
MLD2P4
User’s and Reference Guide

A guide for the Multi-Level Domain Decomposition
Parallel Preconditioners Package based on PSBLAS

Pasqua D’Ambra
ICAR-CNR, Naples, Italy

Daniela di Serafino
Second University of Naples, Italy

Salvatore Filippone
University of Rome “Tor Vergata”, Italy

Software version: 1.0
June 27, 2008

i

Abstract

MLD2P4 (Multi-Level Domain Decomposition Parallel Pre-
conditioners Package based on PSBLAS) is a package of parallel
algebraic multi-level preconditioners. It implements various versions of
one-level additive and of multi-level additive and hybrid Schwarz algo-
rithms. In the multi-level case, a purely algebraic approach is applied
to generate coarse-level corrections, so that no geometric background is
needed concerning the matrix to be preconditioned. The matrix is re-
quired to be square, real or complex, with a symmetric sparsity pattern

MLD2P4 has been designed to provide scalable and easy-to-use pre-
conditioners in the context of the PSBLAS (Parallel Sparse Basic Linear
Algebra Subprograms) computational framework and can be used in con-
juction with the Krylov solvers available in this framework. MLD2P4
enables the user to easily specify different aspects of a generic algebraic
multilevel Schwarz preconditioner, thus allowing to search for the “best”
preconditioner for the problem at hand. The package has been designed
employing object-oriented techniques, using Fortran 95 and MPI, with
interfaces to additional external libraries such as UMFPACK, SuperLU
and SuperLU Dist, that can be exploited in building multi-level precon-
ditioners.

The software is freely distributable, under the terms of the license in
Appendix A.

This guide provides a brief description of the functionalities and the
user interface of MLD2P4.

ii

Contents

1 General Overview 1

2 Notational Conventions 3

3 Configuring and Building MLD2P4 4

4 Multi-level Domain Decomposition Background 5
4.1 Multi-level Schwarz Preconditioners 6
4.2 Smoothed Aggregation . 8

5 Getting Started 11
5.1 Examples . 12

6 User Interface 16
6.1 Subroutine mld precinit . 16
6.2 Subroutine mld precset . 17
6.3 Subroutine mld precbld . 22
6.4 Subroutine mld precaply . 23
6.5 Subroutine mld precfree . 23
6.6 Subroutine mld precdescr . 24

7 Error Handling 25

A License 26

B Bibliography 27

1 General Overview 1

1 General Overview

The Multi-Level Domain Decomposition Parallel Preconditioners
Package based on PSBLAS (MLD2P4) provides multi-level Schwarz pre-
conditioners [14], to be used in the iterative solutions of sparse linear systems:

Ax = b, (1)

where A is a square, real or complex, sparse matrix with a symmetric sparsity
pattern. These preconditioners have the following general features:

• both additive and hybrid multilevel variants are implemented, i.e. variants
that are additive among the levels and inside each level, and variants that
are multiplicative among the levels and additive inside each level; the basic
Additive Schwarz (AS) preconditioners are obtained by considering only
one level;

• a purely algebraic approach is used to generate a sequence of coarse-level
corrections to a basic AS preconditioner, without explicitly using any in-
formation on the geometry of the original problem (e.g. the discretization
of a PDE). The smoothed aggregation technique is applied as algebraic
coarsening strategy [1, 18].

The package is written in Fortran 95, following an object-oriented approach
through the exploitation of features such as abstract data type creation, func-
tional overloading and dynamic memory management.The parallel implemen-
tation is based on a Single Program Multiple Data (SPMD) paradigm for
distributed-memory architectures. Single and double precision implementations
of MLD2P4 are available for both the real and the complex case, that can be
used through a single interface.

MLD2P4 has been designed to implement scalable and easy-to-use multilevel
preconditioners in the context of the PSBLAS (Parallel Sparse BLAS) computa-
tional framework [12]. PSBLAS is a library originally developed to address the
parallel implementation of iterative solvers for sparse linear system, by provid-
ing basic linear algebra operators and data management facilities for distributed
sparse matrices; it also includes parallel Krylov solvers, built on the top of the
basic PSBLAS kernels. The preconditioners available in MLD2P4 can be used
with these Krylov solvers. The choice of PSBLAS has been mainly motivated by
the need of having a portable and efficient software infrastructure implementing
“de facto” standard parallel sparse linear algebra kernels, to pursue goals such
as performance, portability, modularity ed extensibility in the development of
the preconditioner package. On the other hand, the implementation of MLD2P4
has led to some revisions and extentions of the PSBLAS kernels, leading to the
recent PSBLAS 2.0 version [11]. The inter-process comunication required by
MLD2P4 is encapsulated into the PSBLAS routines, except few cases where
MPI [15] is explicitly called. Therefore, MLD2P4 can be run on any parallel
machine where PSBLAS and MPI implementations are available.

MLD2P4 has a layered and modular software architecture where three main
layers can be identified. The lower layer consists of the PSBLAS kernels, the
middle one implements the construction and application phases of the precon-
ditioners, and the upper one provides a uniform and easy-to-use interface to
all the preconditioners. This architecture allows for different levels of use of

1 General Overview 2

the package: few black-box routines at the upper layer allow non-expert users
to easily build any preconditioner available in MLD2P4 and to apply it within
a PSBLAS Krylov solver. On the other hand, the routines of the middle and
lower layer can be used and extended by expert users to build new versions
of multi-level Schwarz preconditioners. We provide here a description of the
upper-layer routines, but not of the medium-layer ones.

This guide is organized as follows: ORGANIZZAZIONE DELLA GUIDA

2 Notational conventions 3

2 Notational Conventions

- caratteri tipografici usati nella guida (vedi guida ML recente e guida Aztec)
- convenzioni sui nomi di routine (differenza nei nomi tra high-level e medium-
level), strutture dati, moduli, costanti, etc. (vedi guida psblas)
- versione reale e complessa, singola e doppia precisione

3 Configuring and Building 4

3 Configuring and Building MLD2P4

- uso di GNU autoconf e automake
- software di base necessario (MPI, BLACS, BLAS, PSBLAS, UMFPACK ? -
specificare versioni)
- software opzionale (SuperLU, SuperLUdist - specificare versioni e opzioni di
configure)
- sistemi operativi e compilatori su cui MLD2P4 e’ stato costruito con successo
- sono previste opzioni di configurazione per il debugging o per il profiling?
- albero delle directory generato al momento dell’installazione

4 Background 5

4 Multi-level Domain Decomposition Background

Domain Decomposition (DD) preconditioners, coupled with Krylov iterative
solvers, are widely used in the parallel solution of large and sparse linear sys-
tems. These preconditioners are based on the divide and conquer technique: the
matrix to be preconditioned is divided into submatrices, a “local linear system”
involving each submatrix is (approximately) solved, and the local solutions are
used to build a preconditioner for the whole original matrix. This process of-
ten corresponds to dividing a physical domain associated to the original matrix
into subdomains, e.g. in a PDE discretization, to (approximately) solving the
subproblems corresponding to the subdomains and to building an approximate
solution of the original problem from the local solutions [6, 7, 14].

