\section{User Interface\label{sec:userinterface}} \markboth{\textsc{MLD2P4 User's and Reference Guide}} {\textsc{\ref{sec:userinterface} User Interface}} The basic user interface of MLD2P4 consists of eight routines. The six routines \verb|init|, \verb|set|, \verb|hierarchy_build|, \verb|smoothers_build|, \verb|bld|, and \verb|apply| encapsulate all the functionalities for the setup and the application of any multi-level and one-level preconditioner implemented in the package. The routine \verb|free| deallocates the preconditioner data structure, while \verb|descr| prints a description of the preconditioner setup by the user. All the routines are available as methods of the preconditioner object. For each routine, the same user interface is overloaded with respect to the real/ complex case and the single/double precision; arguments with appropriate data types must be passed to the routine, i.e., \begin{itemize} \item the sparse matrix data structure, containing the matrix to be preconditioned, must be of type \verb|psb_|\emph{x}\verb|spmat_type| with \emph{x} = \verb|s| for real single precision, \emph{x} = \verb|d| for real double precision, \emph{x} = \verb|c| for complex single precision, \emph{x} = \verb|z| for complex double precision; \item the preconditioner data structure must be of type \verb|mld_|\emph{x}\verb|prec_type|, with \emph{x} = \verb|s|, \verb|d|, \verb|c|, \verb|z|, according to the sparse matrix data structure; \item the arrays containing the vectors $v$ and $w$ involved in the preconditioner application $w=M^{-1}v$ must be of type \verb|psb_|\emph{x}\verb|vect_type| with \emph{x} = \verb|s|, \verb|d|, \verb|c|, \verb|z|, in a manner completely analogous to the sparse matrix type; \item real parameters defining the preconditioner must be declared according to the precision of the sparse matrix and preconditioner data structures (see Section~\ref{sec:precset}). \end{itemize} A description of each routine is given in the remainder of this section. \clearpage \subsection{Subroutine init\label{sec:precinit}} \begin{center} \verb|call p%init(ptype,info)| \end{center} \noindent This routine allocates and initializes the preconditioner \verb|p|, according to the preconditioner type chosen by the user. {\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip \begin{tabular}{p{1.2cm}p{12cm}} %\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ % & The preconditioner data structure. Note that \emph{x} % must be chosen according to the real/complex, single/double % precision version of MLD2P4 under use.\\ \verb|ptype| & \verb|character(len=*), intent(in)|.\\ & The type of preconditioner. Its values are specified in Table~\ref{tab:precinit}.\\ & Note that the strings are case insensitive.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ %\verb|nlev| & \verb|integer, optional, intent(in)|.\\ % & The number of levels of the multi-level % preconditioner. This optional argument is deprecated, % new codes should set the number of levels with \verb|mld_precset|.\\ % If \verb|nlev| is not present and \verb|ptype|=\verb|'ML'|, \verb|'ml'|, % then \verb|nlev|=2 is assumed. Otherwise, \verb|nlev| is ignored.\\ \end{tabular} \vskip1.5\baselineskip For compatibility with the previous versions of MLD2P4, this routine can be also invoked as follows: \begin{center} \verb|call mld_precinit(p,ptype,info)| \end{center} \clearpage \subsection{Subroutine set\label{sec:precset}} \begin{center} \verb|call p%set(what,val,info [,ilev, ilmax, pos])| \end{center} \noindent This routine sets the parameters defining the preconditioner \verb|p|. More precisely, the parameter identified by \verb|what| is assigned the value contained in \verb|val|. {\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip \begin{tabular}{p{1.2cm}p{12cm}} %\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ % & The preconditioner data structure. Note that \emph{x} must % be chosen according to the real/complex, single/double precision % version of MLD2P4 under use.\\ \verb|what| & \verb|character(len=*)|. \\ & The parameter to be set. It can be specified by a predefined constant, or through its name; the string is case-insensitive. See also Tables~\ref{tab:p_cycle}-\ref{tab:p_smoother_1}.\\ \verb|val | & \verb|integer| \emph{or} \verb|character(len=*)| \emph{or} \verb|real(psb_spk_)| \emph{or} \verb|real(psb_dpk_)|, \verb|intent(in)|.