use BLAS library <lib>

--with-blasdir=<dir> search for BLAS library in <dir>

--with-lapack=<lib> use LAPACK library <lib>

--with-mumps=LIBNAME Specify the libname for MUMPS. Default: autodetect

with minimum "-lmumps_common -lpord"

--with-mumpsdir=DIR Specify the directory for MUMPS library and

includes. Note: you will need to add auxiliary

libraries with --extra-libs; this depends on how

MUMPS was configured and installed, at a minimum

you↪→

will need SCALAPACK and BLAS

--with-mumpsincdir=DIR Specify the directory for MUMPS includes.

--with-mumpsmoddir=DIR Specify the directory for MUMPS Fortran modules.

--with-mumpslibdir=DIR Specify the directory for MUMPS library.

--with-umfpack=LIBNAME Specify the library name for UMFPACK and its

support↪→

libraries. Default: "-lumfpack -lamd"

--with-umfpackdir=DIR Specify the directory for UMFPACK library and

includes.

--with-umfpackincdir=DIR

Specify the directory for UMFPACK includes.

--with-umfpacklibdir=DIR

Specify the directory for UMFPACK library.

--with-superlu=LIBNAME Specify the library name for SUPERLU library.

Default: "-lsuperlu"

3 CONFIGURING AND BUILDING AMG4PSBLAS 9

--with-superludir=DIR Specify the directory for SUPERLU library and

includes.

--with-superluincdir=DIR

Specify the directory for SUPERLU includes.

--with-superlulibdir=DIR

Specify the directory for SUPERLU library.

--with-superludist=LIBNAME

Specify the libname for SUPERLUDIST library.

Requires you also specify SuperLU. Default:

"-lsuperlu_dist"

--with-superludistdir=DIR

Specify the directory for SUPERLUDIST library and

includes.

--with-superludistincdir=DIR

Specify the directory for SUPERLUDIST includes.

--with-superludistlibdir=DIR

Specify the directory for SUPERLUDIST library.

Some influential environment variables:

FC Fortran compiler command

FCFLAGS Fortran compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -l<library>

CC C compiler command

CFLAGS C compiler flags

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if

you have headers in a nonstandard directory <include dir>

MPICC MPI C compiler command

MPIFC MPI Fortran compiler command

CPP C preprocessor

Use these variables to override the choices made by `configure' or to help

it to find libraries and programs with nonstandard names/locations.

Report bugs to <https://github.com/psctoolkit/psctoolkit/issues>.

For instance, if a user has built and installed PSBLAS 3.7 under the /opt directory and
is using the SuiteSparse package (which includes UMFPACK), then AMG4PSBLAS
might be configured with:

./configure --with-psblas=/opt/psblas-3.7/

--with-umfpackincdir=/usr/include/suitesparse/↪→

Once the configure script has completed execution, it will have generated the file
Make.inc which will then be used by all Makefiles in the directory tree; this file will be
copied in the install directory under the name Make.inc.AMG4PSBLAS.

To use the MUMPS solver package, the user has to add the appropriate options

10 AMG4PSBLAS USER’S AND REFERENCE GUIDE

to the configure script; by default we are looking for the libraries -ldmumps -lsmumps

-lzmumps -lcmumps -mumps_common -lpord. MUMPS often uses additional pack-
ages such as ScaLAPACK, ParMETIS, SCOTCH, as well as enabling OpenMP; in such
cases it is necessary to add linker options with the --with-extra-libs configure op-
tion.

To build the library the user will now enter

make

followed (optionally) by

make install

3.4 Bug reporting

If you find any bugs in our codes, please report them through our issues page on

https://github.com/psctoolkit/psctoolkit/issues

To enable us to track the bug, please provide a log from the failing application, the
test conditions, and ideally a self-contained test program reproducing the issue.

3.5 Example and test programs

The package contains a samples directory, divided in two subdirs simple and advanced;
both of them are further divided into fileread and pdegen subdirectories. Their
purpose is as follows:

simple contains a set of simple example programs with a predefined choice of precon-
ditioners, selectable via integer values. These are intended to get acquainted with
the multilevel preconditioners available in AMG4PSBLAS.

advanced contains a set of more sophisticated examples that will allow the user, via
the input files in the runs subdirectories, to experiment with the full range of
preconditioners implemented in the package.

The fileread directories contain sample programs that read sparse matrices from
files, according to the Matrix Market or the Harwell-Boeing storage format; the pdegen

programs generate matrices in full parallel mode from the discretization of a sample
partial differential equation.

https://github.com/psctoolkit/psctoolkit/issues

4 GETTING STARTED 11

4 Getting Started

This section describes the basics for building and applying AMG4PSBLAS one-level and
multilevel (i.e., AMG) preconditioners with the Krylov solvers included in PSBLAS [21].

The following steps are required:

1. Declare the preconditioner data structure. It is a derived data type, amg_xprec_ type,
where x may be s, d, c or z, according to the basic data type of the sparse matrix
(s = real single precision; d = real double precision; c = complex single precision;
z = complex double precision). This data structure is accessed by the user only
through the AMG4PSBLAS routines, following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, according to a preconditioner type
chosen by the user. This is performed by the routine init, which also sets defaults
for each preconditioner type selected by the user. The preconditioner types and
the defaults associated with them are given in Table 1, where the strings used by
init to identify the preconditioner types are also given. Note that these strings
are valid also if uppercase letters are substituted by corresponding lowercase
ones.

3. Modify the selected preconditioner type, by properly setting preconditioner parameters.
This is performed by the routine set. This routine must be called if the user
wants to modify the default values of the parameters associated with the selected
preconditioner type, to obtain a variant of that preconditioner. Examples of use of
set are given in Section 4.1; a complete list of all the preconditioner parameters
and their allowed and default values is provided in Section 5, Tables 2-8.

4. Build the preconditioner for a given matrix. If the selected preconditioner is multilevel,
then two steps must be performed, as specified next.

4.1 Build the AMG hierarchy for a given matrix. This is performed by the routine
hierarchy_build.

4.2 Build the preconditioner for a given matrix. This is performed by the routine
smoothers_build.

If the selected preconditioner is one-level, it is built in a single step, performed by
the routine bld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is performed by the
method apply. When using the PSBLAS Krylov solvers, this step is completely
transparent to the user, since apply is called by the PSBLAS routine implementing
the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine free. This
step is complementary to step 1 and should be performed when the preconditioner
is no more used.

12 AMG4PSBLAS USER’S AND REFERENCE GUIDE

All the previous routines are available as methods of the preconditioner object. A
detailed description of them is given in Section 5. Examples showing the basic use of
AMG4PSBLAS are reported in Section 4.1.

TYPE STRING DEFAULT PRECONDITIONER

No preconditioner 'NONE' Considered to use the PSBLAS Krylov
solvers with no preconditioner.

Diagonal 'DIAG',
'JACOBI',
'L1-JACOBI'

Diagonal preconditioner. For any zero
diagonal entry of the matrix to be pre-
conditioned, the corresponding entry of
the preconditioner is set to 1.

Gauss-Seidel 'GS',
'L1-GS'

Hybrid Gauss-Seidel (forward), that is,
global block Jacobi with Gauss-Seidel as
local solver.

Symmetrized Gauss-Seidel 'FBGS',
'L1-FBGS'

Symmetrized hybrid Gauss-Seidel, that
is, forward Gauss-Seidel followed by
backward Gauss-Seidel.

Block Jacobi 'BJAC',
'L1-BJAC'

Block-Jacobi with ILU(0) on the local
blocks.

Additive Schwarz 'AS' Additive Schwarz (AS), with overlap 1
and ILU(0) on the local blocks.

Multilevel 'ML' V-cycle with one hybrid forward Gauss-
Seidel (GS) sweep as pre-smoother and
one hybrid backward GS sweep as post-
smoother, decoupled smoothed aggre-
gation as coarsening algorithm, and LU
(plus triangular solve) as coarsest-level
solver. See the default values in Tables 2-
8 for further details of the preconditioner.

Table 1: Preconditioner types, corresponding strings and default choices.

Note that the module amg_prec_mod, containing the definition of the preconditioner
data type and the interfaces to the routines of AMG4PSBLAS, must be used in any
program calling such routines. The modules psb_base_mod, for the sparse matrix and
communication descriptor data types, and psb_krylov_mod, for interfacing with the
Krylov solvers, must be also used (see Section 4.1).

Remark 1. Coarsest-level solvers based on the LU factorization, such as those
implemented in UMFPACK, MUMPS, SuperLU, and SuperLU Dist, usually lead to
smaller numbers of preconditioned Krylov iterations than inexact solvers, when the
linear system comes from a standard discretization of basic scalar elliptic PDE prob-
lems. However, this does not necessarily correspond to the shortest execution time on

4 GETTING STARTED 13

parallel computers.

4.1 Examples

The code reported in Figure 1 shows how to set and apply the default multilevel precon-
ditioner available in the real double precision version of AMG4PSBLAS (see Table 1).
This preconditioner is chosen by simply specifying 'ML' as the second argument of
P%init (a call to P%set is not needed) and is applied with the CG solver provided by
PSBLAS (the matrix of the system to be solved is assumed to be positive definite). As
previously observed, the modules psb_base_mod, amg_prec_mod and psb_krylov_mod

must be used by the example program.
The part of the code dealing with reading and assembling the sparse matrix and the

right-hand side vector and the deallocation of the relevant data structures, performed
through the PSBLAS routines for sparse matrix and vector management, is not reported
here for the sake of conciseness. The complete code can be found in the example
program file amg_dexample_ml.f90, in the directory samples/simple/fileread of the
AMG4PSBLAS implementation (see Section 3.5). A sample test problem along with the
relevant input data is available in samples/simple/fileread/runs. For details on the
use of the PSBLAS routines, see the PSBLAS User’s Guide [21].

The setup and application of the default multilevel preconditioner for the real single
precision and the complex, single and double precision, versions are obtained with
straightforward modifications of the previous example (see Section 5 for details). If these
versions are installed, the corresponding codes are available in samples/simple/file-
read.

