! ! ! MLD2P4 version 2.1 ! MultiLevel Domain Decomposition Parallel Preconditioners Package ! based on PSBLAS (Parallel Sparse BLAS version 3.5) ! ! (C) Copyright 2008-2018 ! ! Salvatore Filippone ! Pasqua D'Ambra ! Daniela di Serafino ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions, and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! 3. The name of the MLD2P4 group or the names of its contributors may ! not be used to endorse or promote products derived from this ! software without specific written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS ! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR ! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF ! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS ! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN ! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ! POSSIBILITY OF SUCH DAMAGE. ! ! ! File: mld_d_pde2d.f90 ! ! Program: mld_d_pde2d ! This sample program solves a linear system obtained by discretizing a ! PDE with Dirichlet BCs. ! ! ! The PDE is a general second order equation in 2d ! ! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u) ! - ------ - ------ ----- + ------ + c u = f ! dxdx dydy dx dy ! ! with Dirichlet boundary conditions ! u = g ! ! on the unit square 0<=x,y<=1. ! ! ! Note that if b1=b2=c=0., the PDE is the Laplace equation. ! ! There are three choices available for data distribution: ! 1. A simple BLOCK distribution ! 2. A ditribution based on arbitrary assignment of indices to processes, ! typically from a graph partitioner ! 3. A 2D distribution in which the unit square is partitioned ! into rectangles, each one assigned to a process. ! module mld_d_pde2d_mod use psb_base_mod, only : psb_dpk_, psb_ipk_, psb_desc_type,& & psb_dspmat_type, psb_d_vect_type, dzero,& & psb_d_base_sparse_mat, psb_d_base_vect_type, psb_i_base_vect_type interface function d_func_2d(x,y) result(val) import :: psb_dpk_ real(psb_dpk_), intent(in) :: x,y real(psb_dpk_) :: val end function d_func_2d end interface interface mld_gen_pde2d module procedure mld_d_gen_pde2d end interface mld_gen_pde2d contains function d_null_func_2d(x,y) result(val) real(psb_dpk_), intent(in) :: x,y real(psb_dpk_) :: val val = dzero end function d_null_func_2d ! ! subroutine to allocate and fill in the coefficient matrix and ! the rhs. ! subroutine mld_d_gen_pde2d(ictxt,idim,a,bv,xv,desc_a,afmt,& & a1,a2,b1,b2,c,g,info,f,amold,vmold,imold,partition,nrl,iv) use psb_base_mod use psb_util_mod ! ! Discretizes the partial differential equation ! ! a1 dd(u) a2 dd(u) b1 d(u) b2 d(u) ! - ------ - ------ + ----- + ------ + c u = f ! dxdx dydy dx dy ! ! with Dirichlet boundary conditions ! u = g ! ! on the unit square 0<=x,y<=1. ! ! ! Note that if b1=b2=c=0., the PDE is the Laplace equation. ! implicit none procedure(d_func_2d) :: b1,b2,c,a1,a2,g integer(psb_ipk_) :: idim type(psb_dspmat_type) :: a type(psb_d_vect_type) :: xv,bv type(psb_desc_type) :: desc_a integer(psb_ipk_) :: ictxt, info character(len=*) :: afmt procedure(d_func_2d), optional :: f class(psb_d_base_sparse_mat), optional :: amold class(psb_d_base_vect_type), optional :: vmold class(psb_i_base_vect_type), optional :: imold integer(psb_ipk_), optional :: partition, nrl,iv(:) ! Local variables. integer(psb_ipk_), parameter :: nb=20 type(psb_d_csc_sparse_mat) :: acsc type(psb_d_coo_sparse_mat) :: acoo type(psb_d_csr_sparse_mat) :: acsr real(psb_dpk_) :: zt(nb),x,y,z integer(psb_ipk_) :: m,n,nnz,nr,nt,glob_row,nlr,i,j,ii,ib,k, partition_ integer(psb_ipk_) :: ix,iy,iz,ia,indx_owner ! For 2D partition integer(psb_ipk_) :: npx,npy,npdims(2),iamx,iamy,mynx,myny integer(psb_ipk_), allocatable :: bndx(:),bndy(:) ! Process