\\ & The value of the parameter to be set. The list of allowed values and the corresponding data types is given in Tables~\ref{tab:p_cycle}-\ref{tab:p_smoother_1}. When the value is of type \verb|character(len=*)|, it is also treated as case insensitive.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|ilev| & \verb|integer, optional, intent(in)|.\\ & For the multi-level preconditioner, the level at which the preconditioner parameter has to be set. The levels are numbered in increasing order starting from the finest one, i.e., level 1 is the finest level. If \verb|ilev| is not present, the parameter identified by \verb|what| is set at all the appropriate levels (see Tables~\ref{tab:p_cycle}-\ref{tab:p_smoother_1}).\\ \verb|ilmax| & \verb|integer, optional, intent(in)|.\\ & For the multi-level preconditioner, when both \verb|ilev| and \verb|ilmax| are present, the settings are applied at all levels \verb|ilev:ilmax|. When \verb|ilev| is present but \verb|ilmax| is not, then the default is \verb|ilmax=ilev|. The levels are numbered in increasing order starting from the finest one, i.e., level 1 is the finest level. \\ \verb|pos| & \verb|charater(len=*), optional, intent(in)|.\\ & Whether the other arguments apply only to the pre-smoother (\verb|'PRE'|) or to the post-smoother (\verb|'POST'|). If \verb|pos| is not present, the other arguments are applied to both smoothers. If the preconditioner is one-level or the parameter identified by \verb|what| does not concern the smoothers, \verb|pos| is ignored. \end{tabular} \vskip1.5\baselineskip For compatibility with the previous versions of MLD2P4, this routine can be also invoked as follows: \begin{center} \verb|call mld_precset(p,what,val,info)| \end{center} \noindent However, in this case the optional arguments \verb|ilev|, \verb|ilmax|, and \verb|pos| cannot be used. \\ A variety of preconditioners can be obtained by a suitable setting of the preconditioner parameters. These parameters can be logically divided into four groups, i.e., parameters defining \begin{enumerate} \item the type of multi-level cycle and how many cycles must be applied; \item the aggregation algorithm; \item the coarse-space correction at the coarsest level (for multi-level preconditioners only); \item the smoother of the multi-level preconditioners, or the one-level preconditioner. \end{enumerate} A list of the parameters that can be set, along with their allowed and default values, is given in Tables~\ref{tab:p_cycle}-\ref{tab:p_smoother_1}. For a description of the meaning of the parameters, please refer also to Section~\ref{sec:background}. \\ \textbf{Remark 2.} A smoother is usually obtained by combining two objects: a smoother (\verb|SMOOTHER_TYPE|) and a local solver (\verb|SUB_SOLVE|), as specified in Tables~\ref{tab:p_smoother}-\ref{tab:p_smoother_1}. For example, the block-Jacobi smoother using ILU(0) on the blocks is obtained by combining the block-Jacobi smoother object with the ILU(0) solver object. Similarly, the hybrid Gauss-Seidel smoother (see Note in Table~\ref{tab:p_smoother}) is obtained by combining the block-Jacobi smoother object with a single sweep of the Gauss-Seidel solver object, while the point-Jacobi smoother is the result of combining the block-Jacobi smoother object with a single sweep of the pointwise-Jacobi solver object. However, for simplicity, shortcuts are provided to set point-Jacobi, hybrid (forward) Gauss-Seidel, and hybrid backward Gauss-Seidel, i.e., the previous smoothers can be defined by setting only \verb|SMOOTHER_TYPE| to appropriate values (see Tables~\ref{tab:p_smoother}), i.e., without setting \verb|SUB_SOLVE| too. The smoother and solver objects are arranged in a hierarchical manner. When specifying a smoother object, its parameters, including the local solver, are set to their default values, and when a solver object is specified, its defaults are also set, overriding in both cases any previous settings even if explicitly specified. Therefore if the user sets a smoother, and wishes to use a solver different from the default one, the call to set the solver must come \emph{after} the call to set the smoother. Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi coarsest-level solvers, and shortcuts are available in this case too (see Table~\ref{tab:p_coarse}). \\ \textbf{Remark 3.