Additive Schwarz preconditioners are DD preconditioners using overlapping
submatrices, i.e. with some common rows, to couple the local information re-
lated to the submatrices (see, e.g., [14]). The main motivations for choosing
Additive Schwarz preconditioners are their intrinsic parallelism. A drawback
of these preconditioners is that the number of iterations of the preconditioned
solvers generally grows with the number of submatrices. This may be a seri-
ous limitation on parallel computers, since the number of submatrices usually
matches the number of available processors. Optimal convergence rates, i.e. it-
eration numbers independent of the number of submatrices, can be obtained by
correcting the preconditioner through a suitable approximation of the original
linear system in a coarse space, which globally couples the information related
to the single submatrices.

Two-level Schwarz preconditioners are obtained by combining basic (one-
level) Schwarz preconditioners with coarse-level corrections. In this context, the
one-level preconditioner is often called smoother. Different two-level precondi-
tioners are obtained by varying the choice of the smoother, of the coarse-level
correction and the way they are combined [14]. The same reasoning can be
applied starting from the coarse-level system, i.e. a coarse-space correction can
be built from this system, thus obtaining multi-level preconditioners.

It is worth noting that optimal preconditioners do not necessarily correspond
to minimum execution times. Indeed, to obtain effective multilevel precondi-
tioners a tradeoff between optimality of convergence and the cost of building
and applying the coarse-space corrections must be achieved. The choice of the
number of levels, i.e. of the coarse-space corrections, also affects the effective-
ness of the preconditioners. One more goal is to get convergence rates as less
sensitive as possible to variations in the matrix coefficients.

Two main approaches can be used to build coarse-space corrections. The ge-
ometric approach applies coarsening strategies based on the knowledge of some
physical grid associated to the matrix and requires the user to define grid trans-
fer operators from the fine to the coarse levels and vice versa. This may result
difficult for complex geometries; furthermore, suitable one-level preconditioners
may be required to get efficient interplay between fine and coarse levels, e.g.
when matrices with highly varying coefficients are considered. The algebraic
approach builds coarse-space corrections using only matrix information. It per-
forms a fully automatic coarsening and enforces the interplay between the fine
and coarse levels by suitably choosing the coarse space and the coarse-to-fine
interpolation [16].

MLD2P4 uses a pure algebraic approach for building the sequence of coarse

4 Background 6

matrices starting from the original matrix. The algebraic approach is based
on the smoothed aggregation algorithm [1, 18]. A decoupled version of this
algorithm is implemented, where the smoothed aggregation is applied locally to
each submatrix [17]. In the next two subsections we provide a brief description
of the multi-level Schwarz preconditioners and on the smoothed aggregation
technique as implemented in MLD2P4. For further details the user is referred
to [2, 3, 4, 14].

4.1 Multi-level Schwarz Preconditioners

The Multilevel preconditioners implemented in MLD2P4 are obtained by com-
bining AS preconditioners with coarse-space corrections; therefore we first pro-
vide a sketch of the AS preconditioners.

Given the linear system (1), where A = (aij) ∈ <n×n is a nonsingular sparse
matrix with a symmetric non-zero pattern, let G = (W,E) be the adjacency
graph of A, where W = {1, 2, . . . , n} and E = {(i, j) : aij 6= 0} are the vertex
set and the edge set of G, respectively. Two vertices are called adjacent if there
is an edge connecting them. For any integer δ > 0, a δ-overlap partition of W
can be defined recursively as follows. Given a 0-overlap (or non-overlapping)
partition of W , i.e. a set of m disjoint nonempty sets W 0

i ⊂ W such that
∪mi=1W

0
i = W , a δ-overlap partition of W is obtained by considering the sets

W δ
i ⊃W

δ−1
i , obtained by including the vertices that are adjacent to any vertex

in W δ−1
i .

Let nδi be the size of W δ
i and Rδi ∈ <n

δ
i×n the restriction operator that

maps a vector v ∈ <n onto the vector vδi ∈ <n
δ
i containing the components of

v corresponding to the vertices in W δ
i . The transpose of Rδi is a prolongation

operator from <nδi to <n. The matrix Aδi = RδiA(Rδi)
T ∈ <nδi×nδi can be

considered as a restriction of A corresponding to the set W δ
i .

The classical one-level AS preconditioner is defined by

M−1
AS =

m∑
i=1

(Rδi)
T (Aδi)

−1Rδi ,

where Aδi is assumed to be nonsingular. Its application to a vector v ∈ <n
within a Krylov solver requires the following three steps:

1. restriction of v as vi = Rδi v, i = 1, . . . ,m;

2. (approximate) solution of the linear systems Aδiwi = vi, i = 1, . . . ,m;

3. prolongation and sum of the wi’s, i.e. w =
∑m
i=1(Rδi)

Twi.

A variant of the classical AS preconditioner that outperforms it in terms of
both convergence rate and of computation and communication time on parallel
distributed-memory computers is the so-called Restricted AS (RAS) precondi-
tioner [5, 10]. It is obtained by zeroing the components of wi corresponding to
the overlapping vertices when applying the prolongation. Therefore, RAS dif-
fers from classical AS by the prolongation operators, which are substituted by
(R̃0

i)
T ∈ <nδi×n, where R̃0

i is obtained by zeroing the rows of Rδi corresponding

4 Background 7

to the vertices in W δ
i \W 0

i :

M−1
RAS =

m∑
i=1

(R̃0
i)
T (Aδi)

−1Rδi .

Analogously, the AS variant called AS with Harmonic extension (ASH) is de-
fined by

M−1
ASH =

m∑
i=1

(Rδi)
T (Aδi)

−1R̃0
i .

We note that for δ = 0 the three variants of the AS preconditioner are all equal
to the block-Jacobi preconditioner.