Different versions of the multilevel preconditioner can be obtained by changing
the default values of the preconditioner parameters. The code reported in Figure 2
shows how to set a V-cycle preconditioner which applies 1 block-Jacobi sweep as pre-
and post-smoother, and solves the coarsest-level system with 8 block-Jacobi sweeps.
Note that the ILU(0) factorization (plus triangular solve) is used as local solver for
the block-Jacobi sweeps, since this is the default associated with block-Jacobi and set
by P%init. Furthermore, specifying block-Jacobi as coarsest-level solver implies that
the coarsest-level matrix is distributed among the processes. Figure 3 shows how to
set a W-cycle preconditioner using the Coarsening based on Compatible Weighted
Matching, aggregates of size at most 8 and smoothed prolongators. It applies 2 hybrid
Gauss-Seidel sweeps as pre- and post-smoother, and solves the coarsest-level system
with the parallel flexible Conjugate Gradient method (KRM) coupled with the block-
Jacobi preconditioner having ILU(0) on the blocks. Default parameters are used for
stopping criterion of the coarsest solver. Note that, also in this case, specifying KRM
as coarsest-level solver implies that the coarsest-level matrix is distributed among the
processes.

The code fragments shown in Figures 2 and 3 are included in the example program
file amg_dexample_ml.f90 too.

Finally, Figure 4 shows the setup of a one-level additive Schwarz preconditioner,
i.e., RAS with overlap 2. Note also that a Krylov method different from CG must be

14 AMG4PSBLAS USER’S AND REFERENCE GUIDE

use psb_base_mod

use amg_prec_mod

use psb_krylov_mod

... ...

!

! sparse matrix

type(psb_dspmat_type) :: A

! sparse matrix descriptor

type(psb_desc_type) :: desc_A

! preconditioner

type(amg_dprec_type) :: P

! right-hand side and solution vectors

type(psb_d_vect_type) :: b, x

... ...

!

! initialize the parallel environment

call psb_init(ctxt)

call psb_info(ctxt,iam,np)

... ...

!

! read and assemble the spd matrix A and the right-hand side b

! using PSBLAS routines for sparse matrix / vector management

... ...

!

! initialize the default multilevel preconditioner, i.e. V-cycle

! with basic smoothed aggregation, 1 hybrid forward/backward

! GS sweep as pre/post-smoother and UMFPACK as coarsest-level

! solver

call P%init(ctxt,'ML',info)

!

! build the preconditioner

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

!

! set the solver parameters and the initial guess

... ...

!

! solve Ax=b with preconditioned FCG

call psb_krylov('FCG',A,P,b,x,tol,desc_A,info)

... ...

!

! deallocate the preconditioner

call P%free(info)

!

! deallocate other data structures

... ...

!

! exit the parallel environment

call psb_exit(ctxt)

stop

Listing 1: setup and application of the default multilevel preconditioner (example 1).

4 GETTING STARTED 15

used to solve the preconditioned system, since the preconditione in nonsymmetric. The
corresponding example program is available in the file amg_dexample_1lev.f90.

For all the previous preconditioners, example programs where the sparse matrix
and the right-hand side are generated by discretizing a PDE with Dirichlet boundary
conditions are also available in the directory samples/simple/pdegen.

! build a V-cycle preconditioner with 1 block-Jacobi sweep (with

! ILU(0) on the blocks) as pre- and post-smoother, and 8 block-Jacobi

! sweeps (with ILU(0) on the blocks) as coarsest-level solver

call P%init(ctxt,'ML',info)

call P%set('SMOOTHER_TYPE','BJAC',info)

call P%set('COARSE_SOLVE','BJAC',info)

call P%set('COARSE_SWEEPS',8,info)

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

Listing 2: setup of a multilevel preconditioner based on the default decoupled coarsen-
ing

!build a W-cycle using the coupled coarsening based on weighted matching,

!aggregates of size at most 8 and smoothed prolongators,

!2 hybrid Gauss-Seidel sweeps as pre- and post-smoother,

!and parallel flexible Conjugate Gradient coupled with the block-Jacobi

!preconditioner having ILU(0) on the blocks as coarsest solver.

call P%init(ctxt,'ML',info)

call P%set('PAR_AGGR_ALG','COUPLED',info)

call P%set('AGGR_TYPE','MATCHBOXP',info)

call P%set('AGGR_SIZE',8,info)

call P%set('ML_CYCLE','WCYCLE',info)

call P%set('SMOOTHER_TYPE','FBGS',info)

call P%set('SMOOTHER_SWEEPS',2,info)

call P%set('COARSE_SOLVE','KRM',info)

call P%set('COARSE_MAT','DIST',info)

call P%set('KRM_METHOD','FCG',info)

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

Listing 3: setup of a multilevel preconditioner based on the coupled coarsening using
weighted matching

4.2 GPU example

The code discussed here shows how to set up a program exploiting the combined GPU
capabilities of PSBLAS and AMG4PSBLAS. The code example is available in the source
distribution directory amg4psblas/examples/gpu.

First of all, we need to include the appropriate modules and declare some auxiliary
variables: In this particular example we are choosing to employ a HLG data structure for
sparse matrices on GPUs; for more information please refer to the PSBLAS-EXT users’
guide.

16 AMG4PSBLAS USER’S AND REFERENCE GUIDE

! build a one-level RAS with overlap 2 and ILU(0) on the local blocks.

call P%init(ctxt,'AS',info)

call P%set('SUB_OVR',2,info)

call P%build(A,desc_A,info)

... ...

! solve Ax=b with preconditioned BiCGSTAB

call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info)

Listing 4: setup of a one-level Schwarz preconditioner.

program amg_dexample_gpu

use psb_base_mod

use amg_prec_mod

use psb_krylov_mod

use psb_util_mod

use psb_gpu_mod

use data_input

use amg_d_pde_mod

implicit none

.......

! GPU variables

type(psb_d_hlg_sparse_mat) :: agmold

type(psb_d_vect_gpu) :: vgmold

type(psb_i_vect_gpu) :: igmold

Listing 5: setup of a GPU-enabled test program part one.

We then have to initialize the GPU environment, and pass the appropriate MOLD
variables to the build methods (see also the PSBLAS and PSBLAS-EXT users’ guides).
Finally, we convert the input matrix, the descriptor and the vectors to use a GPU-enabled
internal storage format. We then preallocate the preconditioner workspace before
entering the Krylov method. At the end of the code, we close the GPU environment

It is very important to employ smoothers and coarsest solvers that are suited to the
GPU, i.e. methods that do NOT employ triangular system solve kernels. Methods that
satisfy this constraint include:

• JACOBI

• BJAC with the following methods on the local blocks:

– INVK

– INVT

– AINV

and their ℓ1 variants.

4 GETTING STARTED 17

call psb_init(ctxt)

call psb_info(ctxt,iam,np)

!

! BEWARE: if you have NGPUS per node, the default is to

! attach to mod(IAM,NGPUS)

!

call psb_gpu_init(ictxt)

......

t1 = psb_wtime()

call prec%smoothers_build(a,desc_a,info, amold=agmold, vmold=vgmold,

imold=igmold)↪→

Listing 6: setup of a GPU-enabled test program part two.

call desc_a%cnv(mold=igmold)

call a%cscnv(info,mold=agmold)

call psb_geasb(x,desc_a,info,mold=vgmold)

call psb_geasb(b,desc_a,info,mold=vgmold)

!

! iterative method parameters

!

call psb_barrier(ctxt)

call prec%allocate_wrk(info)

t1 = psb_wtime()

call psb_krylov(s_choice%kmethd,a,prec,b,x,s_choice%eps,&

& desc_a,info,itmax=s_choice%itmax,iter=iter,err=err,&

& itrace=s_choice%itrace,&

& istop=s_choice%istopc,irst=s_choice%irst)

call prec%deallocate_wrk(info)

call psb_barrier(ctxt)

tslv = psb_wtime() - t1

......

call psb_gpu_exit()

call psb_exit(ctxt)

stop

Listing 7: setup of a GPU-enabled test program part three.

18 AMG4PSBLAS USER’S AND REFERENCE GUIDE

5 User Interface

The basic user interface of AMG4PBLAS consists of eight methods. The six methods
init, set, build, hierarchy_build, smoothers_build and apply encapsulate all the
functionalities for the setup and the application of any multilevel and one-level precon-
ditioner implemented in the package. The method free deallocates the preconditioner
data structure, while descr prints a description of the preconditioner setup by the user.
For backward compatibility, methods are also accessible as stand-alone subroutines.

For each method, the same user interface is overloaded with respect to the real/-
complex and single/double precision data; arguments with appropriate data types
must be passed to the method, i.e.,

• the sparse matrix data structure, containing the matrix to be preconditioned, must
be of type psb_xspmat_type with x = s for real single precision, x = d for real
double precision, x = c for complex single precision, x = z for complex double
precision;

• the preconditioner data structure must be of type amg_xprec_type, with x = s, d,
c, z, according to the sparse matrix data structure;

• the arrays containing the vectors v and w involved in the preconditioner applica-
tion w = B−1v must be of type psb_xvect_type with x = s, d, c, z, in a manner
completely analogous to the sparse matrix type;

• real parameters defining the preconditioner must be declared according to the
precision of the sparse matrix and preconditioner data structures (see Section 5.2).

A description of each method is given in the remainder of this section.

5 USER INTERFACE 19

5.1 Method init

call p%init(contxt,ptype,info)

This method allocates and initializes the preconditioner p, according to the precondi-
tioner type chosen by the user.

Arguments
contxt type(psb_ctxt_type), intent(in).

The communication context.
ptype character(len=*), intent(in).

The type of preconditioner. Its values are specified in Table 1.
Note that strings are case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

20 AMG4PSBLAS USER’S AND REFERENCE GUIDE

5.2 Method set

call p%set(what,val,info [,ilev, ilmax, pos, idx])

This method sets the parameters defining the preconditioner p. More precisely, the
parameter identified by what is assigned the value contained in val.