} In general, a coarsest-level solver cannot be used with both the replicated and distributed coarsest-matrix layout; therefore, setting the solver after the layout may change the layout. Similarly, setting the layout after the solver may change the solver. More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be replicated, while SuperLU\_Dist requires it to be distributed. In these cases, setting the coarsest-level solver implies that the layout is redefined according to the solver, ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel and block-Jacobi can be applied to replicated and distributed matrices, thus their choice does not modify any previously specified layout. It is worth noting that, when the matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers reduce to the corresponding local solver objects (see Remark~2). For the point-Jacobi and Gauss-Seidel solvers, these objects correspond to a \emph{single} point-Jacobi sweep and a \emph{single} Gauss-Seidel sweep, respectively, which are very poor solvers. On the other hand, the distributed layout can be used with any solver but UMFPACK and SuperLU; therefore, if any of these two solvers has already been selected, the coarsest-level solver is changed to block-Jacobi, with the previously chosen solver applied to the local blocks. Likewise, the replicated layout can be used with any solver but SuperLu\_Dist; therefore, if SuperLu\_Dist has been previously set, the coarsest-level solver is changed to the default sequential solver. %The \verb|what,val| pairs described here are those of the predefined %moother/solver objects; newly developed solvers may define new pairs %according to their needs. \bsideways \begin{center} %\begin{tabular}{|p{5cm}|l|p{2.4cm}|p{2.5cm}|p{5cm}|} \begin{tabular}{|p{3.6cm}|l|p{2.4cm}|p{2.4cm}|p{7.2cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{type of the multi-level preconditioner}}\\ \hline %\verb|mld_ml_cycle_| \par \verb|ML_CYCLE| & \verb|character(len=*)| & \texttt{'VCYCLE'} \par \texttt{'WCYCLE'} \par \texttt{'KCYCLE'} \par \texttt{'MULT'} \par \texttt{'ADD'} & \texttt{'VCYCLE'} &Multi-level cycle: V-cycle, W-cycle, K-cycle, hybrid Multiplicative Schwarz, and Additive Schwarz. \par Note that hybrid Multiplicative Schwarz is equivalent to V-cycle and is included for compatibility with previous versions of MLD2P4. \\ \hline %\verb|mld_outer_sweeps_| \par \verb|OUTER_SWEEPS| & \texttt{integer} & Any integer \par number $\ge 1$ & 1 & Number of multi-level cycles. \\ \hline %\verb|mld_smoother_type_| \par \verb|SMOOTHER_TYPE| & \verb|character(len=*)| % & \texttt{'JACOBI'} \ \ \ \texttt{'BJAC'} \ \ \ \texttt{'AS'} % & \texttt{'AS'} % & Basic predefined one-level preconditioner % (i.e., smoother): Jacobi, block Jacobi, AS. \\ \hline %\verb|mld_smoother_pos_| \par \verb|SMOOTHER_POS| & \verb|character(len=*)| % & \texttt{'PRE'} \ \ \ \texttt{'POST'} \ \ \ \texttt{'TWOSIDE'} % & \texttt{'TWOSIDE'} % & ``Position'' of the smoother: pre-smoother, post-smoother, % pre- and post-smoother. \\ %\hline \end{tabular} \end{center} \caption{Parameters defining the multi-level cycle and the number of cycles to be applied. \label{tab:p_cycle}} \esideways \bsideways \begin{center} %\begin{tabular}{|p{5cm}|l|p{2.4cm}|p{2.5cm}|p{5cm}|} \begin{tabular}{|p{3.9cm}|l|p{2.3cm}|p{2.9cm}|p{6.9cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{aggregation algorithm}} \\ \hline %\verb|mld_min_coarse_size_| \par \verb|MIN_COARSE_SIZE| & \verb|integer| & Any number \par $> 0$ & $\lfloor 40 \sqrt[3]{n} \rfloor$, where $n$ is the dimension of the matrix at the finest level & Coarse size threshold. The aggregation stops if the global number of variables of the computed coarsest matrix is lower than or equal to this threshold (see Note). % or \par % the coarsening ratio is lower than or equal to % its value (see \verb|mld_min_aggr_ratio_|), or \par % the maximum number of levels is reached % (see \verb|mld_n_prec_levs_|). \\ \hline %\verb|mld_min_cr_ratio_| \par \verb|MIN_CR_RATIO| & \verb|real| & Any number \par $> 1$ & 1.5 & Minimum coarsening ratio. The aggregation stops if the ratio between the matrix dimensions at two consecutive levels is lower than or equal to this threshold (see Note).