!!$ !!$ !!$ MLD2P4 version 2.1 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.4) !!$ !!$ (C) Copyright 2008, 2010, 2012, 2015, 2017 !!$ !!$ Salvatore Filippone Cranfield University !!$ Ambra Abdullahi Hassan University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_diluk_fact.f90 ! ! Subroutine: mld_diluk_fact ! Version: real ! Contains: mld_diluk_factint, iluk_copyin, iluk_fact, iluk_copyout. ! ! This routine computes either the ILU(k) or the MILU(k) factorization of the ! diagonal blocks of a distributed matrix. These factorizations are used to ! build the 'base preconditioner' (block-Jacobi preconditioner/solver, ! Additive Schwarz preconditioner) corresponding to a certain level of a ! multilevel preconditioner. ! ! Details on the above factorizations can be found in ! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, ! SIAM, 2003, Chapter 10. ! ! The local matrix is stored into a and blck, as specified in ! the description of the arguments below. The storage format for both the L and ! U factors is CSR. The diagonal of the U factor is stored separately (actually, ! the inverse of the diagonal entries is stored; this is then managed in the solve ! stage associated to the ILU(k)/MILU(k) factorization). ! ! ! Arguments: ! fill_in - integer, input. ! The fill-in level k in ILU(k)/MILU(k). ! ialg - integer, input. ! The type of incomplete factorization to be performed. ! The ILU(k) factorization is computed if ialg = 1 (= mld_ilu_n_); ! the MILU(k) one if ialg = 2 (= mld_milu_n_); other values are ! not allowed. ! a - type(psb_dspmat_type), input. ! The sparse matrix structure containing the local matrix. ! Note that if the 'base' Additive Schwarz preconditioner ! has overlap greater than 0 and the matrix has not been reordered ! (see mld_fact_bld), then a contains only the 'original' local part ! of the distributed matrix, i.e. the rows of the matrix held ! by the calling process according to the initial data distribution. ! l - type(psb_dspmat_type), input/output. ! The L factor in the incomplete factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! u - type(psb_dspmat_type), input/output. ! The U factor (except its diagonal) in the incomplete factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! d - real(psb_dpk_), dimension(:), input/output. ! The inverse of the diagonal entries of the U factor in the incomplete ! factorization. ! Note: its allocation is managed by the calling routine mld_ilu_bld, ! hence it cannot be only intent(out). ! info - integer, output. ! Error code. ! blck - type(psb_dspmat_type), input, optional, target. ! The sparse matrix structure containing the remote rows of the ! distributed matrix, that have been retrieved by mld_as_bld ! to build an Additive Schwarz base preconditioner with overlap ! greater than 0. If the overlap is 0 or the matrix has been reordered ! (see mld_fact_bld), then blck does not contain any row. ! subroutine mld_diluk_fact(fill_in,ialg,a,l,u,d,info,blck) use psb_base_mod use mld_d_ilu_fact_mod, mld_protect_name => mld_diluk_fact implicit none ! Arguments integer(psb_ipk_), intent(in) :: fill_in, ialg integer(psb_ipk_), intent(out) :: info type(psb_dspmat_type),intent(in) :: a type(psb_dspmat_type),intent(inout) :: l,u type(psb_dspmat_type),intent(in), optional, target :: blck real(psb_dpk_), intent(inout) :: d(:) ! Local Variables integer(psb_ipk_) :: l1, l2, m, err_act type(psb_dspmat_type), pointer :: blck_ type(psb_d_csr_sparse_mat) :: ll, uu character(len=20) :: name, ch_err name='mld_diluk_fact' info = psb_success_ call psb_erractionsave(err_act) ! ! Point to / allocate memory for the incomplete factorization ! if (present(blck)) then blck_ => blck else allocate(blck_,stat=info) if (info == psb_success_) call blck_%csall(izero,izero,info,ione) if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='csall' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if endif m = a%get_nrows() + blck_%get_nrows() if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.