Arguments
what character(len=*).

The parameter to be set. It can be specified through its name; the string
is case-insensitive. See Tables 2-8.

val integer or character(len=*) or real(psb_spk_) or real(psb_dpk_),
intent(in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Tables 2-8. When the value is of
type character(len=*), it is also treated as case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

ilev integer, optional, intent(in).
For the multilevel preconditioner, the level at which the preconditioner
parameter has to be set. The levels are numbered in increasing order
starting from the finest one, i.e., level 1 is the finest level. If ilev is
not present, the parameter identified by what is set at all levels that are
appropriate (see Tables 2-8).

ilmax integer, optional, intent(in).
For the multilevel preconditioner, when both ilev and ilmax are present,
the settings are applied at all levels ilev:ilmax. When ilev is present
but ilmax is not, then the default is ilmax=ilev. The levels are num-
bered in increasing order starting from the finest one, i.e., level 1 is the
finest level.

pos character(len=*), optional, intent(in).
Whether the other arguments apply only to the pre-smoother ('PRE') or
to the post-smoother ('POST'). If pos is not present, the other arguments
are applied to both smoothers. If the preconditioner is one-level or the
parameter identified by what does not concern the smoothers, pos is
ignored.

idx integer, optional, intent(in).
An auxiliary input argument that can be passed to the underlying ob-
jects.

A variety of preconditioners can be obtained by setting the appropriate precondi-
tioner parameters. These parameters can be logically divided into four groups, i.e.,
parameters defining

1. the type of multilevel cycle and how many cycles must be applied;

5 USER INTERFACE 21

2. the coarsening algorithm;

3. the solver at the coarsest level (for multilevel preconditioners only);

4. the smoother of the multilevel preconditioners, or the one-level preconditioner.

A list of the parameters that can be set, along with their allowed and default values, is
given in Tables 2-8.

Remark 2. A smoother is usually obtained by combining two objects: a smoother
('SMOOTHER_TYPE') and a local solver ('SUB_SOLVE'), as specified in Tables 7-8. For
example, the block-Jacobi smoother using ILU(0) on the blocks is obtained by combining
the block-Jacobi smoother object with the ILU(0) solver object. Similarly, the hybrid
Gauss-Seidel smoother (see Note in Table 7) is obtained by combining the block-Jacobi
smoother object with a single sweep of the Gauss-Seidel solver object, while the point-
Jacobi smoother is the result of combining the block-Jacobi smoother object with a single
sweep of the point-Jacobi solver object. In the same way are obtained the ℓ1-versions
of the smoothers. However, for simplicity, shortcuts are provided to set all versions
of point-Jacobi, hybrid (forward) Gauss-Seidel, and hybrid backward Gauss-Seidel,
i.e., the previous smoothers can be defined just by setting 'SMOOTHER_TYPE' to certain
specific values (see Tables 7), without the need to set 'SUB_SOLVE' as well.

The smoother and solver objects are arranged in a hierarchical manner. When
specifying a smoother object, its parameters, including the local solver, are set to their
default values, and when a solver object is specified, its defaults are also set, overriding
in both cases any previous settings even if explicitly specified. Therefore if the user sets
a smoother, and wishes to use a solver different from the default one, the call to set the
solver must come after the call to set the smoother.

Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi
coarsest-level solvers, and shortcuts are available in this case too (see Table 5).

Remark 3. Many of the coarsest-level solvers apply to a specific coarsest-matrix
layout; therefore, setting the solver after the layout may change the layout to either
distributed or replicated. Similarly, setting the layout after the solver may change the
solver.

More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be
replicated, while SuperLU Dist and KRM require it to be distributed. In these cases,
setting the coarsest-level solver implies that the layout is redefined according to the
solver, ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel
and block-Jacobi can be applied to replicated and distributed matrices, thus their choice
does not modify any previously specified layout. It is worth noting that, when the
matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers
and their ℓ1− versions reduce to the corresponding local solver objects (see Remark 2).
For the point-Jacobi and Gauss-Seidel solvers, these objects correspond to a single
point-Jacobi sweep and a single Gauss-Seidel sweep, respectively, which are very poor
solvers.

22 AMG4PSBLAS USER’S AND REFERENCE GUIDE

On the other hand, the distributed layout can be used with any solver but UMFPACK
and SuperLU; therefore, if any of these two solvers has already been selected, the
coarsest-level solver is changed to block-Jacobi, with the previously chosen solver
applied to the local blocks. Likewise, the replicated layout can be used with any solver
but SuperLu Dist and KRM; therefore, if SuperLu Dist or KRM have been previously
set, the coarsest-level solver is changed to the default sequential solver.

In a parallel setting with many cores, we suggest to the users to change the default
coarsest solver for using the KRM choice, i.e. a parallel distributed iterative solution of
the coarsest system based on Krylov methods.

Remark 4. The argument idx can be used to allow finer control for those solvers; for
instance, by specifying the keyword 'MUMPS_IPAR_ENTRY' and an appropriate value for
idx, it is possible to set any entry in the MUMPS integer control array. See also Sec. 6.

5 USER INTERFACE 23

w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
M
L
_
C
Y
C
L
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
V
C
Y
C
L
E
'

'
W
C
Y
C
L
E
'

'
K
C
Y
C
L
E
'

'
A
D
D
'

'
V
C
Y
C
L
E
'

M
ul

ti
le

ve
lc

yc
le

:V
-c

yc
le

,W
-c

yc
le

,K
-c

yc
le

,
an

d
ad

di
ti

ve
co

m
po

si
ti

on
.

'
C
Y
C
L
E
_
S
W
E
E
P
S
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

nu
m

be
r
≥

1
1

N
um

be
r

of
m

ul
ti

le
ve

lc
yc

le
s.

Ta
bl

e
2:

Pa
ra

m
et

er
s

de
fin

in
g

th
e

m
ul

ti
le

ve
lc

yc
le

an
d

th
e

nu
m

be
r

of
cy

cl
es

to
be

ap
pl

ie
d.

24 AMG4PSBLAS USER’S AND REFERENCE GUIDE

w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
M
I
N
_
C
O
A
R
S
E
_
S
I
Z
E
_
P
E
R
_
P
R
O
C
E
S
S
'

i
n
t
e
g
e
r

A
ny

num
ber

>
0

200
C

oarse
size

threshold
p

er
p

rocess.
T

he
aggregation

stops
ifthe

globalnum
ber

of
variables

ofthe
com

puted
coarsestm

atrix
is

low
er

than
or

equ
al

to
this

threshold
m

u
ltip

lied
by

the
nu

m
ber

of
p

rocesses
(see

N
ote).

'
M
I
N
_
C
O
A
R
S
E
_
S
I
Z
E
'

i
n
t
e
g
e
r

A
ny

num
ber

>
0

-1
C

oarse
size

threshold
.

T
he

aggrega-
tion

stop
s

if
the

global
nu

m
ber

of
vari-

ables
of

the
com

p
u

ted
coarsest

m
atrix

is
low

er
than

or
equ

al
to

this
thresh-

old
(see

N
ote).

If
negative,

it
is

ignored
in

favou
r

of
the

d
efau

lt
for

'
M
I
N
_
C
O
A
R
S
E
_
S
I
Z
E
_
P
E
R
_
P
R
O
C
E
S
S
'.

'
M
I
N
_
C
R
_
R
A
T
I
O
'

r
e
a
l

A
ny

num
ber

>
1

1.5
M

inim
um

coarsening
ratio.The

aggrega-
tion

stops
ifthe

ratio
betw

een
the

global
m

atrix
dim

ensions
attw

o
consecutive

lev-
els

is
low

erthan
orequalto

this
threshold

(see
N

ote).
'
M
A
X
_
L
E
V
S
'

i
n
t
e
g
e
r

A
ny

integer
num

ber
>

1
20

M
axim

um
num

beroflevels.The
aggrega-

tion
stops

ifthe
num

ber
oflevels

reaches
this

value
(see

N
ote).

'
P
A
R
_
A
G
G
R
_
A
L
G
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)
’
D
E
C
’,

’
S
Y
M
D
E
C
’,

’
C
O
U
P
L
E
D
’

’
D
E
C
’

Parallelaggregation
algorithm

.
the

S
Y
M
D
E
C

option
applies

d
ecoupled

ag-
gregation

to
the

sp
arsity

p
attern

of
A
+

A
T.

5 USER INTERFACE 25
w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
A
G
G
R
_
T
Y
P
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
S
O
C
1
'

,
'
S
O
C
2
'

,
'
M
A
T
C
H
B
O
X
P
'

'
S
O
C
1
'

Ty
pe

of
ag

gr
eg

at
io

n
al

go
ri

th
m

:c
ur

-
re

nt
ly

,
fo

r
th

e
d

ec
ou

p
le

d
ag

gr
e-

ga
ti

on
w

e
im

p
le

m
en

t
tw

o
m

ea
-

su
re

s
of

st
re

ng
th

of
co

nn
ec

tio
n,

th
e

on
e

by
V

an
ěk

,
M

an
d

el
an

d
B

re
z-

in
a

[3
5]

,a
nd

th
e

on
e

by
G

ra
tt

on
et

al
[2

4]
.T

he
co

up
le

d
ag

gr
eg

at
io

n
is

ba
se

d
on

a
p

ar
al

le
l

ve
rs

io
n

of
th

e
ha

lf
-a

p
p

ro
xi

m
at

e
m

at
ch

in
g

im
p

le
-

m
en

te
d

in
th

e
M

at
ch

Bo
x-

P
so

ft
w

ar
e

pa
ck

ag
e

[9
].

'
A
G
G
R
_
S
I
Z
E
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

p
ow

er
of

2,
w

it
h

a
g
g
r
s
i
z
e

≥
2

4
M

ax
im

um
si

ze
of

ag
gr

eg
at

es
w

he
n

th
e

co
u

p
le

d
ag

gr
eg

at
io

n
ba

se
d

on
m

at
ch

in
g

is
ap

p
lie

d
.