As already observed, the convergence rate of the one-level Schwarz precondi-
tioned iterative solvers deteriorates as the number m of partitions of W increases
[7, 14]. To reduce the dependency of the number of iterations on the degree of
parallelism we may introduce a global coupling among the overlapping parti-
tions by defining a coarse-space approximation AC of the matrix A. In a pure
algebraic setting, AC is usually built with a Galerkin approach. Given a set WC

of coarse vertices, with size nC , and a suitable restriction operator RC ∈ <nC×n,
AC is defined as

AC = RCAR
T
C

and the coarse-level correction matrix to be combined with a generic one-level
AS preconditioner M1L is obtained as

M−1
C = RTCA

−1
C RC ,

where AC is assumed to be nonsingular. The application of M−1
C to a vector

v corresponds to a restriction, a solution and a prolongation step; the solution
step, involving the matrix AC , may be carried out also approximately.

The combination of MC and M1L may be performed in either an additive or
a multiplicative framework. In the former case, the two-level additive Schwarz
preconditioner is obtained:

M−1
2LA = M−1

C +M−1
1L .

Applying M−1
2L−A to a vector v within a Krylov solver corresponds to applying

M−1
C and M−1

1L to v independently and then summing up the results.
In the multiplicative case, the combination can be performed by first apply-

ing the smoother M−1
1L and then the coarse-level correction operator M−1

C :

w = M−1
1L v,

z = w +M−1
C (v −Aw);

this corresponds to the following two-level hybrid pre-smoothed Schwarz precon-
ditioner:

M−1
2LH−PRE = M−1

C +
(
I −M−1

C A
)
M−1

1L .

On the other hand, by applying the smoother after the coarse-level correction,
i.e. by computing

w = M−1
C v,

z = w +M−1
1L (v −Aw),

4 Background 8

the two-level hybrid post-smoothed Schwarz preconditioner is obtained:

M−1
2LH−POST = M−1

1L +
(
I −M−1

1L A
)
M−1
C .

One more variant of two-level hybrid preconditioner is obtained by applying
the smoother before and after the coarse-level correction. In this case, the
preconditioner is symmetric if A, M1L and MC are symmetric.

As previously noted, on parallel computers the number of sumatrices usu-
ally matches the number of available processors. When the size of the system to
be preconditioned is very large, the use of many processors, i.e. of many small
submatrices, often leads to a large coarse-level system, whose solution may be
computationally expensive. On the other hand, the use of few processors of-
ten leads to local sumatrices that are too expensive to be processed on single
processors, because of memory and/or computing requirements. Therefore, it
seems natural to use a recursive approach, in which the coarse-level correction
is re-applied starting from the current coarse-level system. The correspond-
ing preconditioners are called multi-level. One more reason for the multi-level
approach is that it may significantly reduce the computational cost of precon-
ditioning with respect to the two-level case (see [14, Chapter 3]). Additive
and hybrid multilevel preconditioners are obtained as direct extensions of the
two-level counterparts. The algorithm for applying a multi-level version of the
two-level hybrid post-smoothed preconditioner is reported in Figure 1. Other
combinations of the smoothers and coarse-level corrections are possible, leading
to variants of the previous algorithms. For a detailed descrition of them, the
reader is referred to [14, Chapter 3].

4.2 Smoothed Aggregation

To define the restriction operator RC , which is used to compute the coarse-
level matrix AC , MLD2P4 uses the smoothed aggregation algorithm described
in [1, 18]. The basic idea of this algorithm is to build a coarse set of vertices WC

by suitably grouping the vertices of W into disjoint subsets (aggregates), and
to define the coarse-to-fine space transfer operator RTC by applying a suitable
smoother to a simple piecewise constant prolongation operator, to improve the
quality of the coarse-space correction.

Three main steps can be identified in the smoothed aggregation procedure:

1. coarsening of the vertex set W , to obtain WC ;

2. construction of the prolongator RTC ;

3. application of RC and RTC to build AC .

To perform the coarsening step, we have implemented the aggregation al-
gorithm sketched in [4]. According to [1], a modification of this algorithm has
been actually considered, in which each aggregate Nr is made of vertices of W
that are strongly coupled to a certain root vertex r ∈W , i.e.

Nr =
{
s ∈W : |ars| > θ

√
|arrass|

}
∪ {r} ,

for a given θ ∈ [0, 1]. L’ALGORITMO USA IL MAGGIORE STRETTO?
ALTRIMENTI CON THETA=0 AGGREGHIAMO ANCHE I VER-
TICI CON COEFFICIENTE CORRISPONDENTE NULLO Since the

4 Background 9

! assigned the finest matrix
A1 ← A;

! defined the number of levels nlev

! defined nlev − 1 prolongators
RT

l , l = 2, . . . , nlev;

! defined nlev − 1 coarser matrices
Al ← RlAl−1R

T
l , l = 2, . . . , nlev;

! defined the nlev − 1 basic Schwarz preconditioners
Ml, basic preconditioner for Al l = 1, . . . , nlev − 1;

! assigned a vector v
v1 ← v;

for l = 2, nlev do

! transfer vl−1 to the next coarser level
vl ← Rlvl−1;

endfor

! apply the coarsest-level correction

ynlev ← A−1
nlev ∗ vnlev;

for l = nlev − 1, 1,−1 do

! transfer yl+1 to the next finer level
yl ← RT

l+1 ∗ yl+1;

! compute the residual at the current level
rl ← vl −A−1

l ∗ yl;

! apply the basic Schwarz preconditioner to rl

rl ←M−1
l ∗ rl

! update yl

yl ← yl + rl

endfor

! preconditioned vector w ← y1;

Figure 1: Multi-level hybrid post-smoothed preconditioner.

previous algorithm has a sequential nature, a decoupled version of it has been
chosen, where each processor i independently applies the algorithm to the set
of vertices W 0

i assigned to it in the initial data distribution. This version is em-
barrassingly parallel, since it does not require any data communication. On the
other hand, it may produce non-uniform aggregates near boundary vertices, i.e.
near vertices adjacent to vertices in other processors, and is strongly dependent
on the number of processors and on the initial partitioning of the matrix A. Nev-
ertheless, this algorithm has been chosen for the implementation in MLD2P4,
since it has been shown to produce good results in practice [3, 4, 17].

The prolongator PC = RTC is built starting from a tentative prolongator
P ∈ <n×nC , defined as

P = (pij), pij =
{

1 if i ∈ V jC
0 otherwise

. (2)

4 Background 10

PC is obtained by applying to P a smoother S ∈ <n×n:

PC = SP, (3)

in order to remove oscillatory components from the range of the prolongator and
hence to improve the convergence properties of the multi-level Schwarz method
[1, 16]. A simple choice for S is the damped Jacobi smoother:

S = I − ωD−1A, (4)

where the value of ω can be chosen using some estimate of the spectral radius
of D−1A [1].