& & (m > size(d)) ) then write(0,*) 'Wrong allocation status for L,D,U? ',& & l%get_nrows(),size(d),u%get_nrows() info = -1 return end if call l%mv_to(ll) call u%mv_to(uu) ! ! Compute the ILU(k) or the MILU(k) factorization, depending on ialg ! call mld_diluk_factint(fill_in,ialg,a,blck_,& & d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='mld_diluk_factint' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ! ! Store information on the L and U sparse matrices ! call l%mv_from(ll) call l%set_triangle() call l%set_unit() call l%set_lower() call u%mv_from(uu) call u%set_triangle() call u%set_unit() call u%set_upper() ! ! Nullify pointer / deallocate memory ! if (present(blck)) then blck_ => null() else call blck_%free() deallocate(blck_,stat=info) if(info.ne.0) then info=psb_err_from_subroutine_ ch_err='psb_sp_free' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if endif call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return contains ! ! Subroutine: mld_diluk_factint ! Version: real ! Note: internal subroutine of mld_diluk_fact ! ! This routine computes either the ILU(k) or the MILU(k) factorization of the ! diagonal blocks of a distributed matrix. These factorizations are used to build ! the 'base preconditioner' (block-Jacobi preconditioner/solver, Additive Schwarz ! preconditioner) corresponding to a certain level of a multilevel preconditioner. ! ! The local matrix is stored into a and b, as specified in the ! description of the arguments below. The storage format for both the L and U ! factors is CSR. The diagonal of the U factor is stored separately (actually, ! the inverse of the diagonal entries is stored; this is then managed in the ! solve stage associated to the ILU(k)/MILU(k) factorization). ! ! ! Arguments: ! fill_in - integer, input. ! The fill-in level k in ILU(k)/MILU(k). ! ialg - integer, input. ! The type of incomplete factorization to be performed. ! The MILU(k) factorization is computed if ialg = 2 (= mld_milu_n_); ! the ILU(k) factorization otherwise. ! m - integer, output. ! The total number of rows of the local matrix to be factorized, ! i.e. ma+mb. ! a - type(psb_dspmat_type), input. ! The sparse matrix structure containing the local matrix. ! Note that, if the 'base' Additive Schwarz preconditioner ! has overlap greater than 0 and the matrix has not been reordered ! (see mld_fact_bld), then a contains only the 'original' local part ! of the distributed matrix, i.e. the rows of the matrix held ! by the calling process according to the initial data distribution. ! b - type(psb_dspmat_type), input. ! The sparse matrix structure containing the remote rows of the ! distributed matrix, that have been retrieved by mld_as_bld ! to build an Additive Schwarz base preconditioner with overlap ! greater than 0. If the overlap is 0 or the matrix has been reordered ! (see mld_fact_bld), then b does not contain any row. ! d - real(psb_dpk_), dimension(:), output. ! The inverse of the diagonal entries of the U factor in the incomplete ! factorization. ! laspk - real(psb_dpk_), dimension(:), input/output. ! The L factor in the incomplete factorization. ! lia1 - integer, dimension(:), input/output. ! The column indices of the nonzero entries of the L factor, ! according to the CSR storage format. ! lia2 - integer, dimension(:), input/output. ! The indices identifying the first nonzero entry of each row ! of the L factor in laspk, according to the CSR storage format. ! uval - real(psb_dpk_), dimension(:), input/output. ! The U factor in the incomplete factorization. ! The entries of U are stored according to the CSR format. ! uja - integer, dimension(:), input/output. ! The column indices of the nonzero entries of the U factor, ! according to the CSR storage format. ! uirp - integer, dimension(:), input/output. ! The indices identifying the first nonzero entry of each row ! of the U factor in uval, according to the CSR storage format. ! l1 - integer, output ! The number of nonzero entries in laspk. ! l2 - integer, output ! The number of nonzero entries in uval. ! info - integer, output. ! Error code. ! subroutine mld_diluk_factint(fill_in,ialg,a,b,& & d,lval,lja,lirp,uval,uja,uirp,l1,l2,info) use psb_base_mod implicit none ! Arguments integer(psb_ipk_), intent(in) :: fill_in, ialg type(psb_dspmat_type),intent(in) :: a,b integer(psb_ipk_),intent(inout) :: l1,l2,info integer(psb_ipk_), allocatable, intent(inout) :: lja(:),lirp(:),uja(:),uirp(:) real(psb_dpk_), allocatable, intent(inout) :: lval(:),uval(:) real(psb_dpk_), intent(inout) :: d(:) ! Local variables integer(psb_ipk_) :: ma,mb,i, ktrw,err_act,nidx, m integer(psb_ipk_), allocatable :: uplevs(:), rowlevs(:),idxs(:) real(psb_dpk_), allocatable :: row(:) type(psb_i_heap) :: heap type(psb_d_coo_sparse_mat) :: trw