Fo
r

ag
gr

es
-

si
ve

co
ar

se
ni

ng
w

it
h

si
ze

of
ag

-
gr

eg
at

e
la

rg
er

th
an

8
w

e
re

co
m

-
m

en
d

th
e

u
se

of
sm

oo
th

ed
pr

ol
on

-
ga

to
rs

.
U

se
d

on
ly

w
it

h
’
C
O
U
P
L
E
D
’

an
d
’
M
A
T
C
H
B
O
X
P
’

'
A
G
G
R
_
P
R
O
L
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
S
M
O
O
T
H
E
D
'

,
'
U
N
S
M
O
O
T
H
E
D
'

'
S
M
O
O
T
H
E
D
'

P
ro

lo
ng

at
or

u
se

d
by

th
e

ag
gr

eg
a-

ti
on

al
go

ri
th

m
:

sm
oo

th
ed

or
u

n-
sm

oo
th

ed
(i

.e
.,

te
nt

at
iv

e
p

ro
lo

ng
a-

to
r)

.
N

ot
e.

Th
e

ag
gr

eg
at

io
n

al
go

ri
th

m
st

op
s

w
he

n
at

le
as

to
ne

of
th

e
fo

llo
w

in
g

cr
it

er
ia

is
m

et
:t

he
co

ar
se

si
ze

th
re

sh
ol

d,
th

e
m

in
im

um
co

ar
se

ni
ng

ra
ti

o,
or

th
e

m
ax

im
um

nu
m

be
r

of
le

ve
ls

is
re

ac
he

d.
Th

er
ef

or
e,

th
e

ac
tu

al
nu

m
be

r
of

le
ve

ls
m

ay
be

sm
al

le
r

th
an

th
e

sp
ec

ifi
ed

m
ax

im
um

nu
m

be
r

of
le

ve
ls

.

Ta
bl

e
3:

Pa
ra

m
et

er
s

de
fin

in
g

th
e

ag
gr

eg
at

io
n

al
go

ri
th

m
.

26 AMG4PSBLAS USER’S AND REFERENCE GUIDE

w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
A
G
G
R
_
O
R
D
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
N
A
T
U
R
A
L
’

’
D
E
G
R
E
E
’

’
N
A
T
U
R
A
L
’

Initialordering
ofindices

for
the

decou-
pled

aggregation
algorithm

:eithernatu-
ralordering

orsorted
by

descending
de-

grees
ofthe

nodes
in

the
m

atrix
graph.

'
A
G
G
R
_
T
H
R
E
S
H
'

r
e
a
l
(
k
i
n
d
_
p
a
r
a
m
e
t
e
r
)

A
ny

real
nu

m
ber

∈
[0,1]

0.01
T

he
threshold

θ
in

the
strength

of
con-

nection
algorithm

.See
also

the
note

at
the

bottom
ofthis

table.
'
A
G
G
R
_
F
I
L
T
E
R
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’
F
I
L
T
E
R
’

’
N
O
F
I
L
T
E
R
’

’
N
O
F
I
L
T
E
R
’

M
atrix

u
sed

in
com

p
u

ting
the

sm
oothed

p
rolongator:

fi
ltered

or
unfiltered.

N
ote.D

ifferentthresholds
atdifferentlevels,such

as
those

used
in

[35,Section
5.1],can

be
easily

setby
invoking

the
rou-

tine
s
e
t

w
ith

the
param

eter
i
l
e
v.

Table
4:Param

eters
defining

the
aggregation

algorithm
(continued).

5 USER INTERFACE 27

w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
C
O
A
R
S
E
_
M
A
T
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
D
I
S
T
'

'
R
E
P
L
'

'
R
E
P
L
'

C
oa

rs
es

tm
at

ri
x

la
yo

ut
:d

is
tr

ib
ut

ed
am

on
g

th
e

pr
o-

ce
ss

es
or

re
pl

ic
at

ed
on

ea
ch

of
th

em
.

'
C
O
A
R
S
E
_
S
O
L
V
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
M
U
M
P
S
'

'
U
M
F
'

'
S
L
U
'

'
S
L
U
D
I
S
T
'

'
I
L
U
'

'
J
A
C
O
B
I
'

'
G
S
'

'
B
J
A
C
'

'
K
R
M
'

'
L
1
-
J
A
C
O
B
I
'

'
L
1
-
B
J
A
C
'

'
L
1
-
F
B
G
S
'

Se
e

N
ot

e.
So

lv
er

u
se

d
at

th
e

co
ar

se
st

le
ve

l:
se

qu
en

ti
al

L
U

fr
om

M
U

M
P

S,
U

M
FP

A
C

K
,o

r
Su

p
er

L
U

(p
lu

s
tr

i-
an

gu
la

r
so

lv
e)

;
d

is
tr

ib
u

te
d

L
U

fr
om

M
U

M
P

S
or

Su
pe

rL
U

D
is

t(
pl

us
tr

ia
ng

ul
ar

so
lv

e)
;p

oi
nt

-J
ac

ob
i,

hy
br

id
G

au
ss

-S
ei

de
lo

r
bl

oc
k-

Ja
co

bi
an

d
re

la
te

d
ℓ 1

-
ve

rs
io

ns
;K

ry
lo

v
M

et
ho

d
(fl

ex
ib

le
C

on
ju

ga
te

G
ra

di
-

en
t)

co
u

p
le

d
w

it
h

th
e

bl
oc

k-
Ja

co
bi

p
re

co
nd

it
io

ne
r

w
ith

IL
U

(0
)o

n
th

e
bl

oc
ks

.N
ot

e
th

at
U
M
F

an
d
S
L
U

re
-

qu
ir

e
th

e
co

ar
se

st
m

at
ri

x
to

be
re

pl
ic

at
ed

,S
L
U
D
I
S
T

,
J
A
C
O
B
I

,G
S

,B
J
A
C

an
d
K
R
M

re
qu

ir
e

it
to

be
di

st
ri

bu
te

d,
M
U
M
P
S

ca
n

be
us

ed
w

it
h

ei
th

er
a

re
pl

ic
at

ed
or

a
d

is
-

tr
ib

ut
ed

m
at

ri
x.

W
he

n
an

y
of

th
e

pr
ev

io
us

so
lv

er
s

is
sp

ec
ifi

ed
,t

he
m

at
ri

x
la

yo
ut

is
se

tt
o

a
de

fa
ul

tv
al

ue
w

hi
ch

al
lo

w
s

th
e

u
se

of
th

e
so

lv
er

(s
ee

R
em

ar
k

3,
p.

24
).

N
ot

e
al

so
th

at
U

M
FP

A
C

K
an

d
Su

pe
rL

U
D

is
t

ar
e

av
ai

la
bl

e
on

ly
in

do
ub

le
pr

ec
is

io
n.

28 AMG4PSBLAS USER’S AND REFERENCE GUIDE
'
C
O
A
R
S
E
_
S
U
B
S
O
L
V
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
I
L
U
'

'
I
L
U
T
'

'
M
I
L
U
'

'
M
U
M
P
S
'

'
S
L
U
'

'
U
M
F
'

'
I
N
V
T
'

'
I
N
V
K
'

'
A
I
N
V
'

See
N

ote.
Solver

for
the

d
iagonalblocks

of
the

coarsest
m

a-
trix,

in
case

the
block

Jacobi
solver

is
chosen

as
coarsest-level

solver:
IL

U
(p),

IL
U

(p,t),
M

IL
U

(p),
LU

from
M

U
M

PS,SuperLU
or

U
M

FPA
C

K
(plus

tri-
angu

lar
solve),A

p
p

roxim
ate

Inverses
IN

V
K

(p,q),
IN

V
T

(p
1 ,p2,t1 ,t2)and

A
IN

V
(t);note

thatapproxi-
m

ate
inverses

are
specifically

suited
for

G
PU

s
since

they
do

notem
ploy

triangular
system

solve
kernels,

see
[3].N

ote
thatU

M
FPA

C
K

and
SuperLU

D
istare

available
only

in
double

precision.
N

ote.D
efaults

for
C
O
A
R
S
E
S
O
L
V
E

and
C
O
A
R
S
E
S
U
B
S
O
L
V
E

are
chosen

in
the

follow
ing

order:
single

precision
version

–
M
U
M
P
S

ifinstalled,then
S
L
U

ifinstalled,
I
L
U

otherw
ise;

double
precision

version
–
U
M
F

ifinstalled,then
M
U
M
P
S

ifinstalled,then
S
L
U

ifinstalled,
I
L
U

otherw
ise.

w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
C
O
A
R
S
E
_
S
W
E
E
P
S
'

i
n
t
e
g
e
r

A
ny

inte-
ger
nu

m
ber

>
0

10
N

um
ber

ofsw
eeps

w
hen

J
A
C
O
B
I,
G
S

or
B
J
A
C

is
cho-

sen
as

coarsest-levelsolver.

'
C
O
A
R
S
E
_
F
I
L
L
I
N
'

i
n
t
e
g
e
r

A
ny

inte-
ger
nu

m
ber

≥
0

0
Fill-in

levelp
ofthe

ILU
factorizations

and
firstfill-

in
for

the
approxim

ate
inverses.

'
C
O
A
R
S
E
_
I
L
U
T
H
R
S
'

r
e
a
l
(
k
i
n
d
_
p
a
r
a
m
e
t
e
r
)

A
ny

real
nu

m
ber

≥
0

0
D

rop
tolerance

t
in

the
IL

U
(p,t)

factorization
and

firstdrop-tolerance
for

the
approxim

ate
inverses.

N
ote.Further

options
for

coarse
solvers

are
contained

in
Table

6.
For

a
firstuse

itis
suggested

to
use

the
defaultoptions

obtained
by

sim
ply

selecting
the

solver
type.

Table
5:Param

eters
defining

the
solver

atthe
coarsestlevel(continued).