grid integer(psb_ipk_) :: np, iam integer(psb_ipk_) :: icoeff integer(psb_ipk_), allocatable :: irow(:),icol(:),myidx(:) real(psb_dpk_), allocatable :: val(:) ! deltah dimension of each grid cell ! deltat discretization time real(psb_dpk_) :: deltah, sqdeltah, deltah2 real(psb_dpk_), parameter :: rhs=0.e0,one=1.e0,zero=0.e0 real(psb_dpk_) :: t0, t1, t2, t3, tasb, talc, ttot, tgen, tcdasb integer(psb_ipk_) :: err_act procedure(d_func_2d), pointer :: f_ character(len=20) :: name, ch_err,tmpfmt info = psb_success_ name = 'create_matrix' call psb_erractionsave(err_act) call psb_info(ictxt, iam, np) if (present(f)) then f_ => f else f_ => d_null_func_2d end if deltah = 1.e0/(idim+2) sqdeltah = deltah*deltah deltah2 = 2.e0* deltah if (present(partition)) then if ((1<= partition).and.(partition <= 3)) then partition_ = partition else write(*,*) 'Invalid partition choice ',partition,' defaulting to 3' partition_ = 3 end if else partition_ = 3 end if ! initialize array descriptor and sparse matrix storage. provide an ! estimate of the number of non zeroes m = idim*idim n = m nnz = ((n*7)/(np)) if(iam == psb_root_) write(psb_out_unit,'("Generating Matrix (size=",i0,")...")')n select case(partition_) case(1) ! A BLOCK partition if (present(nrl)) then nr = nrl else ! ! Using a simple BLOCK distribution. ! nt = (m+np-1)/np nr = max(0,min(nt,m-(iam*nt))) end if nt = nr call psb_sum(ictxt,nt) if (nt /= m) then write(psb_err_unit,*) iam, 'Initialization error ',nr,nt,m info = -1 call psb_barrier(ictxt) call psb_abort(ictxt) return end if ! ! First example of use of CDALL: specify for each process a number of ! contiguous rows ! call psb_cdall(ictxt,desc_a,info,nl=nr) myidx = desc_a%get_global_indices() nlr = size(myidx) case(2) ! A partition defined by the user through IV if (present(iv)) then if (size(iv) /= m) then write(psb_err_unit,*) iam, 'Initialization error: wrong IV size',size(iv),m info = -1 call psb_barrier(ictxt) call psb_abort(ictxt) return end if else write(psb_err_unit,*) iam, 'Initialization error: IV not present' info = -1 call psb_barrier(ictxt) call psb_abort(ictxt) return end if ! ! Second example of use of CDALL: specify for each row the ! process that owns it ! call psb_cdall(ictxt,desc_a,info,vg=iv) myidx = desc_a%get_global_indices() nlr = size(myidx) case(3) ! A 2-dimensional partition ! A nifty MPI function will split the process list npdims = 0 call mpi_dims_create(np,2,npdims,info) npx = npdims(1) npy = npdims(2) allocate(bndx(0:npx),bndy(0:npy)) ! We can reuse idx2ijk for process indices as well. call idx2ijk(iamx,iamy,iam,npx,npy,base=0) ! Now let's split the 2D square in rectangles call dist1Didx(bndx,idim,npx) mynx = bndx(iamx+1)-bndx(iamx) call dist1Didx(bndy,idim,npy) myny = bndy(iamy+1)-bndy(iamy) ! How many indices do I own? nlr = mynx*myny allocate(myidx(nlr)) ! Now, let's generate the list of indices I own nr = 0 do i=bndx(iamx),bndx(iamx+1)-1 do j=bndy(iamy),bndy(iamy+1)-1 nr = nr + 1 call ijk2idx(myidx(nr),i,j,idim,idim) end do end do if (nr /= nlr) then write(psb_err_unit,*) iam,iamx,iamy, 'Initialization error: NR vs NLR ',& & nr,nlr,mynx,myny info = -1 call psb_barrier(ictxt) call psb_abort(ictxt) end if ! ! Third example of use of CDALL: specify for each process ! the set of global indices it owns. ! call psb_cdall(ictxt,desc_a,info,vl=myidx) case default write(psb_err_unit,*) iam, 'Initialization error: should not get here' info = -1 call psb_barrier(ictxt) call psb_abort(ictxt) return end select if (info == psb_success_) call psb_spall(a,desc_a,info,nnz=nnz) ! define rhs from boundary conditions; also build initial guess if (info == psb_success_) call psb_geall(xv,desc_a,info) if (info == psb_success_) call psb_geall(bv,desc_a,info) call psb_barrier(ictxt) talc = psb_wtime()-t0 if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='allocation rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! we build an auxiliary matrix consisting of one row at a ! time; just a small matrix. might be extended to generate ! a bunch of rows per call. ! allocate(val(20*nb),irow(20*nb),& &icol(20*nb),stat=info) if (info /= psb_success_ ) then info=psb_err_alloc_dealloc_ call psb_errpush(info,name) goto 9999 endif ! loop over rows belonging to current process in a block ! distribution. call psb_barrier(ictxt) t1 = psb_wtime() do ii=1, nlr,nb ib = min(nb,nlr-ii+1) icoeff = 1 do k=1,ib i=ii+k-1 ! local matrix pointer glob_row=myidx(i) ! compute gridpoint coordinates call idx2ijk(ix,iy,glob_row,idim,idim) ! x, y coordinates x = (ix-1)*deltah y = (iy-1)*deltah zt(k) = f_(x,y) ! internal point: build discretization ! ! term depending on (x-1,y) ! val(icoeff) = -a1(x,y)/sqdeltah-b1(x,y)/deltah2 if (ix == 1) then zt(k) = g(dzero,y)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix-2)*idim+iy irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y-1) val(icoeff) = -a2(x,y)/sqdeltah-b2(x,y)/deltah2 if (iy == 1) then zt(k) = g(x,dzero)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix-1)*idim+(iy-1) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x,y) val(icoeff)=2.e0*(a1(x,y) + a2(x,y))/sqdeltah + c(x,y) icol(icoeff) = (ix-1)*idim+iy irow(icoeff) = glob_row icoeff = icoeff+1 ! term depending on (x,y+1) val(icoeff)=-a2(x,y)/sqdeltah+b2(x,y)/deltah2 if (iy == idim) then zt(k) = g(x,done)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix-1)*idim+(iy+1) irow(icoeff) = glob_row icoeff = icoeff+1 endif ! term depending on (x+1,y) val(icoeff)=-a1(x,y)/sqdeltah+b1(x,y)/deltah2 if (ix==idim) then zt(k) = g(done,y)*(-val(icoeff)) + zt(k) else icol(icoeff) = (ix)*idim+(iy) irow(icoeff) = glob_row icoeff = icoeff+1 endif end do call psb_spins(icoeff-1,irow,icol,val,a,desc_a,info) if(info /= psb_success_) exit call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),bv,desc_a,info) if(info /= psb_success_) exit zt(:)=0.e0 call psb_geins(ib,myidx(ii:ii+ib-1),zt(1:ib),xv,desc_a,info) if(info /= psb_success_) exit end do tgen = psb_wtime()-t1 if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='insert rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if deallocate(val,irow,icol) call psb_barrier(ictxt) t1 = psb_wtime() call psb_cdasb(desc_a,info,mold=imold) tcdasb = psb_wtime()-t1 call psb_barrier(ictxt) t1 = psb_wtime() if (info == psb_success_) then if (present(amold)) then call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,mold=amold) else call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt) end if end if call psb_barrier(ictxt) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if if (info == psb_success_) call psb_geasb(xv,desc_a,info,mold=vmold) if (info == psb_success_) call psb_geasb(bv,desc_a,info,mold=vmold) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='asb rout.' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if tasb = psb_wtime()-t1 call psb_barrier(ictxt) ttot = psb_wtime() - t0 call psb_amx(ictxt,talc) call psb_amx(ictxt,tgen) call psb_amx(ictxt,tasb) call psb_amx(ictxt,ttot) if(iam == psb_root_) then tmpfmt = a%get_fmt() write(psb_out_unit,'("The matrix has been generated and assembled in ",a3," format.")')