character(len=20), parameter :: name='mld_diluk_factint' character(len=20) :: ch_err if (psb_get_errstatus() /= 0) return info=psb_success_ call psb_erractionsave(err_act) select case(ialg) case(mld_ilu_n_,mld_milu_n_) ! Ok case default info=psb_err_input_asize_invalid_i_ call psb_errpush(info,name,& & i_err=(/itwo,ialg,izero,izero,izero/)) goto 9999 end select if (fill_in < 0) then info=psb_err_input_asize_invalid_i_ call psb_errpush(info,name, & & i_err=(/ione,fill_in,izero,izero,izero/)) goto 9999 end if ma = a%get_nrows() mb = b%get_nrows() m = ma+mb ! ! Allocate a temporary buffer for the iluk_copyin function ! call trw%allocate(izero,izero,ione) if (info == psb_success_) call psb_ensure_size(m+1,lirp,info) if (info == psb_success_) call psb_ensure_size(m+1,uirp,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='psb_sp_all') goto 9999 end if l1=0 l2=0 lirp(1) = 1 uirp(1) = 1 ! ! Allocate memory to hold the entries of a row and the corresponding ! fill levels ! allocate(uplevs(size(uval)),rowlevs(m),row(m),stat=info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='Allocate') goto 9999 end if uplevs(:) = m+1 row(:) = dzero rowlevs(:) = -(m+1) ! ! Cycle over the matrix rows ! do i = 1, m ! ! At each iteration of the loop we keep in a heap the column indices ! affected by the factorization. The heap is initialized and filled ! in the iluk_copyin routine, and updated during the elimination, in ! the iluk_fact routine. The heap is ideal because at each step we need ! the lowest index, but we also need to insert new items, and the heap ! allows to do both in log time. ! d(i) = dzero if (i<=ma) then ! ! Copy into trw the i-th local row of the matrix, stored in a ! call iluk_copyin(i,ma,a,ione,m,row,rowlevs,heap,ktrw,trw,info) else ! ! Copy into trw the i-th local row of the matrix, stored in b ! (as (i-ma)-th row) ! call iluk_copyin(i-ma,mb,b,ione,m,row,rowlevs,heap,ktrw,trw,info) endif ! Do an elimination step on the current row. It turns out we only ! need to keep track of fill levels for the upper triangle, hence we ! do not have a lowlevs variable. ! if (info == psb_success_) call iluk_fact(fill_in,i,row,rowlevs,heap,& & d,uja,uirp,uval,uplevs,nidx,idxs,info) ! ! Copy the row into lval/d(i)/uval ! if (info == psb_success_) call iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,& & l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info) if (info /= psb_success_) then info=psb_err_internal_error_ call psb_errpush(info,name,a_err='Copy/factor loop') goto 9999 end if end do ! ! And we're done, so deallocate the memory ! deallocate(uplevs,rowlevs,row,stat=info) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='Deallocate') goto 9999 end if if (info == psb_success_) call trw%free() if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='psb_sp_free' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine mld_diluk_factint ! ! Subroutine: iluk_copyin ! Version: real ! Note: internal subroutine of mld_diluk_fact ! ! This routine copies a row of a sparse matrix A, stored in the sparse matrix ! structure a, into the array row and stores into a heap the column indices of ! the nonzero entries of the copied row. The output array row is such that it ! contains a full row of A, i.e. it contains also the zero entries of the row. ! This is useful for the elimination step performed by iluk_fact after the call ! to iluk_copyin (see mld_iluk_factint). ! The routine also sets to zero the entries of the array rowlevs corresponding ! to the nonzero entries of the copied row (see the description of the arguments ! below). ! ! If the sparse matrix is in CSR format, a 'straight' copy is performed; ! otherwise psb_sp_getblk is used to extract a block of rows, which is then ! copied, row by row, into the array row, through successive calls to ! ilu_copyin. ! ! This routine is used by mld_diluk_factint in the computation of the ! ILU(k)/MILU(k) factorization of a local sparse matrix. ! ! ! Arguments: ! i - integer, input. ! The local index of the row to be extracted from the ! sparse matrix structure a. ! m - integer, input. ! The number of rows of the local matrix stored into a. ! a - type(psb_dspmat_type), input. ! The sparse matrix structure containing the row to be copied. ! jmin - integer, input. ! The minimum valid column index. ! jmax - integer, input. ! The maximum valid column index. ! The output matrix will contain a clipped copy taken from ! a(1:m,jmin:jmax). ! row - real(psb_dpk_), dimension(:), input/output. ! In input it is the null vector (see mld_iluk_factint and ! iluk_copyout). In output it contains the row extracted ! from the matrix A. It actually contains a full row, i.e. ! it contains also the zero entries of the row. ! rowlevs - integer, dimension(:), input/output. ! In input rowlevs(k) = -(m+1) for k=1,...,m. In output ! rowlevs(k) = 0 for 1 <= k <= jmax and A(i,k) /= 0, for ! future use in iluk_fact. ! heap - type(psb_i_heap), input/output. ! The heap containing the column indices of the nonzero ! entries in the array row. ! Note: this argument is intent(inout) and not only intent(out) ! to retain its allocation, done by psb_init_heap inside this ! routine. ! ktrw - integer, input/output. ! The index identifying the last entry taken from the ! staging buffer trw. See below. ! trw - type(psb_dspmat_type), input/output. ! A staging buffer. If the matrix A is not in CSR format, we use ! the psb_sp_getblk routine and store its output in trw; when we ! need to call psb_sp_getblk we do it for a block of rows, and then ! we consume them from trw in successive calls to this routine, ! until we empty the buffer. Thus we will make a call to psb_sp_getblk ! every nrb calls to copyin. If A is in CSR format it is unused. ! subroutine iluk_copyin(i,m,a,jmin,jmax,row,rowlevs,heap,ktrw,trw,info) use psb_base_mod implicit none ! Arguments type(psb_dspmat_type), intent(in) :: a type(psb_d_coo_sparse_mat), intent(inout) :: trw integer(psb_ipk_), intent(in) :: i,m,jmin,jmax integer(psb_ipk_), intent(inout) :: ktrw,info integer(psb_ipk_), intent(inout) :: rowlevs(:) real(psb_dpk_), intent(inout) :: row(:) type(psb_i_heap), intent(inout) :: heap ! Local variables integer(psb_ipk_) :: k,j,irb,err_act,nz integer(psb_ipk_), parameter :: nrb=40 character(len=20), parameter :: name='iluk_copyin' character(len=20) :: ch_err if (psb_get_errstatus() /= 0) return info=psb_success_ call psb_erractionsave(err_act) call heap%init(info) select type (aa=> a%a) type is (psb_d_csr_sparse_mat) ! ! Take a fast shortcut if the matrix is stored in CSR format ! do j = aa%irp(i), aa%irp(i+1) - 1 k = aa%ja(j) if ((jmin<=k).and.(k<=jmax)) then row(k) = aa%val(j) rowlevs(k) = 0 call heap%insert(k,info) end if end do class default ! ! Otherwise use psb_sp_getblk, slower but able (in principle) of ! handling any format. In this case, a block of rows is extracted ! instead of a single row, for performance reasons, and these ! rows are copied one by one into the array row, through successive ! calls to iluk_copyin. ! if ((mod(i,nrb) == 1).or.(nrb == 1)) then irb = min(m-i+1,nrb) call aa%csget(i,i+irb-1,trw,info) if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='psb_sp_getblk' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if ktrw=1 end if nz = trw%get_nzeros() do if (ktrw > nz) exit if (trw%ia(ktrw) > i) exit k = trw%ja(ktrw) if ((jmin<=k).and.(k<=jmax)) then row(k) = trw%val(ktrw) rowlevs(k) = 0 call heap%insert(k,info) end if ktrw = ktrw + 1 enddo end select call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine iluk_copyin ! ! Subroutine: iluk_fact ! Version: real ! Note: internal subroutine of mld_diluk_fact ! ! This routine does an elimination step of the ILU(k) factorization on a ! single matrix row (see the calling routine mld_iluk_factint). ! ! This step is also the base for a MILU(k) elimination step on the row (see ! iluk_copyout). This routine is used by mld_diluk_factint in the computation ! of the ILU(k)/MILU(k) factorization of a local sparse matrix. ! ! NOTE: it turns out we only need to keep track of the fill levels for ! the upper triangle. ! ! ! Arguments ! fill_in - integer, input. ! The fill-in level k in ILU(k). ! i - integer, input. ! The local index of the row to which the factorization is ! applied. ! row - real(psb_dpk_), dimension(:), input/output. ! In input it contains the row to which the elimination step ! has to be applied. In output it contains the row after the ! elimination step. It actually contains a full row, i.e. ! it contains also the zero entries of the row. ! rowlevs - integer, dimension(:), input/output. ! In input rowlevs(k) = 0 if the k-th entry of the row is ! nonzero, and rowlevs(k) = -(m+1) otherwise. In output ! rowlevs(k) contains the fill kevel of the k-th entry of ! the