\\ \hline %\verb|mld_max_levs_| \par \verb|MAX_LEVS| & \verb|integer| & Any integer \par number $> 1$ & 20 & Maximum number of levels. The aggregation stops if the number of levels reaches this value (see Note). \\ \hline %\verb|mld_par_aggr_alg_| \par \verb|PAR_AGGR| & \verb|character(len=*)| \hspace*{-3mm} & \texttt{'DEC'}, \texttt{'SYMDEC'} & \texttt{'DEC'} & Parallel aggregation algorithm. \par Currently, only the decoupled aggregation (\verb|DEC|) is available; the \verb|SYMDEC| option applies decoupled aggregation to the sparsity pattern of $A+A^T$.\\ \hline %\verb|mld_aggr_type_| \par \verb|AGGR_TYPE| & \verb|character(len=*)| \hspace*{-3mm} & \textbf{\texttt{'VMB'}} & \textbf{\texttt{'VMB'}} & Type of aggregation algorithm: currently, the scalar aggregation algorithm by Van\v{e}k, Mandel and Brezina is implemented \cite{VANEK_MANDEL_BREZINA}. \\ \hline %\verb|mld_aggr_prol_| \par \verb|AGGR_PROL| & \verb|character(len=*)| \hspace*{-3mm} & \texttt{'SMOOTHED'}, \texttt{'UNSMOOTHED'} & \texttt{'SMOOTHED'} & Prolongator used by the aggregation algorithm: smoothed or unsmoothed (i.e., tentative prolongator). \\ \hline \multicolumn{5}{|l|}{{\bfseries Note.} The aggregation algorithm stops when at least one of the following criteria is met: the coarse size threshold, the} \\ \multicolumn{5}{|l|}{maximum coarsening ratio, or the maximum number of levels is reached. Therefore, the actual number of levels may be} \\ \multicolumn{5}{|l|}{smaller than the specified maximum number of levels. } \\ \hline \end{tabular} \end{center} \caption{Parameters defining the aggregation algorithm. \label{tab:p_aggregation}} \esideways \bsideways \begin{center} %\begin{tabular}{|p{5cm}|l|p{2.4cm}|p{2.5cm}|p{5cm}|} \begin{tabular}{|p{3.8cm}|l|p{2.5cm}|p{2.3cm}|p{6.6cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\verb|mld_aggr_ord_| \par \verb|AGGR_ORD| & \verb|character(len=*)| & \texttt{'NATURAL'} \par \texttt{'DEGREE'} & \texttt{'NATURAL'} & Initial ordering of indices for the aggregation algorithm: either natural ordering or sorted by descending degrees of the nodes in the matrix graph. \\ \hline %Since aggregation is %heuristic, results will be different. %\verb|mld_aggr_thresh_| \par \verb|AGGR_THRESH| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any~real \par number~$\in [0, 1]$ & 0.05 & The threshold $\theta$ in the aggregation algorithm (see Note). \\ \hline %%\verb|mld_aggr_scale_| \par % \verb|AGGR_SCALE| & \verb|real(|\emph{kind\_parameter}\verb|)| % & Any~real \par number~$\in [0, 1]$ % & 1.0 % & Scale factor applied to the threshold in going % from level $ilev$ to level $ilev+1$. \\ \hline %\verb|mld_aggr_omega_alg_| \par \verb|AGGR_OMEGA_ALG|& \verb|character(len=*)| & \texttt{'EIG\_EST'} \par \texttt{'USER\_CHOICE'} & \texttt{'EIG\_EST'} & How the damping parameter $\omega$ in the smoothed aggregation is obtained: either via an estimate of the spectral radius of $D^{-1}A$, where $A$ is the matrix at the current level and $D$ is the diagonal matrix with the same diagonal entires as $A$, or explicily specified by the user. \\ \hline %\verb|mld_aggr_eig_| \par \verb|AGGR_EIG| & \verb|character(len=*)| & \texttt{'A\_NORMI'} & \texttt{'A\_NORMI'} & How to estimate the spectral radius of $D^{-1}A$. Currently only the infinity norm estimate is available. \\ \hline %\verb|mld_aggr_omega_val_| \par \verb|AGGR_OMEGA_VAL| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any real \par number $>0$ & $4/(3\rho(D^{-1}A))$ & Damping parameter $\omega$ in the smoothed aggregation algorithm. It must be set by the user if \verb|USER_CHOICE| was specified for \verb|mld_aggr_omega_alg_|, otherwise it is computed by the library, using the selected estimate of the spectral radius $\rho(D^{-1}A)$ of $D^{-1}A$.\\ \hline %\verb|mld_aggr_filter_| \par \verb|AGGR_FILTER| & \verb|character(len=*)| & \texttt{'FILTER'} \par \texttt{'NOFILTER'} & \texttt{'NOFILTER'} & Matrix used in computing the smoothed prolongator: filtered or unfiltered. \\ \hline \multicolumn{5}{|l|}{{\bfseries Note.} Different thresholds at different levels, such as those used in \cite[Section~5.1]{VANEK_MANDEL_BREZINA}, can be easily set by invoking the rou-} \\ \multicolumn{5}{|l|}{tine \texttt{set} with the parameter \texttt{ilev}.