5 Getting started 11

5 Getting Started

We describe the basics for building and applying MLD2P4 one-level and multi-
level Schwarz preconditioners with the Krylov solvers included in PSBLAS [11].
The following steps are required:

1. Declare the preconditioner data structure. It is a derived data type, mld_-
xprec_type, where x may be s, d, c or z, according to the basic data
type of the sparse matrix (s = real single precision; d = real double pre-
cision; c = complex single precision; z = complex double precision). This
data structure is accessed by the user only through the MLD2P4 routines,
following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, according to a
preconditioner type chosen by the user. This is performed by the routine
mld_precinit, which also sets defaults for each preconditioner type se-
lected by the user. The defaults associated to each preconditioner type
are listed in Table 1, where the strings used by mld_precinit to identify
the preconditioner types are also given.

3. Modify the selected preconditioner type, by properly setting preconditioner
parameters. This is performed by the routine mld_precset. This routine
must be called only if the user wants to modify the default values of the
parameters associated to the selected preconditioner type, to obtain a
variant of the preconditioner. Examples of use of mld_precset is given in
Section 5.1; a complete list of all the preconditioner parameters and their
allowed and default values is provided in Section 6, Tables 2-5.

4. Build the preconditioner for a given matrix. This is performed by the
routine mld_precbld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is per-
formed by the routine mld_precaply. When using the PSBLAS Krylov
solvers, this step is completely transparent to the user, since mld_precaply
is called by the PSBLAS routine implementing the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine
mld_precfree. This step is complementary to step 1 and should be per-
formed when the preconditioner is no more used.

A detailed description of the above routines is given in Section 6.
Note that the Fortran 95 module mld_prec_mod must be used in the program

calling the MLD2P4 routines; this requires also the use of the psb_base_mod
for the sparse matrix and communication descriptor data types, as well as for
the kind parameters for vectors, and the use of the module psb_krylov_mod for
interfacing with the Krylov solvers. Note that the include path for MLD2P4
must override those for the base PSBLAS, e.g. they must come first in the
sequence passed to the compiler, as the MLD2P4 version of the Krylov interfaces
must override that of PSBLAS. This will change in the future when the support
for the class statement becomes widespread in Fortran compilers. Examples
showing the basic use of MLD2P4 are reported in Section 5.1.
Remark. The coarsest-level solver used by the default two-level preconditioner
has been chosen by taking into account that, on parallel machines, it often leads

5 Getting started 12

to the smallest execution time when applied to linear systems coming from finite-
difference discretizations of basic elliptic PDE problems, considered as standard
tests for multi-level Schwarz preconditioners [3, 4]. However, this solver does
not necessarily to the smallest number of iterations of the preconditioned Krylov
method, which is usually obtained by applying a direct solver, e.g. based on the
LU factorization, on a matrix replicated at the coarsest level (see Section 6 for
coarsest-level solvers available in MLD2P4).

Type String Default preconditioner
No preconditioner ’NOPREC’ (Considered only to use the PSBLAS Krylov

solvers with no preconditioner.)
Diagonal ’DIAG’ —
Block Jacobi ’BJAC’ Block Jacobi with ILU(0) on the local

blocks.
Additive Schwarz ’AS’ Restricted Additive Schwarz (RAS), with

overlap 1 and ILU(0) on the local blocks.
Multilevel ’ML’ Multi-level hybrid preconditioner (additive

on the same level and multiplicative through
the levels), with post-smoothing only. Num-
ber of levels: 2; post-smoother: RAS with
overlap 1 and with ILU(0) on the local
blocks; coarsest matrix: distributed among
the processors; (approximate) coarse-level
solver: 4 sweeps of the block-Jacobi solver,
with the UMFPACK LU factorization on
the blocks (double precision versions) or
XXXXXXXXX (single precision versions)

Table 1: Preconditioner types, corresponding strings and default choices.

5.1 Examples

The code reported in Figure 2 shows how to set and apply the default multi-
level preconditioner available in the real double precision version of MLD2P4
(see Table 1). This preconditioner is chosen by simply specifying ’ML’ as second
argument of mld_precinit (a call to mld_precset is not needed) and is applied
with the BiCGSTAB solver provided by PSBLAS. The setup and application
of the default multi-level preconditioners for the real single precision and the
complex, single and double precision, versions are obtained with straightforward
modifications of the example.

The part of the code concerning the reading and assembling of the sparse
matrix and the right-hand side vector, performed through the PSBLAS routines
for sparse matrix and vector management, is not reported here for brevity; the
statements concerning the deallocation of the PSBLAS data structure are ne-
glected too. The complete code can be found in the example program file
example_ml.f90 in the directory XXXXXX (COMPLETARE. DIRE CHE
I FILE IN REALTA’ SONO DUE, UNO CON LA GENERAZIONE
DELLA MATRICE ED UNO CON LA LETTURA). Note that the mod-

5 Getting started 13

ules psb_base_mod and psb_util_mod at the beginning of the code are required
by PSBLAS. O psb base mod E’ RICHIESTO ANCHE DA MLD2P4?) For
details on the use of the PSBLAS routines, see the PSBLAS User’s Guide [11].

LE FIGURE SONO DECENTRATE, NONOSTANTE IL CEN-
TER. CI VUOLE UNA MINIPAGE?

Different versions of multilevel preconditioner can be obtained by chang-
ing the default values of the preconditioner parameters. The code reported in
Figure 3 shows how to set a three-level hybrid Schwarz preconditioner, which
uses block Jacobi with ILU(0) on the local blocks as post-smoother, a coars-
est matrix replicated on the processors, and the LU factorization from UMF-
PACK [8], version 4.4, as coarse-level solver. The number of levels is speci-
fied by using mld_precinit; the other preconditioner parameters are set by
calling mld_precset. Note that the type of multilevel framework (i.e. multi-
plicative among the levels with post-smoothing only) is not specified since it
is the default set by mld_precinit. Figure 4 shows how to set a three-level
additive Schwarz preconditioner, which applies RAS, with overlap 1 and ILU(0)
on the blocks, as pre- and post-smoother, and five block-Jacobi sweeps, with
the UMFPACK LU factorization on the blocks, as distributed coarsest-level
solver. Again, mld_precset is used only to set non-default values of the param-
eters (see Tables 2-5). In both cases, the construction and the application of
the preconditioner are carried out as for the default multi-level preconditioner.
The code fragments shown in in Figures 3-4 are included in the example pro-
gram file example_ml.f90. LO STESSO PROGRAMMA CONTIENE
I TRE ESEMPI, CON UN SWITCH TRA L’UNO E L’ALTRO O
FACCIAMO 3 PROGRAMMI DISTINTI? NON RICORDO CHE
COSA ABBIAMO DECISO. PASQUA: ABBIAMO DETTO CHE
ERA PREFERIBILE UN UNICO PROGRAMMA CON SWITCH.