& & tmpfmt write(psb_out_unit,'("-allocation time : ",es12.5)') talc write(psb_out_unit,'("-coeff. gen. time : ",es12.5)') tgen write(psb_out_unit,'("-desc asbly time : ",es12.5)') tcdasb write(psb_out_unit,'("- mat asbly time : ",es12.5)') tasb write(psb_out_unit,'("-total time : ",es12.5)') ttot end if call psb_erractionrestore(err_act) return 9999 call psb_error_handler(ictxt,err_act) return end subroutine mld_d_gen_pde2d ! ! functions parametrizing the differential equation ! function b1(x,y) use psb_base_mod, only : psb_dpk_,done,dzero real(psb_dpk_) :: b1 real(psb_dpk_), intent(in) :: x,y b1=dzero end function b1 function b2(x,y) use psb_base_mod, only : psb_dpk_,done,dzero real(psb_dpk_) :: b2 real(psb_dpk_), intent(in) :: x,y b2=dzero end function b2 function c(x,y) use psb_base_mod, only : psb_dpk_,done,dzero real(psb_dpk_) :: c real(psb_dpk_), intent(in) :: x,y c=dzero end function c function a1(x,y) use psb_base_mod, only : psb_dpk_,done,dzero real(psb_dpk_) :: a1 real(psb_dpk_), intent(in) :: x,y a1=done end function a1 function a2(x,y) use psb_base_mod, only : psb_dpk_,done,dzero real(psb_dpk_) :: a2 real(psb_dpk_), intent(in) :: x,y a2=done end function a2 function g(x,y) use psb_base_mod, only : psb_dpk_, done, dzero real(psb_dpk_) :: g real(psb_dpk_), intent(in) :: x,y g = dzero if (x == done) then g = done else if (x == dzero) then g = exp(-y**2) end if end function g end module mld_d_pde2d_mod program mld_d_pde2d use psb_base_mod use mld_prec_mod use psb_krylov_mod use psb_util_mod use data_input use mld_d_pde2d_mod implicit none ! input parameters character(len=20) :: kmethd, ptype character(len=5) :: afmt integer(psb_ipk_) :: idim ! miscellaneous real(psb_dpk_) :: t1, t2, tprec, thier, tslv ! sparse matrix and preconditioner type(psb_dspmat_type) :: a type(mld_dprec_type) :: prec ! descriptor type(psb_desc_type) :: desc_a ! dense vectors type(psb_d_vect_type) :: x,b,r ! parallel environment integer(psb_ipk_) :: ictxt, iam, np ! solver parameters integer(psb_ipk_) :: iter, itmax,itrace, istopc, irst, nlv integer(psb_epk_) :: amatsize, precsize, descsize real(psb_dpk_) :: err, resmx, resmxp ! Krylov solver data type solverdata character(len=40) :: kmethd ! Krylov solver integer(psb_ipk_) :: istopc ! stopping criterion integer(psb_ipk_) :: itmax ! maximum number of iterations integer(psb_ipk_) :: itrace ! tracing integer(psb_ipk_) :: irst ! restart real(psb_dpk_) :: eps ! stopping tolerance end type solverdata type(solverdata) :: s_choice ! preconditioner data type precdata ! preconditioner type character(len=40) :: descr ! verbose description of the prec character(len=10) :: ptype ! preconditioner type integer(psb_ipk_) :: outer_sweeps ! number of outer sweeps: sweeps for 1-level, ! AMG cycles for ML ! general AMG data character(len=16) :: mlcycle ! AMG cycle type integer(psb_ipk_) :: maxlevs ! maximum number of levels in AMG preconditioner ! AMG aggregation character(len=16) :: aggr_prol ! aggregation type: SMOOTHED, NONSMOOTHED character(len=16) :: par_aggr_alg ! parallel aggregation algorithm: DEC, SYMDEC character(len=16) :: aggr_ord ! ordering for aggregation: NATURAL, DEGREE character(len=16) :: aggr_filter ! filtering: FILTER, NO_FILTER real(psb_dpk_) :: mncrratio ! minimum aggregation ratio real(psb_dpk_), allocatable :: athresv(:) ! smoothed aggregation threshold vector integer(psb_ipk_) :: thrvsz ! size of threshold vector real(psb_dpk_) :: athres ! smoothed aggregation threshold integer(psb_ipk_) :: csize ! minimum size of coarsest matrix ! AMG smoother or pre-smoother; also 1-lev preconditioner character(len=16) :: smther ! (pre-)smoother type: BJAC, AS integer(psb_ipk_) :: jsweeps ! (pre-)smoother / 1-lev prec. sweeps integer(psb_ipk_) :: novr ! number of overlap layers character(len=16) :: restr ! restriction over application of AS character(len=16) :: prol ! prolongation over application of AS character(len=16) :: solve ! local subsolver type: ILU, MILU, ILUT, ! UMF, MUMPS, SLU, FWGS, BWGS, JAC