} \\ \hline \end{tabular} \end{center} \caption{Parameters defining the aggregation algorithm (continued). \label{tab:p_aggregation_1}} \esideways \bsideways \begin{center} \begin{tabular}{|p{3.9cm}|l|p{1.7cm}|p{1.7cm}|p{8.6cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{coarse-space correction at the coarsest level}}\\ \hline %\verb|mld_coarse_mat_| \par \verb|COARSE_MAT| & \verb|character(len=*)| & \texttt{'DIST'} \par \texttt{'REPL'} & \texttt{'REPL'} & Coarsest matrix layout: distributed among the processes or replicated on each of them. \\ \hline %\verb|mld_coarse_solve_| \par \verb|COARSE_SOLVE| & \verb|character(len=*)| & \texttt{'MUMPS'} \par \texttt{'UMF'} \par \texttt{'SLU'} \par \texttt{'SLUDIST'} \par \texttt{'JACOBI'} \par \texttt{'GS'} \par \texttt{'BJAC'} & See~Note. & Solver used at the coarsest level: sequential LU from MUMPS, UMFPACK, or SuperLU (plus tri\-an\-gular solve); distributed LU from MUMPS or SuperLU\_Dist (plus triangular solve); point-Jacobi, hybrid Gauss-Seidel or block-Jacobi. \par Note that \texttt{UMF} and \texttt{SLU} require the coarsest matrix to be replicated, \texttt{SLUDIST}, \texttt{JACOBI}, \texttt{GS} and \texttt{BJAC} require it to be distributed, \texttt{MUMPS} can be used with either a replicated or a distributed matrix. When any of the previous solvers is specified, the matrix layout is set to a default value which allows the use value UMFPACK and SuperLU\_Dist are available only in double precision. \\ \hline %\verb|mld_coarse_subsolve_| \par \verb|COARSE_SUBSOLVE| & \verb|character(len=*)| & \texttt{'ILU'} \par \texttt{'ILUT'} \par \texttt{'MILU'} \par \texttt{'MUMPS'} \par \texttt{'SLU'} \par \texttt{'UMF'} & See~Note. & Solver for the diagonal blocks of the coarse matrix, in case the block Jacobi solver is chosen as coarsest-level solver: ILU($p$), ILU($p,t$), MILU($p$), LU from MUMPS, SuperLU or UMFPACK (plus triangular solve). Note that UMFPACK and SuperLU\_Dist are available only in double precision. \\ \hline \multicolumn{5}{|l|}{{\bfseries Note.} Defaults for \texttt{COARSE\_SOLVE} and \texttt{COARSE\_SUBSOLVE} are chosen in the following order:} \\ \multicolumn{5}{|l|}{single precision version -- \texttt{MUMPS} if installed, then \texttt{SLU} if installed, \texttt{ILU} otherwise;}\\ \multicolumn{5}{|l|}{double precision version -- \texttt{UMF} if installed, then \texttt{MUMPS} if installed, then \texttt{SLU} if installed, \texttt{ILU} otherwise.}\\ \hline \end{tabular} \end{center} \caption{Parameters defining the coarse-space correction at the coarsest level.\label{tab:p_coarse}} \esideways \bsideways \begin{center} \begin{tabular}{|p{3.9cm}|l|p{2cm}|p{1.5cm}|p{7.5cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{coarse-space correction at the coarsest level}}\\ \hline %\verb|mld_coarse_sweeps_| \par \verb|COARSE_SWEEPS| & \verb|integer| & Any integer \par number $> 0$ & 10 & Number of sweeps when \verb|JACOBI|, \verb|GS| or \verb|BJAC| is chosen as coarsest-level solver. \\ \hline %\verb|mld_coarse_fillin_| \par \verb|COARSE_FILLIN| & \verb|integer| & Any integer \par number $\ge 0$ & 0 & Fill-in level $p$ of the ILU factorizations. \\ \hline %\verb|mld_coarse_iluthrs_| \par \verb|COARSE_ILUTHRS| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any real \par number $\ge 0$ & 0 & Drop tolerance $t$ in the ILU($p,t$) factorization. \\ \hline \end{tabular} \end{center} \caption{Parameters defining the coarse-space correction at the coarsest level (continued).\label{tab:p_coarse_1}} \esideways \bsideways \begin{center} \small \begin{tabular}{|p{3.6cm}|l|p{1.9cm}|p{3.6cm}|p{6.5cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\multicolumn{5}{|c|}{\emph{basic one-level preconditioner (smoother)}} \\ \hline %\verb|mld_smoother_type_| \par \verb|SMOOTHER_TYPE| & \verb|character(len=*)| & \verb|'JACOBI'| \par \verb|'GS'| \par \verb|'BGS'| \par \verb|'BJAC'| \par \verb|'AS'| & \verb|'FBGS'| & Type of smoother used in the multi-level preconditioner: point-Jacobi, hybrid (forward) Gauss-Seidel, hybrid backward Gauss-Seidel, block-Jacobi, and Additive Schwarz. \par It is ignored by one-level preconditioners. \\ \hline %\verb|mld_sub_solve_| \par \verb|SUB_SOLVE| & \verb|character(len=*)| & \texttt{'JACOBI'} \par \texttt{'GS'} \par \texttt{'BGS'} \par \texttt{'ILU'} \par \texttt{'ILUT'} \par \texttt{'MILU'} \par \par \texttt{'MUMPS'} \par \texttt{'SLU'} \par \texttt{'UMF'} & \texttt{GS} and \texttt{BGS} for pre- and post-smoothers of multi-level preconditioners, respectively \par \texttt{ILU} for block-Jacobi and Additive Schwarz one-level preconditioners & The local solver to be used with the smoother or one-level preconditioner (see