Finally, Figure 5 shows the setup of a one-level additive Schwarz precondi-
tioner, i.e. RAS with overlap 2. The corresponding code, including also the ap-
plication of the preconditioner is in the example program file example_1lev.f90.

Remark. Any PSBLAS-based program using the basic preconditioners imple-
mented in PSBLAS 2.0, i.e. the diagonal and block-Jacobi ones, can use the
diagonal and block-Jacobi preconditioners implemented in MLD2P4 without
any change in the code. The PSBLAS-based program must be only recompiled
and linked to the MLD2P4 library.

5 Getting started 14

use psb_base_mod

use psb_util_mod

use mld_prec_mod

use psb_krylov_mod

... ...

!

! sparse matrix

type(psb_dspmat_type) :: A

! sparse matrix descriptor

type(psb_desc_type) :: desc_A

! preconditioner

type(mld_dprec_type) :: P

... ...

!

! initialize the parallel environment

call psb_init(ictxt)

call psb_info(ictxt,iam,np)

... ...

!

! read and assemble the matrix A and the right-hand

! side b using PSBLAS routines for sparse matrix /

! vector management

... ...

!

! initialize the default multi-level preconditioner,

! i.e. two-level hybrid Schwarz, using RAS (with

! overlap 1 and ILU(0) on the blocks) as post-smoother

! and 4 block-Jacobi sweeps (with UMFPACK LU on the

! blocks) as distributed coarse-level solver

call mld_precinit(P,’ML’,info)

!

! build the preconditioner

call psb_precbld(A,P,desc_A,info)

!

! set the solver parameters and the initial guess

... ...

!

! solve Ax=b with preconditioned BiCGSTAB

call psb_krylov(’BICGSTAB’,A,P,b,x,tol,desc_A,info)

... ...

!

! deallocate the preconditioner

call mld_precfree(P,info)

!

! deallocate other data structures

... ...

!

! exit the parallel environment

call psb_exit(ictxt)

stop

Figure 2: Setup and application of the default multi-level Schwarz precondi-
tioner.

5 Getting started 15

... ...

! set a three-level hybrid Schwarz preconditioner,

! which uses block Jacobi (with ILU(0) on the blocks)

! as post-smoother, a coarsest matrix replicated on the

! processors, and the LU factorization from UMFPACK

! as coarse-level solver

call mld_precinit(P,’ML’,info,nlev=3)

call_mld_precset(P,mld_smoother_type_,’BJAC’,info)

call mld_precset(P,mld_coarse_mat,’REPL’)

call mld_precset(P,mld_coarse_solve,’UMF’)

... ...

Figure 3: Setup of a hybrid three-level Schwarz preconditioner.

... ...

! set a three-level additive Schwarz preconditioner,

! which uses RAS (with overlap 1 and ILU(0) on the blocks)

! as pre- and post-smoother, and 5 block-Jacobi sweeps

! (with UMFPACK LU on the blocks) as distributed

! coarsest-level solver

call mld_precinit(P,’ML’,info,nlev=3)

call mld_precset(P,mld_ml_type_,’ADD’,info)

call_mld_precset(P,mld_smoother_pos_,’TWOSIDE’,info)

call mld_precset(P,mld_coarse_sweeps_,5)

... ...

Figure 4: Setup of an additive three-level Schwarz preconditioner.

... ...

! set RAS with overlap 2 and ILU(0) on the local blocks

call mld_precinit(P,’AS’,info)

call mld_precset(P,mld_sub_ovr_,2,info)

... ...

Figure 5: Setup of a one-level Schwarz preconditioner.

6 User Interface 16

6 User Interface

The basic user interface of MLD2P4 consists of six routines. The four routines
mld_precinit, mld_precset, mld_precbld and mld_precaply encapsulate all
the functionalities for the setup and application of any one-level and multi-
level preconditioner implemented in the package. The routine mld_precfree
deallocates the preconditioner data structure, while mld_precdescr prints a
description of the preconditioner setup by the user.

For each routine, the same user interface is overloaded with respect to the
real/complex case and the single/double precision; arguments with appropriate
data types must be passed to the routine, i.e.

• the sparse matrix data structure, containing the matrix to be precondi-
tioned, must be of type mld_xspmat_type with x = s for real single pre-
cision, x = d for real double precision, x = c for complex single precision,
x = z for complex double precision;

• the preconditioner data structure must be of type mld_xprec_type, with
x = s, d, c, z, according to the sparse matrix data structure;

• the arrays containing the vectors v and w involved in the preconditioner
application w = M−1v must be of type type(kind parameter), with type =
real, complex and kind parameter = kind(1.e0), kind(1.d0), according
to the sparse matrix and preconditioner data structure; note that the
PSBLAS module provides the constants psb_spk_ = kind(1.e0) and
psb_dpk_ = kind(1.d0);

• real parameters defining the preconditioner must be declared according to
the precision of the previous data structures (see Section 6.2).

A description of each routine is given in the remainder of this section.

6.1 Subroutine mld precinit

mld_precinit(p,ptype,info)
mld_precinit(p,ptype,info,nlev)

This routine allocates and initializes the preconditioner data structure, accord-
ing to the preconditioner type chosen by the user.

Arguments

p type(mld_xprec_type), intent(inout).
The preconditioner data structure. Note that x must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.

ptype character(len=*), intent(in).
The type of preconditioner. Its values are specified in Table 1.

info integer, intent(out).
Error code. See Section 7 for details.

nlev integer, optional, intent(in).
The number of levels of the multilevel preconditioner. If nlev is not present
and ptype=’ML’/’ml’, then nlev=2 is assumed. Otherwise, nlev is ignored.

6 User Interface 17

6.2 Subroutine mld precset

mld_precset(p,what,val,info)

This routine sets the parameters defining the preconditioner. More precisely,
the parameter identified by what is assigned the value contained in val.