5 USER INTERFACE 29
w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
B
J
A
C
_
S
T
O
P
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
F
A
L
S
E
'

'
T
R
U
E
'

'
F
A
L
S
E
'

Se
le

ct
w

he
th

er
to

u
se

a
st

op
p

in
g

cr
it

er
io

n
fo

r
th

e
B

lo
ck

-J
ac

ob
im

et
ho

d
u

se
d

as
a

co
ar

se
so

lv
er

.
'
B
J
A
C
_
T
R
A
C
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
F
A
L
S
E
'

'
T
R
U
E
'

'
F
A
L
S
E
'

Se
le

ct
w

he
th

er
to

p
ri

nt
a

tr
ac

e
fo

r
th

e
ca

l-
cu

la
te

d
re

si
d

u
al

fo
r

th
e

B
lo

ck
-J

ac
ob

im
et

ho
d

us
ed

as
a

co
ar

se
so

lv
er

.
'
B
J
A
C
_
I
T
R
A
C
E
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

>
0

-1
N

um
be

r
of

it
er

at
io

ns
af

te
r

w
hi

ch
a

tr
ac

e
is

to
be

pr
in

te
d.

'
B
J
A
C
_
R
E
S
C
H
E
C
K
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

>
0

-1
N

um
be

r
of

it
er

at
io

ns
af

te
r

w
hi

ch
a

re
si

du
al

is
to

be
ca

lc
ul

at
ed

.
'
B
J
A
C
_
S
T
O
P
T
O
L
'

r
e
a
l
(
k
i
n
d
_
p
a
r
a
m
e
t
e
r
)

A
ny

re
al

<
1

0
To

le
ra

nc
e

fo
r

th
e

st
op

p
in

g
cr

it
er

io
n

on
th

e
re

si
du

al
.

'
K
R
M
_
M
E
T
H
O
D
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
C
G
'

'
F
C
G
'

'
C
G
S
'

'
C
G
R
'

'
B
I
C
G
'

'
B
I
C
G
S
T
A
B
'

'
B
I
C
G
S
T
A
B
L
'

'
R
G
M
R
E
S
'

'
F
C
G
'

A
st

ri
ng

th
at

d
efi

ne
s

th
e

it
er

at
iv

e
m

et
ho

d
to

be
u

se
d

w
he

n
em

p
lo

yi
ng

a
K

ry
lo

v
m

et
ho

d
'
K
R
M
'

as
a

co
ar

se
so

lv
er

.
C
G

th
e

C
on

ju
ga

te
G

ra
d

ie
nt

m
et

ho
d

;F
C
G

th
e

Fl
ex

ib
le

C
on

ju
ga

te
G

ra
di

en
tm

et
ho

d;
C
G
S

th
e

C
on

ju
ga

te
G

ra
di

en
t

St
ab

ili
ze

d
m

et
ho

d;
G
C
R

th
e

G
en

er
al

iz
ed

C
on

ju
-

ga
te

R
es

id
ua

lm
et

ho
d;

F
C
G

th
e

Fl
ex

ib
le

C
on

ju
-

ga
te

G
ra

di
en

tm
et

ho
d;

B
I
C
G

th
e

Bi
-C

on
ju

ga
te

G
ra

di
en

tm
et

ho
d;

B
I
C
G
S
T
A
B

th
e

Bi
-C

on
ju

ga
te

G
ra

di
en

tS
ta

bi
liz

ed
m

et
ho

d;
B
I
C
G
S
T
A
B
L

th
e

Bi
-

C
on

ju
ga

te
G

ra
d

ie
nt

St
ab

ili
ze

d
m

et
ho

d
w

it
h

re
st

ar
ti

ng
;
R
G
M
R
E
S

th
e

G
en

er
al

iz
ed

M
in

im
al

R
es

id
ua

lm
et

ho
d

w
it

h
re

st
ar

ti
ng

.R
ef

er
to

th
e

PS
BL

A
S

gu
id

e
[2

1]
fo

r
fu

rt
he

r
in

fo
rm

at
io

n.
'
K
R
M
_
K
P
R
E
C
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

Ta
bl

e
1

'
B
J
A
C
'

Th
e

on
e-

le
ve

lp
re

co
nd

iti
on

er
s

fr
om

th
e

Ta
bl

e
1

ca
n

be
us

ed
fo

r
th

e
co

ar
se

K
ry

lo
v

so
lv

er
.

30 AMG4PSBLAS USER’S AND REFERENCE GUIDE
'
K
R
M
_
S
U
B
_
S
O
L
V
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

Table
5

'
I
L
U
'

Solver
for

the
diagonalblocks

ofthe
coarsestm

atrix
p

recond
itioner,

in
case

the
block

Jacobi
solver

is
chosen

as
'
K
R
M
_
K
P
R
E
C
':ILU

(p),ILU
(p,t),M

ILU
(p),

L
U

from
M

U
M

P
S,

Su
p

erL
U

or
U

M
FPA

C
K

(p
lu

s
triangular

solve),A
pproxim

ate
Inverses

IN
V

K
(p,q),

IN
V

T
(p

1 ,p2,t1 ,t2)
and

A
IN

V
(t);T

he
sam

e
caveat

from
Table

5
applies

here.
'
K
R
M
_
G
L
O
B
A
L
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
T
R
U
E
',

'
F
A
L
S
E
'

'
F
A
L
S
E
'

C
hoose

betw
een

a
global

K
rylov

solver,
all

u
n-

know
ns

on
a

single
node,or

a
distributed

one.The
defaultchoice

is
the

distributed
solver.

'
K
R
M
_
E
P
S
'

r
e
a
l
(
k
i
n
d
_
p
a
r
a
m
e
t
e
r
)

R
eal

<
1

10 −
6

The
stopping

tolerance.
'
K
R
M
_
I
R
S
T
'

i
n
t
e
g
e
r

Integer
≥

1
30

A
n

integer
sp

ecifying
the

restart
p

aram
eter.

T
his

is
em

ployed
for

the
B
i
C
G
S
T
A
B
L

or
R
G
M
R
E
S

m
ethods,

otherw
ise

itis
ignored.

'
K
R
M
_
I
S
T
O
P
C
'

i
n
t
e
g
e
r

Integers
1,2,3

2
If
1

then
the

m
ethod

uses
the

norm
w

ise
backw

ard
errorin

the
infinity

norm
;if

2,the
ituses

the
relative

resid
u

al
in

the
2-norm

;
if
3

the
relative

resid
u

al
reduction

in
the

2-norm
is

used
instead;refer

to
the

PSBLA
S

[21]guide
for

the
details.

'
K
R
M
_
I
T
M
A
X
'

i
n
t
e
g
e
r

Integer
≥

1
40

The
m

axim
um

num
ber

ofiterations
to

perform
.

'
K
R
M
_
I
T
R
A
C
E
'

i
n
t
e
g
e
r

Integer
≥

0
-1

If
>

0
p

rint
ou

t
an

inform
ational

m
essage

abou
t

convergence
every

'
K
R
M
_
I
T
R
A
C
E
'

iterations.If
=

0
printa

m
essage

in
case

ofconvergence
failure.

'
K
R
M
_
F
I
L
L
I
N
'

i
n
t
e
g
e
r

Integer
≥

0
0

Fill-in
levelp

ofthe
ILU

factorizations
and

firstfill-
in

for
the

approxim
ate

inverses.

Table
6:A

dditionalparam
eters

defining
the

solver
atthe

coarsestlevel.

5 USER INTERFACE 31
w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
S
M
O
O
T
H
E
R
_
T
Y
P
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
J
A
C
O
B
I
'

'
G
S
'

'
B
G
S
'

'
B
J
A
C
'

'
A
S
'

'
L
1
-
J
A
C
O
B
I
'

'
L
1
-
B
J
A
C
'

'
L
1
-
F
B
G
S
'

'
P
O
L
Y
'

'
F
B
G
S
'

Ty
p

e
of

sm
oo

th
er

u
se

d
in

th
e

m
u

lt
i-

le
ve

lp
re

co
nd

it
io

ne
r:

po
in

t-
Ja

co
bi

,h
yb

ri
d

(f
or

w
ar

d
)G

au
ss

-S
ei

d
el

,h
yb

ri
d

ba
ck

w
ar

d
G

au
ss

-S
ei

d
el

,
bl

oc
k-

Ja
co

bi
,
ℓ 1

-J
ac

ob
i,
ℓ 1

–
hy

br
id

(f
or

w
ar

d
)

G
au

ss
-S

ei
d

el
,
ℓ 1

-p
oi

nt
-

Ja
co

bi
an

d
A

d
d

it
iv

e
Sc

hw
ar

z,
po

ly
no

m
ia

l
ac

ce
le

ra
to

rs
;s

ee
[1

5]
It

is
ig

no
re

d
by

on
e-

le
ve

lp
re

co
nd

it
io

ne
rs

.

'
S
U
B
_
S
O
L
V
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
J
A
C
O
B
I
'

'
G
S
'

'
B
G
S
'

'
I
L
U
'

'
I
L
U
T
'

'
M
I
L
U
'

'
M
U
M
P
S
'

'
S
L
U
'

'
U
M
F
'

'
I
N
V
T
'

'
I
N
V
K
'

'
A
I
N
V
'

G
S

an
d
B
G
S

fo
r

pr
e-

an
d

po
st

-s
m

oo
th

er
s

of
m

ul
-

ti
le

ve
lp

re
co

nd
it

io
ne

rs
,

re
sp

ec
ti

ve
ly

I
L
U

fo
r

bl
oc

k-
Ja

co
bi

an
d

A
d

d
it

iv
e

Sc
hw

ar
z

on
e-

le
ve

lp
re

co
nd

it
io

n-
er

s

T
he

lo
ca

l
so

lv
er

to
be

u
se

d
w

it
h

th
e

sm
oo

th
er

or
on

e-
le

ve
lp

re
co

nd
it

io
ne

r
(s

ee
R

em
ar

k
2,

p
ag

e
24

):
p

oi
nt

-J
ac

ob
i,

hy
br

id
(f

or
w

ar
d

)G
au

ss
-S

ei
d

el
,h

yb
ri

d
ba

ck
w

ar
d

G
au

ss
-S

ei
d

el
,I

L
U

(p
),

IL
U

(p
,t

),
M

IL
U

(p
),

LU
fr

om
M

U
M

PS
,S

up
er

LU
or

U
M

FP
A

C
K

(p
lu

s
tr

ia
ng

u
la

r
so

lv
e)

,
A

p
p

ro
xi

m
at

e
In

-
ve

rs
es

IN
V

K
(p

,q
),

IN
V

T
(p

1,
p2

,t
1,

t 2
)a

nd
A

IN
V

(t
);

no
te

th
at

ap
p

ro
xi

m
at

e
in

ve
rs

es
ar

e
sp

ec
ifi

ca
lly

su
it

ed
fo

r
G

PU
s

si
nc

e
th

ey
do

no
te

m
pl

oy
tr

ia
ng

ul
ar

sy
st

em
so

lv
e

ke
r-

ne
ls

,s
ee

[3
].