integer(psb_ipk_) :: fill ! fill-in for incomplete LU factorization real(psb_dpk_) :: thr ! threshold for ILUT factorization ! AMG post-smoother; ignored by 1-lev preconditioner character(len=16) :: smther2 ! post-smoother type: BJAC, AS integer(psb_ipk_) :: jsweeps2 ! post-smoother sweeps integer(psb_ipk_) :: novr2 ! number of overlap layers character(len=16) :: restr2 ! restriction over application of AS character(len=16) :: prol2 ! prolongation over application of AS character(len=16) :: solve2 ! local subsolver type: ILU, MILU, ILUT, ! UMF, MUMPS, SLU, FWGS, BWGS, JAC integer(psb_ipk_) :: fill2 ! fill-in for incomplete LU factorization real(psb_dpk_) :: thr2 ! threshold for ILUT factorization ! coarsest-level solver character(len=16) :: cmat ! coarsest matrix layout: REPL, DIST character(len=16) :: csolve ! coarsest-lev solver: BJAC, SLUDIST (distr. ! mat.); UMF, MUMPS, SLU, ILU, ILUT, MILU ! (repl. mat.) character(len=16) :: csbsolve ! coarsest-lev local subsolver: ILU, ILUT, ! MILU, UMF, MUMPS, SLU integer(psb_ipk_) :: cfill ! fill-in for incomplete LU factorization real(psb_dpk_) :: cthres ! threshold for ILUT factorization integer(psb_ipk_) :: cjswp ! sweeps for GS or JAC coarsest-lev subsolver end type precdata type(precdata) :: p_choice ! other variables integer(psb_ipk_) :: info, i, k character(len=20) :: name,ch_err info=psb_success_ call psb_init(ictxt) call psb_info(ictxt,iam,np) if (iam < 0) then ! This should not happen, but just in case call psb_exit(ictxt) stop endif if(psb_get_errstatus() /= 0) goto 9999 name='mld_d_pde2d' call psb_set_errverbosity(itwo) ! ! Hello world ! if (iam == psb_root_) then write(*,*) 'Welcome to MLD2P4 version: ',mld_version_string_ write(*,*) 'This is the ',trim(name),' sample program' end if ! ! get parameters ! call get_parms(ictxt,afmt,idim,s_choice,p_choice) ! ! allocate and fill in the coefficient matrix, rhs and initial guess ! call psb_barrier(ictxt) t1 = psb_wtime() call mld_gen_pde2d(ictxt,idim,a,b,x,desc_a,afmt,& & a1,a2,b1,b2,c,g,info) call psb_barrier(ictxt) t2 = psb_wtime() - t1 if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='mld_gen_pde2d' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if if (iam == psb_root_) & & write(psb_out_unit,'("Overall matrix creation time : ",es12.5)')t2 if (iam == psb_root_) & & write(psb_out_unit,'(" ")') ! ! initialize the preconditioner ! call prec%init(p_choice%ptype,info) select case(trim(psb_toupper(p_choice%ptype))) case ('NONE','NOPREC') ! Do nothing, keep defaults case ('JACOBI','GS','FWGS','FBGS') ! 1-level sweeps from "outer_sweeps" call prec%set('smoother_sweeps', p_choice%jsweeps, info) case ('BJAC') call prec%set('smoother_sweeps', p_choice%jsweeps, info) call prec%set('sub_solve', p_choice%solve, info) call prec%set('sub_fillin', p_choice%fill, info) call prec%set('sub_iluthrs', p_choice%thr, info) case('AS') call prec%set('smoother_sweeps', p_choice%jsweeps, info) call prec%set('sub_ovr', p_choice%novr, info) call prec%set('sub_restr', p_choice%restr, info) call prec%set('sub_prol', p_choice%prol, info) call prec%set('sub_solve', p_choice%solve, info) call prec%set('sub_fillin', p_choice%fill, info) call prec%set('sub_iluthrs', p_choice%thr, info) case ('ML') ! multilevel preconditioner call prec%set('ml_cycle', p_choice%mlcycle, info) call prec%set('outer_sweeps', p_choice%outer_sweeps,info) if (p_choice%csize>0)& & call prec%set('min_coarse_size', p_choice%csize, info) if (p_choice%mncrratio>1)& & call prec%set('min_cr_ratio', p_choice%mncrratio, info) if (p_choice%maxlevs>0)& & call prec%set('max_levs', p_choice%maxlevs, info) if (p_choice%athres >= dzero) & & call prec%set('aggr_thresh', p_choice%athres, info) if (p_choice%thrvsz>0) then do k=1,min(p_choice%thrvsz,size(prec%precv)-1) call prec%set('aggr_thresh', p_choice%athresv(k), info,ilev=(k+1)) end do end if call prec%set('aggr_prol', p_choice%aggr_prol, info) call prec%set('par_aggr_alg', p_choice%par_aggr_alg, info) call prec%set('aggr_ord', p_choice%aggr_ord, info) call prec%set('aggr_filter', p_choice%aggr_filter,info) call prec%set('smoother_type', p_choice%smther, info) call prec%set('smoother_sweeps', p_choice%jsweeps, info) select case (psb_toupper(p_choice%smther)) case ('GS','BWGS','FBGS','JACOBI') ! do nothing case default call prec%set('sub_ovr', p_choice%novr, info) call prec%set('sub_restr', p_choice%restr, info) call prec%set('sub_prol', p_choice%prol, info) call prec%set('sub_solve', p_choice%solve, info) call prec%set('sub_fillin', p_choice%fill, info) call prec%set('sub_iluthrs', p_choice%thr, info) end select if (psb_toupper(p_choice%smther2) /= 'NONE') then call prec%set('smoother_type', p_choice%smther2, info,pos='post') call prec%set('smoother_sweeps', p_choice%jsweeps2, info,pos='post') select case (psb_toupper(p_choice%smther2)) case ('GS','BWGS','FBGS','JACOBI') ! do nothing case default call prec%set('sub_ovr', p_choice%novr2, info,pos='post') call prec%set('sub_restr', p_choice%restr2, info,pos='post') call prec%set('sub_prol', p_choice%prol2, info,pos='post') call prec%set('sub_solve', p_choice%solve2, info,pos='post') call prec%set('sub_fillin', p_choice%fill2, info,pos='post') call prec%set('sub_iluthrs', p_choice%thr2, info,pos='post') end select end if call prec%set('coarse_solve', p_choice%csolve, info) if (psb_toupper(p_choice%csolve) == 'BJAC') & & call prec%set('coarse_subsolve', p_choice%csbsolve, info) call prec%set('coarse_mat', p_choice%cmat, info) call prec%set('coarse_fillin', p_choice%cfill, info) call prec%set('coarse_iluthrs', p_choice%cthres, info) call prec%set('coarse_sweeps', p_choice%cjswp, info) end select ! build the preconditioner call psb_barrier(ictxt) t1 = psb_wtime() call prec%hierarchy_build(a,desc_a,info) thier = psb_wtime()-t1 if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='mld_hierarchy_bld') goto 9999 end if call psb_barrier(ictxt) t1 = psb_wtime() call prec%smoothers_build(a,desc_a,info) tprec = psb_wtime()-t1 if (info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='mld_smoothers_bld') goto 9999 end if call psb_amx(ictxt, thier) call psb_amx(ictxt, tprec) if(iam == psb_root_) then write(psb_out_unit,'(" ")') write(psb_out_unit,'("Preconditioner: ",a)') trim(p_choice%descr) write(psb_out_unit,'("Preconditioner time: ",es12.5)')thier+tprec write(psb_out_unit,'(" ")') end if ! ! iterative method parameters ! call psb_barrier(ictxt) t1 = psb_wtime() call psb_krylov(s_choice%kmethd,a,prec,b,x,s_choice%eps,& & desc_a,info,itmax=s_choice%itmax,iter=iter,err=err,itrace=s_choice%itrace,& & istop=s_choice%istopc,irst=s_choice%irst) call psb_barrier(ictxt) tslv = psb_wtime() - t1 call psb_amx(ictxt,tslv) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='solver routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_barrier(ictxt) tslv = psb_wtime() - t1 call psb_amx(ictxt,tslv) ! compute residual norms call psb_geall(r,desc_a,info) call r%zero() call psb_geasb(r,desc_a,info) call psb_geaxpby(done,b,dzero,r,desc_a,info) call psb_spmm(-done,a,x,done,r,desc_a,info) resmx = psb_genrm2(r,desc_a,info) resmxp = psb_geamax(r,desc_a,info) amatsize = a%sizeof() descsize = desc_a%sizeof() precsize = prec%sizeof() call psb_sum(ictxt,amatsize) call psb_sum(ictxt,descsize) call psb_sum(ictxt,precsize) call prec%descr(iout=psb_out_unit) if (iam == psb_root_) then write(psb_out_unit,'("Computed