Arguments

p type(mld_xprec_type), intent(inout).
The preconditioner data structure. Note that x must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.

what integer, intent(in).
The number identifying the parameter to be set. A mnemonic constant has
been associated to each of these numbers, as reported in Tables 2-5.

val integer or character(len=*) or real(psb_spk_) or real(psb_dpk_),
intent(in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Table ??.

info integer, intent(out).
Error code. See Section 7 for details.

A variety of (one-level and multi-level) preconditioner can be obtained by a
suitable setting of the preconditioner parameters. These parameters can be
logically divided into four groups, i.e. parameters defining

1. the type of multi-level preconditioner;

2. the one-level preconditioner to be used as smoother;

3. the aggregation algorithm;

4. the coarse-space correction at the coarsest level.

A list of the parameters that can be set, along with their allowed and default
values, is given in Tables 2-5. CORREGGERE LA ROUTINE E LA DOC
INTERNA - ilev NON E’ PIU’ ACCESSIBILE ALL’UTENTE.

6 User Interface 18

w
h
a
t

da
ta

ty
pe

v
a
l

de
fa

ul
t

co
m

m
en

ts
m
l
d
_
m
l
_
t
y
p
e
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’A
D

D
’

’M
U

LT
’

’M
U

LT
’

ba
si

c
m

ul
ti

-l
ev

el
fr

am
ew

or
k:

ad
di

ti
ve

or
m

ul
-

ti
pl

ic
at

iv
e

am
on

g
th

e
le

ve
ls

al
w

ay
s

ad
di

ti
ve

in
-

si
de

a
le

ve
l)

m
l
d
_
s
m
o
o
t
h
e
r
_
t
y
p
e
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’D
IA

G
’

’B
JA

C
’

’A
S’

’A
S’

ba
si

c
on

e-
le

ve
l

pr
ec

on
di

ti
on

er
(i

.e
.

sm
oo

th
er

)
of

th
e

m
ul

ti
-l

ev
el

pr
ec

on
di

ti
on

er

m
l
d
_
s
m
o
o
t
h
e
r
_
p
o
s
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’P
R

E
’

’P
O

ST
’

’T
W

O
SI

D
E

’

’P
O

ST
’

“p
os

it
io

n”
of

th
e

sm
oo

th
er

:
pr

e-
sm

oo
th

er
,

po
st

-s
m

oo
th

er
,

pr
e-

/p
os

t-
sm

oo
th

er

T
ab

le
2:

P
ar

am
et

er
s

de
fin

in
g

th
e

ty
pe

of
m

ul
ti

-l
ev

el
pr

ec
on

di
ti

on
er

.

6 User Interface 19

w
h
a
t

da
ta

ty
pe

v
a
l

de
fa

ul
t

co
m

m
en

ts
m
l
d
_
s
u
b
_
o
v
r

i
n
t
e
g
e
r

an
y

nu
m

be
r

≥
0

1
nu

m
be

r
of

ov
er

la
p

in
th

e
ba

si
c

Sc
hw

ar
z

pr
e-

co
nd

it
io

ne
r

m
l
d
_
s
u
b
_
r
e
s
t
r
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’H
A

L
O

’
’N

O
N

E
’

’H
A

L
O

’
ty

pe
of

re
st

ri
ct

io
n

op
er

at
or

us
ed

in
ba

si
c

Sc
hw

ar
z

pr
ec

on
di

ti
on

er
:

’H
A

L
O

’
fo

r
ta

ki
ng

in
to

ac
co

un
t

co
nt

ri
bu

ti
on

s
fr

om
th

e
ov

er
la

p
m
l
d
_
s
u
b
_
p
r
o
l
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’S
U

M
’

’N
O

N
E

’
’N

O
N

E
’

ty
pe

of
pr

ol
on

ga
to

r
op

er
at

or
us

ed
in

ba
si

c
Sc

hw
ar

z
pr

ec
on

di
ti

on
er

:
’N

O
N

E
’

fo
r

ne
gl

ec
t-

in
g

co
nt

ri
bu

ti
on

s
fr

om
th

e
ov

er
la

p
m
l
d
_
s
u
b
_
s
o
l
v
e
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’I
L

U
’

’M
IL

U
’

’I
L

U
T

’
’U

M
F

’
’S

L
U

’

’U
M

F
’

av
ai

la
bl

e
lo

ca
l

so
lv

er
:

’I
L

U
’

fo
r

in
co

m
pl

et
e

L
U

,
’M

IL
U

’
fo

r
m

od
ifi

ed
in

co
m

pl
et

e
L

U
,

’I
L

U
T

’
fo

r
in

co
m

pl
et

e
L

U
w

it
h

th
re

sh
ol

d,
’U

M
F

’
fo

r
co

m
pl

et
e

L
U

us
in

g
U

M
F

PA
C

K
[8

]
ve

rs
io

n
4.

4,
’S

L
U

’
fo

r
co

m
pl

et
e

L
U

us
in

g
Su

-
pe

rL
U

[9
],

ve
rs

io
n

3.
0

m
l
d
_
s
u
b
_
f
i
l
l
i
n
_

i
n
t
e
g
e
r

an
y

nu
m

be
r

≥
0

0
fil

l-
in

le
ve

l
fo

r
’I

L
U

’,
’M

IL
U

’
an

d
’I

L
U

T
’

of
lo

ca
l

bl
oc

ks
m
l
d
_
s
u
b
_
t
h
r
e
s
h
_

r
e
a
l

an
y

nu
m

be
r

≥
0.

0.
dr

op
to

le
ra

nc
e

fo
r

’I
L

U
T

’

m
l
d
_
s
u
b
_
r
e
n
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’R
E

N
U

M
N

O
N

E
’,

’R
E

N
U

M
G

L
O

B
A

L
’

re
or

de
ri

ng
al

go
ri

th
m

fo
r

th
e

lo
ca

l
bl

oc
ks

T
ab

le
3:

P
ar

am
et

er
s

de
fin

in
g

th
e

ba
si

c
on

e-
le

ve
l

pr
ec

on
di

ti
on

er
(s

m
oo

th
er

).

6 User Interface 20

w
h
a
t

da
ta

ty
pe

v
a
l

de
fa

ul
t

co
m

m
en

ts
m
l
d
_
a
g
g
r
_
a
l
g
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’D
E

C
’

’D
E

C
’

de
fin

e
th

e
ag

gr
eg

at
io

n
sc

he
m

e.
N

ow
,

on
ly

de
-

co
up

le
d

ag
gr

eg
at

io
n

is
av

ai
la

bl
e

m
l
d
_
a
g
g
r
_
k
i
n
d
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’S
M

O
O

T
H

’,
’R

A
W

’
’S

M
O

O
T

H
’

de
fin

e
th

e
ty

pe
of

ag
gr

eg
at

io
n

te
ch

ni
qu

e
(s

m
oo

th
ed

or
no

ns
m

oo
th

ed
).

m
l
d
_
a
g
g
r
_
t
h
r
e
s
h
_

r
e
a
l

an
y

nu
m

be
r

∈
[0
,1

]
0.

dr
op

pi
ng

th
re

sh
ol

d
in

ag
gr

eg
at

io
n

m
l
d
_
a
g
g
r
_
e
i
g
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’A
N

O
R

M
I’

de
fin

e
th

e
al

go
ri

th
m

to
ev

al
ua

te
th

e
m

ax
im

um
ei

ge
nv

al
ue

of
D
−

1
A

fo
r

sm
oo

th
ed

ag
gr

eg
at

io
n.

C
ur

re
nt

ly
on

ly
th

e
in

fin
it

y
no

rm
of

th
e

m
at

ri
x

A
is

av
ai

la
bl

e

T
ab

le
4:

P
ar

am
et

er
s

de
fin

in
g

th
e

ag
gr

eg
at

io
n

al
go

ri
th

m
.

6 User Interface 21

w
h
a
t

da
ta

ty
pe

v
a
l

de
fa

ul
t

co
m

m
en

ts
m
l
d
_
c
o
a
r
s
e
_
m
a
t
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’D
IS

T
R

’,
’R

E
P

L
’

’D
IS

T
R

’
C

oa
rs

e
m

at
ri

x:
di

st
ri

bu
te

d
or

re
pl

ic
at

ed

m
l
d
_
c
o
a
r
s
e
_
s
o
l
v
e
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’B
JA

C
’

’U
M

F
’

’S
L

U
’

’S
L

U
D

IS
T

’

’B
JA

C
’

O
nl

y
’B

JA
C

’
an

d
’S

L
U

D
IS

T
’

ca
n

be
us

ed
fo

r
di

st
ri

bu
te

d
co

ar
se

m
at

ri
x.

’B
JA

C
’

co
r-

re
sp

on
ds

to
so

m
e

sw
ee

ps
of

a
bl

oc
k-

Ja
co

bi
so

lv
er

,
w

hi
le

’S
L

U
D

IS
T

’
co

rr
es

po
nd

s
to

th
e

us
e

of
th

e
ex

te
rn

al
pa

ck
ag

e
Su

pe
rL

U
D

is
t

[1
3]

,
ve

rs
io

n
2.

0,
fo

r
di

st
ri

bu
te

d
sp

ar
se

fa
ct

or
iz

at
io

n
an

d
so

lv
e.

m
l
d
_
c
o
a
r
s
e
_
s
u
b
s
o
l
v
e
_

c
h
a
r
a
c
t
e
r
(
l
e
n
=
*
)

’I
L

U
’

’M
IL

U
’

’I
L

U
T

’
’U

M
F

’
’S

L
U

’

’U
M

F
’

av
ai

la
bl

e
so

lv
er

fo
r

di
ag

on
al

lo
ca

lb
lo

ck
s

of
th

e
co

ar
se

m
at

ri
x,

w
he

n
’B

JA
C

’
is

us
ed

as
co

ar
se

so
lv

er

m
l
d
_
c
o
a
r
s
e
_
s
w
e
e
p
s
_

i
n
t
e
g
e
r

an
y

nu
m

be
r

>
0

4
nu

m
be

r
of

B
lo

ck
-J

ac
ob

i
sw

ee
ps

w
he

n
’B

JA
C

’
is

us
ed

as
co

ar
se

so
lv

er
m
l
d
_
c
o
a
r
s
e
_
f
i
l
l
i
n
_

i
n
t
e
g
e
r

an
y

nu
m

be
r

≥
0

0
fil

l-
in

le
ve

l
in

in
co

m
pl

et
e

fa
ct

or
iz

at
io

n
of

lo
-

ca
ld

ia
go

na
lb

lo
ck

s
of

th
e

co
ar

se
m

at
ri

x,
w

he
n

’B
JA

C
’

is
us

ed
as

co
ar

se
so

lv
er

an
d

’I
L

U
’

or
’M

IL
U

’
is

us
ed

as
lo

ca
l

so
lv

er
M

O
D

IF
IC

A
N

O
M

E
P

A
R

A
M

.
N

E
L

S
W

m
l
d
_
c
o
a
r
s
e
_
t
h
r
e
s
h
_

r
e
a
l

an
y

nu
m

be
r

≥
0.

0.
dr

op
to

le
ra

nc
e

in
in

co
m

pl
et

e
fa

ct
or

iz
at

io
n

of
lo

ca
l

di
ag

on
al

bl
oc

ks
of

th
e

co
ar

se
m

at
ri

x,
w

he
n

’B
JA

C
’

is
us

ed
as

co
ar

se
so

lv
er

an
d

’I
L

U
T

’
is

us
ed

as
lo

ca
l

so
lv

er

T
ab

le
5:

P
ar

am
et

er
s

de
fin

in
g

th
e

co
ar

se
-s

pa
ce

co
rr

ec
ti

on
at

th
e

co
ar

se
st

le
ve

l.

6 User Interface 22

6.3 Subroutine mld precbld

mld_precbld(a,desc_a,p,info)

This routine builds the preconditioner according to the requirements made by
the user through the routines mld_precinit and mld_precset.

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix to be
preconditioned. Note that x must be chosen according to the real/complex,
single/double precision version of MLD2P4 under use. See the PSBLAS
User’s Guide for details [11].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [11].

p type(mld_xprec_type), intent(inout).
The preconditioner data structure. Note that x must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.

info integer, intent(out).
Error code. See Section 7 for details.

6 User Interface 23

6.4 Subroutine mld precaply

mld_precaply(p,x,y,desc_a,info)
mld_precaply(p,x,y,desc_a,info,trans,work)

This routine computes y = op(M−1)x, where M is a previously built precondi-
tioner, stored in the p data structure, and op denotes the preconditioner itself
or its transpose, according to the value of trans. Note that, when MLD2P4
is used with a Krylov solver from PSBLAS, mld_precaply is called within the
PSBLAS routine mld_krylov and hence is completely transparent to the user.

Arguments

p type(mld_xprec_type), intent(inout).
The preconditioner data structure, containing the local part ofM . Note that
x must be chosen according to the real/complex, single/double precision
version of MLD2P4 under use.

x type(kind parameter), dimension(:), intent(in).
The local part of the vector x. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version of
MLD2P4 under use.

y type(kind parameter), dimension(:), intent(out).
The local part of the vector y. Note that type and kind parameter must
be chosen according to the real/complex, single/double precision version of
MLD2P4 under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent(out).
Error code. See Section 7 for details.

trans character(len=1), optional, intent(in).
If trans = ’N’,’n’ then op(M−1) = M−1; if trans = ’T’,’t’ then
op(M−1) = M−T (transpose of M−1); if trans = ’C’,’c’ then op(M−1) =
M−C (conjugate transpose of M−1).

work type(kind parameter), dimension(:), optional, target.
Workspace. Its size should be at least
4 * psb_cd_get_local_cols(desc_a) (see the PSBLAS User’s Guide).
Note that type and kind parameter must be chosen according to the
real/complex, single/double precision version of MLD2P4 under use.

6.5 Subroutine mld precfree

mld_precfree(p,info)

This routine deallocates the preconditioner data structure.

6 User Interface 24

Arguments

p type(mld_xprec_type), intent(inout).
The preconditioner data structure. Note that x must be chosen according
to the real/complex, single/double precision version of MLD2P4 under use.

info integer, intent(out).
Error code. See Section 7 for details.

6.6 Subroutine mld precdescr

mld_precdescr(p,iout)

This routine prints a description of the preconditioner to a file.

Arguments

p type(mld_xprec_type), intent(in).
The preconditioner data structure. Note that x must be chosen
according to the real/complex, single/double precision version of
MLD2P4 under use.

iout integer, intent(in), optional.
The id of the file where the preconditioner description will be printed,
default is standard output.

7 Error handling 25

7 Error Handling

Error handling - Breve descrizione con rinvio alla guida di PSBLAS

A License 26

A License

The MLD2P4 is freely distributable under the following copyright terms:

MLD2P4 version 1.0

MultiLevel Domain Decomposition Parallel Preconditioners Package

based on PSBLAS (Parallel Sparse BLAS version 2.3)

(C) Copyright 2008

Salvatore Filippone University of Rome Tor Vergata

Alfredo Buttari University of Rome Tor Vergata

Pasqua D’Ambra ICAR-CNR, Naples

Daniela di Serafino Second University of Naples

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions, and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may

not be used to endorse or promote products derived from this

software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

B Bibliography 27

B Bibliography

[1] M. Brezina, P. Vaněk, A Black-Box Iterative Solver Based on a Two-Level
Schwarz Method, Computing, 63, 1999, 233–263.

[2] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending PSBLAS
to Build Parallel Schwarz Preconditioners, in , J. Dongarra, K. Madsen,
J. Wasniewski, editors, Proceedings of PARA 04 Workshop on State of the
Art in Scientific Computing, Lecture Notes in Computer Science, Springer,
2005, 593–602.

[3] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a pack-
age of high-performance preconditioners, Applicable Algebra in Engineer-
ing, Communications and Computing, 18, 3, May, 2007, 223–239.

[4] P. D’Ambra, S. Filippone, D. Di Serafino, On the Development of
PSBLAS-based Parallel Two-level Schwarz Preconditioners, Applied Nu-
merical Mathematics, Elsevier Science, 57, 11-12, 2007, 1181-1196.

[5] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for
General Sparse Linear Systems, SIAM Journal on Scientific Computing,
21, 2, 1999, 792–797.

[6] X. C. Cai, O. B. Widlund, Domain Decomposition Algorithms for Indefinite
Elliptic Problems, SIAM Journal on Scientific and Statistical Computing,
13, 1, 1992, 243–258.

[7] T. Chan and T. Mathew, Domain Decomposition Algorithms, in A. Iserles,
editor, Acta Numerica 1994, 61–143. Cambridge University Press.

[8] T.A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Mul-
tifrontal Method with a Column Pre-ordering Strategy, ACM Trans-
actions on Mathematical Software, 30, 2004, 196–199. (See also
http://www.cise.ufl.edu/ davis/)

[9] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li and J.W.H. Liu, A
supernodal approach to sparse partial pivoting, SIAM Journal on Matrix
Analysis and Applications, 20, 3, 1999, 720–755.

[10] E. Efstathiou, J. G. Gander, Why Restricted Additive Schwarz Converges
Faster than Additive Schwarz, BIT Numerical Mathematics, 43, 2003, 945–
959.

[11] S. Filippone, A. Buttari, PSBLAS-2.1 User’s Guide. A Reference Guide
for the Parallel Sparse BLAS Library, xxxxx.

[12] S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Alge-
bra Computation on Sparse Matrices, ACM Transactions on Mathematical
Software, 26, 4, 2000, 527–550.

[13] X. S. Li, J. W. Demmel, SuperLU DIST: A Scalable Distributed-memory
Sparse Direct Solver for Unsymmetric Linear Systems, ACM Transactions
on Mathematical Software, 29, 2, 2003, 110–140.

B Bibliography 28

[14] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Mul-
tilevel Methods for Elliptic Partial Differential Equations, Cambridge Uni-
versity Press, 1996.

[15] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The
Complete Reference. Volume 1 - The MPI Core, second edition, MIT Press,
1998.

[16] K. Stüben, Algebraic Multigrid (AMG): an Introduction with Applications,
in A. Schüller, U. Trottenberg, C. Oosterlee, editors, Multigrid, Academic
Press, 2000.

[17] R. S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggre-
gation Strategies on Massively Parallel Machines, in J. Donnelley, editor,
Proceedings of SuperComputing 2000, Dallas, 2000.

[18] P. Vaněk, J. Mandel and M. Brezina, Algebraic Multigrid by Smoothed
Aggregation for Second and Fourth Order Elliptic Problems, Computing,
1996, 56, 179-196.

	MLD2P4 User's and Reference Guide
	1 General Overview
	2 Notational Conventions
	3 Configuring and Building MLD2P4
	4 Multi-level Domain Decomposition Background
	4.1 Multi-level Schwarz Preconditioners
	4.2 Smoothed Aggregation

	5 Getting Started
	5.1 Examples

	6 User Interface
	6.1 Subroutine mld_precinit
	6.2 Subroutine mld_precset
	6.3 Subroutine mld_precbld
	6.4 Subroutine mld_precaply
	6.5 Subroutine mld_precfree
	6.6 Subroutine mld_precdescr

	7 Error Handling
	A License
	B Bibliography