Se
e

N
ot

e
fo

r
de

ta
ils

on
hy

br
id

G
au

ss
-S

ei
de

l.
'
S
M
O
O
T
H
E
R
_
S
W
E
E
P
S
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

nu
m

be
r
≥

0
1

N
um

be
r

of
sw

ee
ps

of
th

e
sm

oo
th

er
or

on
e-

le
ve

lp
re

co
nd

iti
on

er
.I

n
th

e
m

ul
til

ev
el

ca
se

,
no

p
re

-s
m

ot
he

r
or

p
os

t-
sm

oo
th

er
is

u
se

d
if

th
is

p
ar

am
et

er
is

se
t

to
0

to
ge

th
er

w
it

h
p
o
s
=
'
P
R
E
'

or
p
o
s
=
'
P
O
S
T
'

,r
es

pe
ct

iv
el

y.
Is

ig
no

re
d

if
th

e
sm

oo
th

er
is
'
P
O
L
Y
'

'
P
O
L
Y
_
D
E
G
R
E
E
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

nu
m

be
r
≥

1
an

d
≤

30

1
D

eg
re

e
of

th
e

p
ol

yn
om

ia
l

ac
ce

le
ra

to
r,

is
eq

ua
lt

o
th

e
nu

m
be

r
of

m
at

ri
x-

ve
ct

or
pr

od
-

uc
ts

pe
rf

or
m

ed
by

th
e

sm
oo

th
er

.I
si

gn
or

ed
if

th
e

sm
oo

th
er

is
no

t'
P
O
L
Y
'

Ta
bl

e
7:

Pa
ra

m
et

er
s

de
fin

in
g

th
e

sm
oo

th
er

or
th

e
de

ta
ils

of
th

e
on

e-
le

ve
lp

re
co

nd
it

io
ne

r.

32 AMG4PSBLAS USER’S AND REFERENCE GUIDE
w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
S
U
B
_
O
V
R
'

i
n
t
e
g
e
r

A
ny

integer
num

ber≥
0

1
N

u
m

ber
of

overlap
layers,

for
A

d
d

itive
Schw

arz
only.

'
S
U
B
_
R
E
S
T
R
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
H
A
L
O
'

'
N
O
N
E
'

'
H
A
L
O
'

Typ
e

of
restriction

op
erator,

for
A

d
d

itive
Schw

arz
only:

H
A
L
O

for
taking

into
account

the
overlap,

'
N
O
N
E
'

for
neglecting

it.
N

ote
that

H
A
L
O

m
ustbe

chosen
for

the
clas-

sicalA
d

d
d

itive
Schw

arz
sm

oother
and

its
R

A
S

variant.
'
S
U
B
_
P
R
O
L
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
S
U
M
'

'
N
O
N
E
'

'
N
O
N
E
'

Type
ofprolongation

operator,for
A

dditive
Schw

arz
only:

'
S
U
M
'

for
ad

d
ing

the
con-

tribu
tions

from
the

overlap
,
'
N
O
N
E
'

for
ne-

glecting
them

.
N

ote
that

'
S
U
M
'

m
u

st
be

chosen
for

the
classical

A
d

d
itive

Schw
arz

sm
oother,and

'
N
O
N
E
'

for
its

R
A

S
variant.

'
S
U
B
_
F
I
L
L
I
N
'

i
n
t
e
g
e
r

A
ny

integer
num

ber≥
0

0
Fill-in

level
p

of
the

incom
p

lete
L

U
factor-

izations.
'
S
U
B
_
I
L
U
T
H
R
S
'

r
e
a
l
(
k
i
n
d
_
p
a
r
a
m
e
t
e
r
)

A
ny

real
nu

m
-

ber≥
0

0
D

rop
tolerance

t
in

the
IL

U
(p,t)

factoriza-
tion.

'
M
U
M
P
S
_
L
O
C
_
G
L
O
B
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
L
O
C
A
L
_
S
O
L
V
E
R
'

'
G
L
O
B
A
L
_
S
O
L
V
E
R
'

'
G
L
O
B
A
L
_
S
O
L
V
E
R
'

W
hether

M
U

M
P

S
shou

ld
be

u
sed

as
a

d
is-

tribu
ted

solver,or
as

a
serialsolver

acting
only

on
the

p
artofthe

m
atrix

localto
each

process.
'
M
U
M
P
S
_
I
P
A
R
_
E
N
T
R
Y
'

i
n
t
e
g
e
r

A
ny

integer
num

ber
0

Setan
entry

in
the

M
U

M
P

S
integer

control
array,as

chosen
via

the
i
d
x

op
tionalargu

-
m

ent.
'
M
U
M
P
S
_
R
P
A
R
_
E
N
T
R
Y
'

r
e
a
l

A
ny

realnum
ber

0
Setan

entry
in

the
M

U
M

P
S

realcontrolar-
ray,

as
chosen

via
the

i
d
x

op
tional

argu
-

m
ent.

Table
8:Param

eters
defining

the
sm

oother
or

the
details

ofthe
one-levelpreconditioner

(continued).

5 USER INTERFACE 33
w
h
a
t

D
A

TA
T

Y
P

E
v
a
l

D
E

FA
U

LT
C

O
M

M
E

N
T

S

'
P
O
L
Y
_
V
A
R
I
A
N
T
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
C
H
E
B
_
4
'

'
C
H
E
B
_
4
_
O
P
T
'

'
C
H
E
B
_
1
_
O
P
T
'

'
C
H
E
B
_
4
'

Se
le

ct
th

e
ty

p
e

of
po

ly
no

m
ia

la
cc

el
er

at
or

.
T

he
'
C
H
E
B
_
4
'

an
d

'
C
H
E
B
_
4
_
O
P
T
'

ty
p

es
ar

e
th

os
e

ba
se

d
on

th
e

C
he

by
sh

ev
p

ol
yn

o-
m

ia
ls

of
th

e
4th

-k
in

d
d

es
cr

ib
ed

in
[2

7]
.

T
he

'
C
H
E
B
_
1
_
O
P
T
'

ve
rs

io
n

is
th

e
on

e
d

es
cr

ib
ed

in
[1

5]
an

d
ba

se
d

on
th

e
C

he
by

sh
ev

po
ly

no
-

m
ia

ls
of

th
e

1st
-k

in
d.

'
P
O
L
Y
_
R
H
O
_
E
S
T
I
M
A
T
E
'

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

'
P
O
L
Y
_
R
H
O
_
E
S
T
_
P
O
W
E
R
'

'
P
O
L
Y
_
R
H
O
_
E
S
T
_
P
O
W
E
R
'

A
lg

or
it

hm
fo

r
es

ti
m

at
-

in
g

th
e

sp
ec

tr
al

ra
-

di
us

of
th

e
sm

oo
th

er
to

w
hi

ch
th

e
p

ol
yn

om
ia

l
ac

ce
le

ra
ti

on
is

ap
pl

ie
d

.
T

he
on

ly
im

pl
em

en
te

d
al

go
ri

th
m

is
th

e
po

w
er

m
et

ho
d

;
se

e
al

so
th

e
tw

o
fo

llo
w

in
g

op
ti

on
s.

'
P
O
L
Y
_
R
H
O
_
E
S
T
I
M
A
T
E
_
I
T
E
R
A
T
I
O
N
S
'

i
n
t
e
g
e
r

A
ny

in
te

ge
r

nu
m

be
r
≥

1
20

N
u

m
be

r
of

it
er

at
io

ns
fo

r
th

e
sp

ec
tr

al
ra

d
iu

s
es

ti
m

at
e.

'
P
O
L
Y
_
R
H
O
_
B
A
'

r
e
a
l
(
k
i
n
d
_
p
a
r
a
m
e
t
e
r
)

A
ny

re
al

nu
m

be
r
∈
(0

,1
]

1
Se

ts
an

es
ti

m
at

e
of

th
e

sp
ec

tr
al

ra
d

iu
s

of
th

e
ba

se
sm

oo
th

er
to

w
hi

ch
th

e
p

ol
yn

om
ia

l
ac

ce
le

ra
to

r
is

ap
pl

ie
d.

Ta
bl

e
9:

Pa
ra

m
et

er
s

de
fin

in
g

th
e

sm
oo

th
er

or
th

e
de

ta
ils

of
th

e
on

e-
le

ve
lp

re
co

nd
it

io
ne

r
(c

on
ti

nu
ed

).

34 AMG4PSBLAS USER’S AND REFERENCE GUIDE

5.3 Method hierarchy build

call p%hierarchy_build(a,desc_a,info)

This method builds the hierarchy of matrices and restriction/prolongation operators
for the multilevel preconditioner p, according to the requirements made by the user
through the methods init and set.

Arguments
a type(psb_xspmat_type), intent(in).