solution on ",i8," processors")') np write(psb_out_unit,'("Krylov method : ",a)') trim(s_choice%kmethd) write(psb_out_unit,'("Preconditioner : ",a)') trim(p_choice%descr) write(psb_out_unit,'("Iterations to convergence : ",i12)') iter write(psb_out_unit,'("Relative error estimate on exit : ",es12.5)') err write(psb_out_unit,'("Number of levels in hierarchy : ",i12)') prec%get_nlevs() write(psb_out_unit,'("Time to build hierarchy : ",es12.5)') thier write(psb_out_unit,'("Time to build smoothers : ",es12.5)') tprec write(psb_out_unit,'("Total time for preconditioner : ",es12.5)') tprec+thier write(psb_out_unit,'("Time to solve system : ",es12.5)') tslv write(psb_out_unit,'("Time per iteration : ",es12.5)') tslv/iter write(psb_out_unit,'("Total time : ",es12.5)') tslv+tprec+thier write(psb_out_unit,'("Residual 2-norm : ",es12.5)') resmx write(psb_out_unit,'("Residual inf-norm : ",es12.5)') resmxp write(psb_out_unit,'("Total memory occupation for A : ",i12)') amatsize write(psb_out_unit,'("Total memory occupation for DESC_A : ",i12)') descsize write(psb_out_unit,'("Total memory occupation for PREC : ",i12)') precsize write(psb_out_unit,'("Storage format for A : ",a )') a%get_fmt() write(psb_out_unit,'("Storage format for DESC_A : ",a )') desc_a%get_fmt() end if ! ! cleanup storage and exit ! call psb_gefree(b,desc_a,info) call psb_gefree(x,desc_a,info) call psb_spfree(a,desc_a,info) call prec%free(info) call psb_cdfree(desc_a,info) if(info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='free routine' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_exit(ictxt) stop 9999 continue call psb_error(ictxt) contains ! ! get iteration parameters from standard input ! ! ! get iteration parameters from standard input ! subroutine get_parms(icontxt,afmt,idim,solve,prec) use psb_base_mod implicit none integer(psb_ipk_) :: icontxt, idim character(len=*) :: afmt type(solverdata) :: solve type(precdata) :: prec integer(psb_ipk_) :: iam, nm, np, inp_unit character(len=1024) :: filename call psb_info(icontxt,iam,np) if (iam == psb_root_) then if (command_argument_count()>0) then call get_command_argument(1,filename) inp_unit = 30 open(inp_unit,file=filename,action='read',iostat=info) if (info /= 0) then write(psb_err_unit,*) 'Could not open file ',filename,' for input' call psb_abort(icontxt) stop else write(psb_err_unit,*) 'Opened file ',trim(filename),' for input' end if else inp_unit=psb_inp_unit end if ! read input data ! call read_data(afmt,inp_unit) ! matrix storage format call read_data(idim,inp_unit) ! Discretization grid size ! Krylov solver data call read_data(solve%kmethd,inp_unit) ! Krylov solver call read_data(solve%istopc,inp_unit) ! stopping criterion call read_data(solve%itmax,inp_unit) ! max num iterations call read_data(solve%itrace,inp_unit) ! tracing call read_data(solve%irst,inp_unit) ! restart call read_data(solve%eps,inp_unit) ! tolerance ! preconditioner type call read_data(prec%descr,inp_unit) ! verbose description of the prec call read_data(prec%ptype,inp_unit) ! preconditioner type ! First smoother / 1-lev preconditioner call read_data(prec%smther,inp_unit) ! smoother type call read_data(prec%jsweeps,inp_unit) ! (pre-)smoother / 1-lev prec sweeps call read_data(prec%novr,inp_unit) ! number of overlap layers call read_data(prec%restr,inp_unit) ! restriction over application of AS call read_data(prec%prol,inp_unit) ! prolongation over application of AS call read_data(prec%solve,inp_unit) ! local subsolver call read_data(prec%fill,inp_unit) ! fill-in for incomplete LU call read_data(prec%thr,inp_unit) ! threshold for ILUT ! Second smoother/ AMG post-smoother (if NONE ignored in main) call read_data(prec%smther2,inp_unit) ! smoother type call read_data(prec%jsweeps2,inp_unit) ! (post-)smoother sweeps call read_data(prec%novr2,inp_unit) ! number of overlap layers call read_data(prec%restr2,inp_unit) ! restriction over application of AS call read_data(prec%prol2,inp_unit) ! prolongation over application of AS call read_data(prec%solve2,inp_unit) ! local subsolver call read_data(prec%fill2,inp_unit) ! fill-in for incomplete LU call read_data(prec%thr2,inp_unit) ! threshold for ILUT ! general AMG data call read_data(prec%mlcycle,inp_unit) ! AMG cycle type call read_data(prec%outer_sweeps,inp_unit) ! number of 1lev/outer sweeps call read_data(prec%maxlevs,inp_unit) ! max number of levels in AMG prec call read_data(prec%csize,inp_unit) ! min size coarsest mat ! aggregation call read_data(prec%aggr_prol,inp_unit) ! aggregation type call read_data(prec%par_aggr_alg,inp_unit) ! parallel aggregation alg call read_data(prec%aggr_ord,inp_unit) ! ordering for aggregation call read_data(prec%aggr_filter,inp_unit) ! filtering call read_data(prec%mncrratio,inp_unit) ! minimum aggregation ratio call read_data(prec%thrvsz,inp_unit) ! size of aggr thresh vector if (prec%thrvsz > 0) then call psb_realloc(prec%thrvsz,prec%athresv,info) call read_data(prec%athresv,inp_unit) ! aggr thresh vector else read(inp_unit,*) ! dummy read to skip a record end if call read_data(prec%athres,inp_unit) ! smoothed aggr thresh ! coasest-level solver call read_data(prec%csolve,inp_unit) ! coarsest-lev solver call read_data(prec%csbsolve,inp_unit) ! coarsest-lev subsolver call read_data(prec%cmat,inp_unit) ! coarsest mat layout call read_data(prec%cfill,inp_unit) ! fill-in for incompl LU call read_data(prec%cthres,inp_unit) ! Threshold for ILUT call read_data(prec%cjswp,inp_unit) ! sweeps for GS/JAC subsolver if (inp_unit /= psb_inp_unit) then close(inp_unit) end if end if call psb_bcast(icontxt,afmt) call psb_bcast(icontxt,idim) call psb_bcast(icontxt,solve%kmethd) call psb_bcast(icontxt,solve%istopc) call psb_bcast(icontxt,solve%itmax) call psb_bcast(icontxt,solve%itrace) call psb_bcast(icontxt,solve%irst) call psb_bcast(icontxt,solve%eps) call psb_bcast(icontxt,prec%descr) call psb_bcast(icontxt,prec%ptype) ! broadcast first (pre-)smoother / 1-lev prec data call psb_bcast(icontxt,prec%smther) call psb_bcast(icontxt,prec%jsweeps) call psb_bcast(icontxt,prec%novr) call psb_bcast(icontxt,prec%restr) call psb_bcast(icontxt,prec%prol) call psb_bcast(icontxt,prec%solve) call psb_bcast(icontxt,prec%fill) call psb_bcast(icontxt,prec%thr) ! broadcast second (post-)smoother call psb_bcast(icontxt,prec%smther2) call psb_bcast(icontxt,prec%jsweeps2) call psb_bcast(icontxt,prec%novr2) call psb_bcast(icontxt,prec%restr2) call psb_bcast(icontxt,prec%prol2) call psb_bcast(icontxt,prec%solve2) call psb_bcast(icontxt,prec%fill2) call psb_bcast(icontxt,prec%thr2) ! broadcast AMG parameters call psb_bcast(icontxt,prec%mlcycle) call psb_bcast(icontxt,prec%outer_sweeps) call psb_bcast(icontxt,prec%maxlevs) call psb_bcast(icontxt,prec%aggr_prol) call psb_bcast(icontxt,prec%par_aggr_alg) call psb_bcast(icontxt,prec%aggr_ord) call psb_bcast(icontxt,prec%aggr_filter) call psb_bcast(icontxt,prec%mncrratio) call psb_bcast(ictxt,prec%thrvsz) if (prec%thrvsz > 0) then if (iam /= psb_root_) call psb_realloc(prec%thrvsz,prec%athresv,info) call psb_bcast(ictxt,prec%athresv) end if call psb_bcast(ictxt,prec%athres) call psb_bcast(icontxt,prec%csize) call psb_bcast(icontxt,prec%cmat) call psb_bcast(icontxt,prec%csolve) call psb_bcast(icontxt,prec%csbsolve) call psb_bcast(icontxt,prec%cfill) call psb_bcast(icontxt,prec%cthres) call psb_bcast(icontxt,prec%cjswp) end subroutine get_parms end program mld_d_pde2d