row after the current elimination step; rowlevs(k) = -(m+1) ! means that the k-th row entry is zero throughout the elimination ! step. ! heap - type(psb_i_heap), input/output. ! The heap containing the column indices of the nonzero entries ! in the processed row. In input it contains the indices concerning ! the row before the elimination step, while in output it contains ! the indices concerning the transformed row. ! d - real(psb_dpk_), input. ! The inverse of the diagonal entries of the part of the U factor ! above the current row (see iluk_copyout). ! uja - integer, dimension(:), input. ! The column indices of the nonzero entries of the part of the U ! factor above the current row, stored in uval row by row (see ! iluk_copyout, called by mld_diluk_factint), according to the CSR ! storage format. ! uirp - integer, dimension(:), input. ! The indices identifying the first nonzero entry of each row of ! the U factor above the current row, stored in uval row by row ! (see iluk_copyout, called by mld_diluk_factint), according to ! the CSR storage format. ! uval - real(psb_dpk_), dimension(:), input. ! The entries of the U factor above the current row (except the ! diagonal ones), stored according to the CSR format. ! uplevs - integer, dimension(:), input. ! The fill levels of the nonzero entries in the part of the ! U factor above the current row. ! nidx - integer, output. ! The number of entries of the array row that have been ! examined during the elimination step. This will be used ! by the routine iluk_copyout. ! idxs - integer, dimension(:), allocatable, input/output. ! The indices of the entries of the array row that have been ! examined during the elimination step.This will be used by ! by the routine iluk_copyout. ! Note: this argument is intent(inout) and not only intent(out) ! to retain its allocation, done by this routine. ! subroutine iluk_fact(fill_in,i,row,rowlevs,heap,d,uja,uirp,uval,uplevs,nidx,idxs,info) use psb_base_mod implicit none ! Arguments type(psb_i_heap), intent(inout) :: heap integer(psb_ipk_), intent(in) :: i, fill_in integer(psb_ipk_), intent(inout) :: nidx,info integer(psb_ipk_), intent(inout) :: rowlevs(:) integer(psb_ipk_), allocatable, intent(inout) :: idxs(:) integer(psb_ipk_), intent(inout) :: uja(:),uirp(:),uplevs(:) real(psb_dpk_), intent(inout) :: row(:), uval(:),d(:) ! Local variables integer(psb_ipk_) :: k,j,lrwk,jj,lastk, iret real(psb_dpk_) :: rwk info = psb_success_ if (.not.allocated(idxs)) then allocate(idxs(200),stat=info) if (info /= psb_success_) return endif nidx = 0 lastk = -1 ! ! Do while there are indices to be processed ! do ! Beware: (iret < 0) means that the heap is empty, not an error. call heap%get_first(k,iret) if (iret < 0) return ! ! Just in case an index has been put on the heap more than once. ! if (k == lastk) cycle lastk = k nidx = nidx + 1 if (nidx>size(idxs)) then call psb_realloc(nidx+psb_heap_resize,idxs,info) if (info /= psb_success_) return end if idxs(nidx) = k if ((row(k) /= dzero).and.(rowlevs(k) <= fill_in).and.(ki) then ! ! Copy the upper part of the row ! if (rowlevs(j) <= fill_in) then l2 = l2 + 1 if (size(uval) < l2) then ! ! Figure out a good reallocation size! ! isz = max((l2/i)*m,int(1.2*l2),l2+100) call psb_realloc(isz,uval,info) if (info == psb_success_) call psb_realloc(isz,uja,info) if (info == psb_success_) call psb_realloc(isz,uplevs,info,pad=(m+1)) if (info /= psb_success_) then info=psb_err_from_subroutine_ call psb_errpush(info,name,a_err='Allocate') goto 9999 end if end if uja(l2) = j uval(l2) = row(j) uplevs(l2) = rowlevs(j) else if (ialg == mld_milu_n_) then ! ! MILU(k): add discarded entries to the diagonal one ! d(i) = d(i) + row(j) end if ! ! Re-initialize row(j) and rowlevs(j) ! row(j) = dzero rowlevs(j) = -(m+1) end if end do ! ! Store the pointers to the first non occupied entry of in ! lval and uval ! lirp(i+1) = l1 + 1 uirp(i+1) = l2 + 1 ! ! Check the pivot size ! if (abs(d(i)) < d_epstol) then ! ! Too small pivot: unstable factorization ! info = psb_err_pivot_too_small_ int_err(1) = i write(ch_err,'(g20.10)') d(i) call psb_errpush(info,name,i_err=int_err,a_err=ch_err) goto 9999 else ! ! Compute 1/pivot ! d(i) = done/d(i) end if ! ! Scale the upper part ! do j=uirp(i), uirp(i+1)-1 uval(j) = d(i)*uval(j) end do call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine iluk_copyout end subroutine mld_diluk_fact