Remark~2, page~24): point-Jacobi, hybrid (forward) Gauss-Seidel, hybrid backward Gauss-Seidel, ILU($p$), ILU($p,t$), MILU($p$), LU from MUMPS, SuperLU or UMFPACK (plus triangular solve). See Note for details on hybrid Gauss-Seidel. \\ \hline %\verb|mld_moother_sweeps_| \par \verb|SMOOTHER_SWEEPS| & \verb|integer| & Any integer \par number~$\ge 0$ & 1 & Number of sweeps of the smoother or one-level preconditioner. In the multi-level case, no pre-smother or post-smoother is used if this parameter is set to 0 together with \verb|pos='PRE'| or \verb|pos='POST|, respectively. \\ \hline %\verb|mld_sub_ovr_| \par \verb|SUB_OVR| & \verb|integer| & Any integer \par number~$\ge 0$ & 1 & Number of overlap layers, for Additive Schwarz only. \\ \hline \end{tabular} \end{center} \caption{Parameters defining the smoother or the details of the one-level preconditioner. \label{tab:p_smoother}} \esideways \bsideways \begin{center} \small \begin{tabular}{|p{3cm}|l|p{2.5cm}|p{2.2cm}|p{7.1cm}|} \hline \verb|what| & \textsc{data type} & \verb|val| & \textsc{default} & \textsc{comments} \\ \hline %\verb|mld_sub_restr_| \par \verb|SUB_RESTR| & \verb|character(len=*)| & \texttt{'HALO'} \par \texttt{'NONE'} & \texttt{'HALO'} & Type of restriction operator, for Additive Schwarz only: \texttt{HALO} for taking into account the overlap, \texttt{NONE} for neglecting it. \par Note that \texttt{HALO} must be chosen for the classical Addditive Schwarz smoother and its RAS variant.\\ \hline %\verb|mld_sub_prol_| \par \verb|SUB_PROL| & \verb|character(len=*)| & \texttt{'SUM'} \par \texttt{'NONE'} & \texttt{'NONE'} & Type of prolongation operator, for Additive Schwarz only: \texttt{SUM} for adding the contributions from the overlap, \texttt{NONE} for neglecting them. \par Note that \texttt{SUM} must be chosen for the classical Additive Schwarz smoother, and \texttt{NONE} for its RAS variant. \\ \hline %\verb|mld_sub_fillin_| \par \verb|SUB_FILLIN| & \verb|integer| & Any integer \par number~$\ge 0$ & 0 & Fill-in level $p$ of the incomplete LU factorizations. \\ \hline %\verb|mld_sub_iluthrs_| \par \verb|SUB_ILUTHRS| & \verb|real(|\emph{kind\_parameter}\verb|)| & Any real number~$\ge 0$ & 0 & Drop tolerance $t$ in the ILU($p,t$) factorization. \\ %\hline %\verb|mld_sub_ren_| \par \verb|SUB_REN| & \verb|character(len=*)| % & \texttt{'RENUM\_NONE'} \texttt{'RENUM\_GLOBAL'} %, \texttt{'RENUM_GPS'} % & \texttt{'RENUM\_NONE'} % & Row and column reordering of the local submatrices: no reordering, % or reordering according to the global numbering of the rows and % columns of the whole matrix. \\ % \verb|mld_solver_eps_| \par \verb|SOLVER_EPS| & \verb|real| % & Any~real number % & 0 % & Stopping tolerance for iterative local solver % (currently only Gauss-Seidel); if $\le0$, then % perform prespecified number of iterations. \\ \hline \hline \end{tabular} \end{center} \caption{Parameters defining the smoother or the details of the one-level preconditioner (continued).\label{tab:p_smoother_1}} \esideways \clearpage \subsection{Subroutine build\label{sec:precbld}} \begin{center} \verb|call p%build(a,desc_a,info)|\\ \end{center} \noindent This routine builds the one-level preconditioner \verb|p| according to the requirements made by the user through the routines \verb|init| and \verb|set| (see Sections~\ref{sec:hier_bld} and~\ref{sec:smooth_bld} for multi-level preconditioners). {\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip \begin{tabular}{p{1.2cm}p{12cm}} \verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\ & The sparse matrix structure containing the local part of the matrix to be preconditioned. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ \verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\ & The communication descriptor of \verb|a|. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ %\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ % & The preconditioner data structure. Note that \emph{x} must be chosen according % to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \end{tabular} \vskip1.5\baselineskip For compatibility with the previous versions of MLD2P4, this routine can be also invoked as follows: \begin{center} \verb|call mld_precbld(p,what,val,info)| \end{center} \noindent In this case, the routine can be used to build multi-level preconditioners too. \clearpage \subsection{Subroutine hierarchy\_build\label{sec:hier_bld}} \begin{center} \verb|call p%hierarchy_build(a,desc_a,info)|\\ \end{center} \noindent This routine builds the hierarchy of matrices and restriction/prolongation operators for the multi-level preconditioner \verb|p|, according to the requirements made by the user through the routines \verb|init| and \verb|set|. {\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip \begin{tabular}{p{1.2cm}p{12cm}} \verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\ & The sparse matrix structure containing the local part of the matrix to be preconditioned. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ \verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\ & The communication descriptor of \verb|a|. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ %\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ % & The preconditioner data structure. Note that \emph{x} must be chosen according % to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \end{tabular} \clearpage \subsection{Subroutine smoothers\_build\label{sec:smooth_bld}} \begin{center} \verb|call p%smoothers_build(a,desc_a,p,info)|\\ \end{center} \noindent This routine builds the smoothers and the coarsest-level solvers for the multi-level preconditioner \verb|p|, according to the requirements made by the user through the routines \verb|init| and \verb|set|, and based on the aggregation hierarchy produced by a previous call to \verb|hierarchy_build| (see Section~\ref{sec:hier_bld}). {\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip \begin{tabular}{p{1.2cm}p{12cm}} \verb|a| & \verb|type(psb_|\emph{x}\verb|spmat_type), intent(in)|. \\ & The sparse matrix structure containing the local part of the matrix to be preconditioned. Note that \emph{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ \verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\ & The communication descriptor of \verb|a|. See the PSBLAS User's Guide for details \cite{PSBLASGUIDE}.\\ %\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ % & The preconditioner data structure. Note that \emph{x} must be chosen according % to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \end{tabular} \clearpage \subsection{Subroutine apply\label{sec:precapply}} \begin{center} \verb|call p%apply(x,y,desc_a,info [,trans,work])|\\ \end{center} \noindent This routine computes $y = op(M^{-1})\, x$, where $M$ is a previously built preconditioner, stored into \verb|p|, and $op$ denotes the preconditioner itself or its transpose, according to the value of \verb|trans|. Note that, when MLD2P4 is used with a Krylov solver from PSBLAS, \verb|p%apply| is called within the PSBLAS routine \verb|psb_krylov| and hence it is completely transparent to the user. {\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip \begin{tabular}{p{1.2cm}p{12cm}} %\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ % & The preconditioner data structure, containing the local part of $M$. % Note that \emph{x} must be chosen according % to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|x| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(in)|.\\ & The local part of the vector $x$. Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|y| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), intent(out)|.\\ & The local part of the vector $y$. Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|desc_a| & \verb|type(psb_desc_type), intent(in)|. \\ & The communication descriptor associated to the matrix to be preconditioned.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|trans| & \verb|character(len=1), optional, intent(in).|\\ & If \verb|trans| = \verb|'N','n'| then $op(M^{-1}) = M^{-1}$; if \verb|trans| = \verb|'T','t'| then $op(M^{-1}) = M^{-T}$ (transpose of $M^{-1})$; if \verb|trans| = \verb|'C','c'| then $op(M^{-1}) = M^{-C}$ (conjugate transpose of $M^{-1})$.\\ \verb|work| & \emph{type}\verb|(|\emph{kind\_parameter}\verb|), dimension(:), optional, target|.\\ & Workspace. Its size should be at least \verb|4 * psb_cd_get_local_| \verb|cols(desc_a)| (see the PSBLAS User's Guide). Note that \emph{type} and \emph{kind\_parameter} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.