!!$ !!$ !!$ MLD2P4 version 2.0 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.0) !!$ !!$ (C) Copyright 2008,2009,2010,2012 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_daggrmat_nosmth_asb.F90 ! ! Subroutine: mld_daggrmat_nosmth_asb ! Version: real ! ! This routine builds a coarse-level matrix A_C from a fine-level matrix A ! by using the Galerkin approach, i.e. ! ! A_C = P_C^T A P_C, ! ! where P_C is the piecewise constant interpolation operator corresponding ! the fine-to-coarse level mapping built by mld_aggrmap_bld. ! ! The coarse-level matrix A_C is distributed among the parallel processes or ! replicated on each of them, according to the value of p%parms%coarse_mat ! specified by the user through mld_dprecinit and mld_zprecset. ! ! For details see ! P. D'Ambra, D. di Serafino and S. Filippone, On the development of ! PSBLAS-based parallel two-level Schwarz preconditioners, Appl. Num. Math., ! 57 (2007), 1181-1196. ! ! ! ! Arguments: ! a - type(psb_dspmat_type), input. ! The sparse matrix structure containing the local part of ! the fine-level matrix. ! desc_a - type(psb_desc_type), input. ! The communication descriptor of the fine-level matrix. ! p - type(mld_d_onelev_type), input/output. ! The 'one-level' data structure that will contain the local ! part of the matrix to be built as well as the information ! concerning the prolongator and its transpose. ! ilaggr - integer, dimension(:), allocatable. ! The mapping between the row indices of the coarse-level ! matrix and the row indices of the fine-level matrix. ! ilaggr(i)=j means that node i in the adjacency graph ! of the fine-level matrix is mapped onto node j in the ! adjacency graph of the coarse-level matrix. ! nlaggr - integer, dimension(:), allocatable. ! nlaggr(i) contains the aggregates held by process i. ! info - integer, output. ! Error code. ! subroutine mld_daggrmat_nosmth_asb(a,desc_a,ilaggr,nlaggr,parms,ac,op_prol,op_restr,info) use psb_base_mod use mld_d_inner_mod, mld_protect_name => mld_daggrmat_nosmth_asb implicit none ! Arguments type(psb_dspmat_type), intent(in) :: a type(psb_desc_type), intent(in) :: desc_a integer, intent(inout) :: ilaggr(:), nlaggr(:) type(mld_dml_parms), intent(inout) :: parms type(psb_dspmat_type), intent(out) :: ac,op_prol,op_restr integer, intent(out) :: info ! Local variables integer :: ictxt,np,me, err_act integer(psb_mpik_) :: icomm, ndx, minfo character(len=20) :: name integer(psb_ipk_) :: ierr(5) type(psb_d_coo_sparse_mat) :: ac_coo, acoo type(psb_d_csr_sparse_mat) :: acsr1, acsr2 integer :: debug_level, debug_unit integer :: nrow, nglob, ncol, ntaggr, nzl, ip, & & naggr, nzt, naggrm1, i name='mld_aggrmat_nosmth_asb' if(psb_get_errstatus().ne.0) return info=psb_success_ call psb_erractionsave(err_act) ictxt = desc_a%get_context() icomm = desc_a%get_mpic() call psb_info(ictxt, me, np) nglob = desc_a%get_global_rows() nrow = desc_a%get_local_rows() ncol = desc_a%get_local_cols() naggr = nlaggr(me+1) ntaggr = sum(nlaggr) naggrm1=sum(nlaggr(1:me)) do i=1, nrow ilaggr(i) = ilaggr(i) + naggrm1 end do call psb_halo(ilaggr,desc_a,info) if(info /= psb_success_) then call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_halo') goto 9999 end if call acoo%allocate(ncol,ntaggr,ncol) do i=1,nrow acoo%val(i) = done acoo%ia(i) = i acoo%ja(i) = ilaggr(i) end do call acoo%set_dupl(psb_dupl_add_) call acoo%set_nzeros(nrow) call acoo%set_asb() call acoo%fix(info) call op_prol%mv_from(acoo) call op_prol%cscnv(info,type='csr',dupl=psb_dupl_add_) if (info == psb_success_) call op_prol%transp(op_restr) call a%csclip(ac_coo,info,jmax=nrow) nzt = ac_coo%get_nzeros() do i=1, nzt ac_coo%ia(i) = ilaggr(ac_coo%ia(i)) ac_coo%ja(i) = ilaggr(ac_coo%ja(i)) enddo call ac_coo%set_nrows(naggr) call ac_coo%set_ncols(naggr) call ac_coo%set_dupl(psb_dupl_add_) call ac_coo%fix(info) call ac%mv_from(ac_coo) call psb_erractionrestore(err_act) return 9999 continue call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine mld_daggrmat_nosmth_asb