The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [21].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [21].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

5 USER INTERFACE 35

5.4 Method smoothers build

call p%smoothers_build(a,desc_a,p,info[,amold,vmold,imold])

This method builds the smoothers and the coarsest-level solvers for the multilevel
preconditioner p, according to the requirements made by the user through the methods
init and set, and based on the aggregation hierarchy produced by a previous call to
hierarchy_build (see Section 5.3).

Arguments
a type(psb_xspmat_type), intent(in).

The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [21].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [21].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class(psb_x_base_sparse_mat), intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [21].

vmold class(psb_x_base_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

imold class(psb_i_base_vect_type), intent(in), optional.
The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

36 AMG4PSBLAS USER’S AND REFERENCE GUIDE

5.5 Method build

call p%build(a,desc_a,info[,amold,vmold,imold])

This method builds the preconditioner p according to the requirements made by the
user through the methods init and set (see Sections 5.3 and 5.4 for multilevel pre-
conditioners). It is mostly provided for backward compatibility; indeed, it is inter-
nally implemented by invoking the two previous methods hierarchy_build and
smoothers_build, whose nomenclature would however be somewhat unnatural when
dealing with simple one-level preconditioners.

Arguments
a type(psb_xspmat_type), intent(in).

The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [21].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [21].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class(psb_x_base_sparse_mat), intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [21].

vmold class(psb_x_base_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

imold class(psb_i_base_vect_type), intent(in), optional.
The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

The method can be used to build multilevel preconditioners too.

5 USER INTERFACE 37

5.6 Method apply

call p%apply(x,y,desc_a,info [,trans,work])

This method computes y = op(B−1) x, where B is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its transpose, according to
the value of trans. Note that, when AMG4PSBLAS is used with a Krylov solver from
PSBLAS, p%apply is called within the PSBLAS method psb_krylov and hence it is
completely transparent to the user.

Arguments
x type(kind_parameter), dimension(:), intent(in)—.

The local part of the vector x. Note that type and kind parameter must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

y type(kind_parameter), dimension(:), intent(out)—.
The local part of the vector y. Note that type and kind parameter must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

trans character(len=1), optional, intent(in).

If trans = 'N','n' then op(B−1) = B−1; if trans = 'T','t' then
op(B−1) = B−T (transpose of B−1); if trans = 'C','c' then op(B−1) =
B−C (conjugate transpose of B−1).

work type(kind_parameter), dimension(:), optional, target—.
Workspace. Its size should be at least 4 * psb_cd_get_local_

cols(desc_a) (see the PSBLAS User’s Guide). Note that type and
kind parameter must be chosen according to the real/complex, sin-
gle/double precision version of AMG4PSBLAS under use.

38 AMG4PSBLAS USER’S AND REFERENCE GUIDE

5.7 Method free

call p%free(p,info)

This method deallocates the preconditioner data structure p.

Arguments
info integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.

5 USER INTERFACE 39

5.8 Method descr

call p%descr(info, [iout, root, verbosity])

This method prints a description of the preconditioner p to the standard output or to
a file. It must be called after hierachy_build and smoothers_build, or build, have
been called.

Arguments
info integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.
iout integer, intent(in), optional.

The id of the file where the preconditioner description will be
printed; the default is the standard output.

root integer, intent(in), optional.
The id of the process where the preconditioner description will be
printed; the default is psb_root_.

verbosity integer, intent(in), optional.
The verbosity level of the description. Default value is 0. For
values higher than 0, it prints out further information, e.g., for a
distributed multilevel preconditioner the size of the coarse matri-
ces on every process.

5.9 Auxiliary Methods

Various functionalities are implemented as additional methods of the preconditioner
object.

5.9.1 Method: dump

call p%dump(info[,istart,iend,prefix,head,ac,rp,smoother,solver,global_num])

Dump on file.

Arguments
info integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.
amold class(psb_x_base_sparse_mat), intent(in), optional.

The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [21].

40 AMG4PSBLAS USER’S AND REFERENCE GUIDE

5.9.2 Method: clone

call p%clone(pout,info)

Create a (deep) copy of the preconditioner object.

Arguments
pout type(amg_xprec_type), intent(out).

The copy of the preconditioner data structure. Note that x must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

5.9.3 Method: sizeof

sz = p%sizeof([global])

global logical, optional.
Whether the global or local preconditioner memory occupation is de-
sired. Default: .false..

Return memory footprint in bytes.

5.9.4 Method: allocate wrk

call p%allocate_wrk(info[, vmold])

Allocate internal work vectors. Each application of the preconditioner uses a number
of work vectors which are allocated internally as necessary; therefore allocation and
deallocation of memory occurs multiple times during the execution of a Krylov method.
In most cases this strategy is perfectly acceptable, but on some platforms, most notably
GPUs, memory allocation is a slow operation, and the default behaviour would lead to
a slowdown. This method allows to trade space for time by preallocating the internal
workspace outside of the invocation of a Krylov method. When using GPUs or other
specialized devices, the vmold argument is also necessary to ensure the internal work
vectors are of the appropriate dynamic type to exploit the accelerator hardware; when
allocation occurs internally this is taken care of based on the dynamic type of the x

argument to the apply method.

Arguments
info integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.
vmold class(psb_x_base_vect_type), intent(in), optional.

The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

5 USER INTERFACE 41

5.9.5 Method: free wrk

call p%free_wrk(info)

Deallocate internal work vectors.

Arguments
info integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.

42 AMG4PSBLAS USER’S AND REFERENCE GUIDE

6 Adding new smoother and solver objects to AMG4PSBLAS

Developers can add completely new smoother and/or solver classes derived from the
base objects in the library (see Remark 2 in Section 5.2), without recompiling the library
itself.

To do so, it is necessary first to select the base type to be extended. In our experience,
it is quite likely that the new application needs only the definition of a “solver” object,
which is almost always acting only on the local part of the distributed matrix. The
parallel actions required to connect the various solver objects are most often already
provided by the block-Jacobi or the additive Schwarz smoothers. To define a new solver,
the developer will then have to define its components and methods, perhaps taking
one of the predefined solvers as a starting point, if possible.

Once the new smoother/solver class has been developed, to use it in the context of
the multilevel preconditioners it is necessary to:

• declare in the application program a variable of the new type;

• pass that variable as the argument to the set routine as in the following:

call p%set(smoother,info [,ilev,ilmax,pos])

call p%set(solver,info [,ilev,ilmax,pos])

• link the code implementing the various methods into the application executable.

The new solver object is then dynamically included in the preconditioner structure, and
acts as a mold to which the preconditioner will conform, even though the AMG4PSBLAS
library has not been modified to account for this new development.

It is possible to define new values for the keyword WHAT in the set routine; if the
library code does not recognize a keyword, it passes it down the composition hierarchy
(levels containing smoothers containing in turn solvers), so that it can eventually be
caught by the new solver. By the same token, any keyword/value pair that does not
pertain to a given smoother should be passed down to the contained solver, and any
keyword/value pair that does not pertain to a given solver is by default ignored.

An example is provided in the source code distribution under the folder tests/newslv.
In this example we are implementing a new incomplete factorization variant (which
is simply the ILU(0) factorization under a new name). Because of the specifics of this
case, it is possible to reuse the basic structure of the ILU solver, with its L/D/U com-
ponents and the methods needed to apply the solver; only a few methods, such as the
description and most importantly the build, need to be ovverridden (rewritten).

The interfaces for the calls shown above are defined using

smoother class(amg_x_base_smoother_type)

The user-defined new smoother to be employed in the preconditioner.
solver class(amg_x_base_solver_type)

The user-defined new solver to be employed in the preconditioner.

5 USER INTERFACE 43

The other arguments are defined in the way described in Sec. 5.2. As an example, in the
tests/newslv code we define a new object of type amg_d_tlu_solver_type, and we
pass it as follows:

! sparse matrix and preconditioner

type(psb_dspmat_type) :: a

type(amg_dprec_type) :: prec

type(amg_d_tlu_solver_type) :: tlusv

......

!

! prepare the preconditioner: an ML with defaults, but with TLU solver at

! intermediate levels. All other parameters are at default values.

!

call prec%init('ML', info)

call prec%hierarchy_build(a,desc_a,info)

nlv = prec%get_nlevs()

call prec%set(tlusv, info,ilev=1,ilmax=max(1,nlv-1))

call prec%smoothers_build(a,desc_a,info)

44 AMG4PSBLAS USER’S AND REFERENCE GUIDE

7 Error Handling

The error handling in AMG4PSBLAS is based on the PSBLAS error handling. Error
conditions are signaled via an integer argument info; whenever an error condition is
detected, an error trace stack is built by the library up to the top-level, user-callable
routine. This routine will then decide, according to the user preferences, whether the
error should be handled by terminating the program or by returning the error condition
to the user code, which will then take action, and whether an error message should be
printed. These options may be set by using the PSBLAS error handling routines; for
further details see the PSBLAS User’s Guide [21].

A LICENSE 45

A License

AMG4PSBLAS is freely distributable under the following copyright terms:

AMG4PSBLAS version 1.0

Algebraic MultiGrid Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 3.7)

(C) Copyright 2021

Pasqua D'Ambra IAC-CNR, IT

Fabio Durastante University of Pisa and IAC-CNR, IT

Salvatore Filippone University of Rome Tor-Vergata and IAC-CNR, IT

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may

not be used to endorse or promote products derived from this

software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

46 AMG4PSBLAS USER’S AND REFERENCE GUIDE

AMG4PSBLAS is an evolution of MLD2P4, whose license we reproduce here to
abide by its terms:

MLD2P4 version 2.2

MultiLevel Domain Decomposition Parallel Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 3.5)

(C) Copyright 2008-2018

Salvatore Filippone

Pasqua D'Ambra

Daniela di Serafino

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may

not be used to endorse or promote products derived from this

software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

A LICENSE 47

AMG4PSBLAS is distributed together with (a small part of) the graph-matching
library MatchBox-P [9]. Per the license requirements, we reproduce the relevant part
here.

// ***

//

// MatchboxP: A C++ library for approximate weighted matching

// Mahantesh Halappanavar (hala@pnnl.gov)

// Pacific Northwest National Laboratory

//

// ***

//

// Copyright (2021) Battelle Memorial Institute

// All rights reserved.

//

// Redistribution and use in source and binary forms, with or without

// modification, are permitted provided that the following conditions

// are met:

//

// 1. Redistributions of source code must retain the above copyright

// notice, this list of conditions and the following disclaimer.

//

// 2. Redistributions in binary form must reproduce the above copyright

// notice, this list of conditions and the following disclaimer in the

// documentation and/or other materials provided with the distribution.

//

// 3. Neither the name of the copyright holder nor the names of its

// contributors may be used to endorse or promote products derived from

// this software without specific prior written permission.

//

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

// COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

// POSSIBILITY OF SUCH DAMAGE.

//

// **

48 AMG4PSBLAS USER’S AND REFERENCE GUIDE

B Contributor Covenant Code of Conduct

Our Pledge We as members, contributors, and leaders pledge to make participation
in our community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender identity and
expression, level of experience, education, socio-economic status, nationality, personal
appearance, race, caste, color, religion, or sexual identity and orientation. We pledge to
act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and
healthy community. Our Standards Examples of behavior that contributes to a positive
environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and
learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall commu-
nity

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of
any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, with-
out their explicit permission

• Other conduct which could reasonably be considered inappropriate in a profes-
sional setting

Enforcement Responsibilities Community leaders are responsible for clarifying and
enforcing our standards of acceptable behavior and will take appropriate and fair cor-
rective action in response to any behavior that they deem inappropriate, threatening,
offensive, or harmful. Community leaders have the right and responsibility to remove,
edit, or reject comments, commits, code, wiki edits, issues, and other contributions that
are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate. Scope This Code of Conduct applies within all community
spaces, and also applies when an individual is officially representing the community
in public spaces. Examples of representing our community include using an official
e-mail address, posting via an official social media account, or acting as an appointed

B CONTRIBUTOR COVENANT CODE OF CONDUCT 49

representative at an online or offline event. Enforcement Instances of abusive, harass-
ing, or otherwise unacceptable behavior may be reported to the community leaders
responsible for enforcement at eocoe@na.iac.cnr.it. All complaints will be reviewed and
investigated promptly and fairly. All community leaders are obligated to respect the
privacy and security of the reporter of any incident.

Enforcement Guidelines Community leaders will follow these Community Impact
Guidelines in determining the consequences for any action they deem in violation of
this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the behavior
was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction
with the people involved, including unsolicited interaction with those enforcing
the Code of Conduct, for a specified period of time. This includes avoiding
interactions in community spaces as well as external channels like social media.
Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sus-
tained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communi-
cation with the community for a specified period of time. No public or private
interaction with the people involved, including unsolicited interaction with those
enforcing the Code of Conduct, is allowed during this period. Violating these
terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards,
including sustained inappropriate behavior, harassment of an individual, or
aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

mailto:eocoe@na.iac.cnr.it

50 AMG4PSBLAS USER’S AND REFERENCE GUIDE

Attribution This Code of Conduct is adapted from the Contributor Covenant, version
2.0, available at https://www.contributor-covenant.org/version/2/0/code of conduct
.html. Community Impact Guidelines were inspired by Mozilla’s code of conduct
enforcement ladder. For answers to common questions about this code of conduct, see
the FAQ at https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

REFERENCES 51

References

[1] A. Aprovitola, P. D’Ambra, F. Denaro, D. di Serafino, S. Filippone, Scalable algebraic
multilevel preconditioners with application to CFD, in Proc. of CFD 2008, LNCSE, 74,
(2010), 15–27.

[2] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L’Excellent, C. Weisbecker,
Improving multifrontal methods by means of block low-rank representations, SIAM
Journal on Scientific Computing, volume 37 (3), 2015, A1452–A1474. See also
http://mumps.enseeiht.fr.

[3] D. Bertaccini and S. Filippone, Sparse approximate inverse preconditioners on high
performance GPU platforms, Comput. Math. Appl., 71, (2016), no. 3, 693–711.

[4] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a Two-Level Schwarz
Method, Computing, 63, 1999, 233–263.

[5] W. L. Briggs, V. E. Henson, S. F. McCormick, A Multigrid Tutorial, Second Edition,
SIAM, 2000.

[6] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending PSBLAS to Build
Parallel Schwarz Preconditioners, in J. Dongarra, K. Madsen, J. Wasniewski, editors,
Proceedings of PARA 04 Workshop on State of the Art in Scientific Computing,
Lecture Notes in Computer Science, Springer, 2005, 593–602.

[7] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a package of
high-performance preconditioners for scientific and engineering applications, Applicable
Algebra in Engineering, Communications and Computing, 18 (3) 2007, 223–239.

[8] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for General Sparse
Linear Systems, SIAM Journal on Scientific Computing, 21 (2), 1999, 792–797.

[9] U.. V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halappanavar, and A. Pothen,
Distributed-memory parallel algorithms for matching and coloring, in PCO’11 New
Trends in Parallel Computing and Optimization, IEEE International Symposium
on Parallel and Distributed Processing Workshops, IEEE CS, 2011.

[10] P. D’Ambra, S. Filippone, D. di Serafino, On the Development of PSBLAS-based
Parallel Two-level Schwarz Preconditioners, Applied Numerical Mathematics, Elsevier
Science, 57 (11-12), 2007, 1181-1196.

[11] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of Parallel Multilevel
Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM Trans. Math.
Softw., 37(3), 2010, art. 30.

[12] P. D’Ambra and P. S. Vassilevski, Adaptive AMG with coarsening based on compatible
weighted matching, Computing and Visualization in Science, 16, (2013) 59–76.

52 MLD2P4 USER’S AND REFERENCE GUIDE

[13] P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package for
bootstrap AMG based on graph weighted matching, ACM Transactions on Mathemati-
cal Software, 44, (2018) 39:1–39:25.

[14] P. D’Ambra, F. Durastante, S. Filippone, AMG preconditioners for Linear Solvers
towards Extreme Scale, SIAM Journal on Scientific Computing 43, no. 5 (2021):
S679-S703.

[15] P. D’Ambra, F. Durastante, S. Filippone, S. Massei, S. Thomas Optimal Polynomial
Smoothers for Parallel AMG, 2024, arXiv:2407.09848.

[16] T. A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal Method
with a Column Pre-ordering Strategy, ACM Transactions on Mathematical Software,
30, 2004, 196–199. (See also http://www.cise.ufl.edu/~davis/)

[17] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu, A supernodal approach
to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications, 20 (3),
1999, 720–755.

[18] J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, A set of Level 3 Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software, 16 (1) 1990,
1–17.

[19] J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An extended set of FORTRAN
Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 14
(1) 1988, 1–17.

[20] S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Library of Sparse Linear
Algebra in a Fluid Dynamics Application Code on Linux Clusters, in Proc. of ParCo
2001, Parallel Computing, Advances and Current Issues, 2002.

[21] S. Filippone, A. Buttari, PSBLAS 3.5.0 User’s Guide. A Reference
Guide for the Parallel Sparse BLAS Library, 2012, available from
https://github.com/sfilippone/psblas3/tree/master/docs.

[22] S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matrix Computations in
Fortran 2003. ACM Transactions on on Mathematical Software, 38 (4), 2012, art. 23.

[23] S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra Computation
on Sparse Matrices, ACM Transactions on Mathematical Software, 26 (4), 2000, 527–
550.

[24] S. Gratton, P. Henon, P. Jiranek and X. Vasseur, Reducing complexity of algebraic
multigrid by aggregation, Numerical Lin. Algebra with Applications, 2016, 23:501-
518

[25] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions, MIT Press,
1998.

https://arxiv.org/abs/2407.09848

REFERENCES 53

[26] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear Algebra Subprograms
for FORTRAN usage, ACM Transactions on Mathematical Software, 5 (3), 1979,
308–323.

[27] J. Lottes, Optimal polynomial smoothers for multigrid V-cycles, Numerical Linear
Algebra with Applications 30.6 (2023): e2518.

[28] X. S. Li, J. W. Demmel, SuperLU DIST: A Scalable Distributed-memory Sparse Di-
rect Solver for Unsymmetric Linear Systems, ACM Transactions on Mathematical
Software, 29 (2), 2003, 110–140.

[29] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numerical Linear
Algebra with Applications, 15 (5), 2008, 473–487.

[30] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, 2003.

[31] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[32] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference. Volume 1 - The MPI Core, second edition, MIT Press, 1998.

[33] K. Stüben, An Introduction to Algebraic Multigrid, in A. Schüller, U. Trottenberg,
C. Oosterlee, Multigrid, Academic Press, 2001.

[34] R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation Strate-
gies on Massively Parallel Machines, in J. Donnelley, editor, Proceedings of Super-
Computing 2000, Dallas, 2000.

[35] P. Vaněk, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed Aggregation for
Second and Fourth Order Elliptic Problems, Computing, 56 (3) 1996, 179–196.

	AMG4PSBLAS User's and Reference Guide
	Abstract
	1 General Overview
	2 Code Distribution
	3 Configuring and Building AMG4PSBLAS
	3.1 Prerequisites
	3.2 Optional third party libraries
	3.3 Configuration options
	3.4 Bug reporting
	3.5 Example and test programs

	4 Getting Started
	4.1 Examples
	4.2 GPU example

	5 User Interface
	5.1 Method init
	5.2 Method set
	5.3 Method hierarchy_build
	5.4 Method smoothers_build
	5.5 Method build
	5.6 Method apply
	5.7 Method free
	5.8 Method descr
	5.9 Auxiliary Methods
	5.9.1 Method: dump
	5.9.2 Method: clone
	5.9.3 Method: sizeof
	5.9.4 Method: allocate_wrk
	5.9.5 Method: free_wrk

	6 Adding new smoother and solver objects to AMG4PSBLAS
	7 Error Handling
	A License
	B Contributor Covenant Code of Conduct
	References