\\ \end{tabular} \vskip1.5\baselineskip For compatibility with the previous versions of MLD2P4, this routine can be also invoked as follows: \begin{center} \verb|call mld_precaply(p,what,val,info)| \end{center} \clearpage \subsection{Subroutine free\label{sec:precfree}} \begin{center} \verb|call p%free(p,info)|\\ \end{center} \noindent This routine deallocates the preconditioner data structure \verb|p|. {\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip \begin{tabular}{p{1.2cm}p{10.5cm}} %\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(inout)|.\\ % & The preconditioner data structure. Note that \emph{x} must be chosen according % to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \end{tabular} \vskip1.5\baselineskip For compatibility with the previous versions of MLD2P4, this routine can be also invoked as follows: \begin{center} \verb|call mld_precfree(p,info)| \end{center} \clearpage \subsection{Subroutine descr\label{sec:precdescr}} \begin{center} \verb|call p%descr(info, [iout])|\\ \end{center} \noindent This routine prints a description of the preconditioner \verb|p| to the standard output or to a file. It must be called after \verb|hierachy_build| and \verb|smoothers_build|, or \verb|build|, have been called. {\vskip1.5\baselineskip\noindent\large\bfseries Arguments} \smallskip \begin{tabular}{p{1.2cm}p{12cm}} %\verb|p| & \verb|type(mld_|\emph{x}\verb|prec_type), intent(in)|.\\ % & The preconditioner data structure. Note that \emph{x} must be chosen according % to the real/complex, single/double precision version of MLD2P4 under use.\\ \verb|info| & \verb|integer, intent(out)|.\\ & Error code. If no error, 0 is returned. See Section~\ref{sec:errors} for details.\\ \verb|iout| & \verb|integer, intent(in), optional|.\\ & The id of the file where the preconditioner description will be printed; the default is the standard output.\\ \end{tabular} \vskip1.5\baselineskip For compatibility with the previous versions of MLD2P4, this routine can be also invoked as follows: \begin{center} \verb|call mld_precdescr(p,info [,iout])| \end{center} \clearpage \section{Adding new smoothers and solvers to MLD2P4\label{sec:adding}} Developers can add completely new smoother and/or solver classes derived from the base objects in the library may be used without recompiling the library itself. To do so it is necessary first to select the base type to be extended; in our experience, it is quite likely that the new application needs only require the definition of a ``solver'' object, which is almost always acting only on the local part of the distributed matrix. The parallel actions required to connect the various solver objects are most often already provided by the Block Jacobi or the Additive Schwarz smoothers. To define a new solver, the developer will then have to define its components and methods, perhaps taking one of the predefined solvers as a starting point if possible. Once the new smoother/solver class has been developed, to use it in the context of the multilevel preconditioners it is necessary to: \begin{itemize} \item Declare in the application program a variable of the new type; \item Pass that variable as the argument to the se routine as in the following: \begin{center} \verb|call p%set(smoother,info [,ilev, ilmax,pos])|\\ \verb|call p%set(solver,info [,ilev, ilmax,pos])| \end{center} \item Link into the application executable the code implementing the various methods. \end{itemize} The new solver object is then dynamically included in the preconditioner structure, and will act as a \emph{mold} to which the preconditioner will conform, even though the MLD2P4 library has not been modified to account for this new development. It is possible to define new values for the keyword \verb|WHAT| in the \verb|set| routines; if the library code does not recognize a keyword, it passes it down the composition hierarchy (levels containing smoothers containing solvers), so that it can be eventually caught by the new solver. An example is contained in the source code distribution under the folder \verb|tests/newslv|. This example solver is simply the ILU(0) solver under a new name, but it should give an idea of what needs to be done. \ \\ \begin{tabular}{p{1.2cm}p{12cm}} \verb|smoother| & \verb|class(mld_x_base_smoother_type)| \\ & The user-defined new smoother to be employed in the preconditioner.\\ \verb|solver| & \verb|class(mld_x_base_solver_type)| \\ & The user-defined new solver to be employed in the preconditioner. \end{tabular} %%% Local Variables: %%% mode: latex %%% TeX-master: "userguide" %%% End: