!!$ !!$ !!$ MLD2P4 version 2.1 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.4) !!$ !!$ (C) Copyright 2008, 2010, 2012, 2015, 2017 !!$ !!$ Salvatore Filippone Cranfield University !!$ Ambra Abdullahi Hassan University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ subroutine mld_s_diag_solver_apply(alpha,sv,x,beta,y,desc_data,& & trans,work,info,init,initu) use psb_base_mod use mld_s_diag_solver, mld_protect_name => mld_s_diag_solver_apply implicit none type(psb_desc_type), intent(in) :: desc_data class(mld_s_diag_solver_type), intent(inout) :: sv real(psb_spk_), intent(inout) :: x(:) real(psb_spk_), intent(inout) :: y(:) real(psb_spk_),intent(in) :: alpha,beta character(len=1),intent(in) :: trans real(psb_spk_),target, intent(inout) :: work(:) integer(psb_ipk_), intent(out) :: info character, intent(in), optional :: init real(psb_spk_),intent(inout), optional :: initu(:) integer(psb_ipk_) :: n_row,n_col real(psb_spk_), pointer :: ww(:), aux(:), tx(:),ty(:) integer(psb_ipk_) :: ictxt,np,me,i, err_act character :: trans_ character(len=20) :: name='s_diag_solver_apply' call psb_erractionsave(err_act) info = psb_success_ trans_ = psb_toupper(trans) select case(trans_) case('N') case('T','C') case default call psb_errpush(psb_err_iarg_invalid_i_,name) goto 9999 end select ! ! For non-iterative solvers, init and initu are ignored. ! n_row = desc_data%get_local_rows() n_col = desc_data%get_local_cols() if (trans_ == 'C') then if (beta == szero) then if (alpha == szero) then y(1:n_row) = szero else if (alpha == sone) then do i=1, n_row y(i) = (sv%d(i)) * x(i) end do else if (alpha == -sone) then do i=1, n_row y(i) = -(sv%d(i)) * x(i) end do else do i=1, n_row y(i) = alpha * (sv%d(i)) * x(i) end do end if else if (beta == sone) then if (alpha == szero) then !y(1:n_row) = szero else if (alpha == sone) then do i=1, n_row y(i) = (sv%d(i)) * x(i) + y(i) end do else if (alpha == -sone) then do i=1, n_row y(i) = -(sv%d(i)) * x(i) + y(i) end do else do i=1, n_row y(i) = alpha * (sv%d(i)) * x(i) + y(i) end do end if else if (beta == -sone) then if (alpha == szero) then y(1:n_row) = -y(1:n_row) else if (alpha == sone) then do i=1, n_row y(i) = (sv%d(i)) * x(i) - y(i) end do else if (alpha == -sone) then do i=1, n_row y(i) = -(sv%d(i)) * x(i) - y(i) end do else do i=1, n_row y(i) = alpha * (sv%d(i)) * x(i) - y(i) end do end if else if (alpha == szero) then y(1:n_row) = beta *y(1:n_row) else if (alpha == sone) then do i=1, n_row y(i) = (sv%d(i)) * x(i) + beta*y(i) end do else if (alpha == -sone) then do i=1, n_row y(i) = -(sv%d(i)) * x(i) + beta*y(i) end do else do i=1, n_row y(i) = alpha * (sv%d(i)) * x(i) + beta*y(i) end do end if end if else if (trans_ /= 'C') then if (beta == szero) then if (alpha == szero) then y(1:n_row) = szero else if (alpha == sone) then do i=1, n_row y(i) = sv%d(i) * x(i) end do else if (alpha == -sone) then do i=1, n_row y(i) = -sv%d(i) * x(i) end do else do i=1, n_row y(i) = alpha * sv%d(i) * x(i) end do end if else if (beta == sone) then if (alpha == szero) then !y(1:n_row) = szero else if (alpha == sone) then do i=1, n_row y(i) = sv%d(i) * x(i) + y(i) end do else if (alpha == -sone) then do i=1, n_row y(i) = -sv%d(i) * x(i) + y(i) end do else do i=1, n_row y(i) = alpha * sv%d(i) * x(i) + y(i) end do end if else if (beta == -sone) then if (alpha == szero) then y(1:n_row) = -y(1:n_row) else if (alpha == sone) then do i=1, n_row y(i) = sv%d(i) * x(i) - y(i) end do else if (alpha == -sone) then do i=1, n_row y(i) = -sv%d(i) * x(i) - y(i) end do else do i=1, n_row y(i) = alpha * sv%d(i) * x(i) - y(i) end do end if else if (alpha == szero) then y(1:n_row) = beta *y(1:n_row) else if (alpha == sone) then do i=1, n_row y(i) = sv%d(i) * x(i) + beta*y(i) end do else if (alpha == -sone) then do i=1, n_row y(i) = -sv%d(i) * x(i) + beta*y(i) end do else do i=1, n_row y(i) = alpha * sv%d(i) * x(i) + beta*y(i) end do end if end if end if call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine mld_s_diag_solver_apply