!!$ !!$ !!$ MLD2P4 version 2.0 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS version 3.3) !!$ !!$ (C) Copyright 2008, 2010, 2012, 2015 !!$ !!$ Salvatore Filippone University of Rome Tor Vergata !!$ Alfredo Buttari CNRS-IRIT, Toulouse !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! ! ! ! ! ! module mld_z_umf_solver use iso_c_binding use mld_z_base_solver_mod #if defined(LONG_INTEGERS) type, extends(mld_z_base_solver_type) :: mld_z_umf_solver_type end type mld_z_umf_solver_type #else type, extends(mld_z_base_solver_type) :: mld_z_umf_solver_type type(c_ptr) :: symbolic=c_null_ptr, numeric=c_null_ptr integer(c_long_long) :: symbsize=0, numsize=0 contains procedure, pass(sv) :: build => z_umf_solver_bld procedure, pass(sv) :: apply_a => z_umf_solver_apply procedure, pass(sv) :: apply_v => z_umf_solver_apply_vect procedure, pass(sv) :: free => z_umf_solver_free procedure, pass(sv) :: descr => z_umf_solver_descr procedure, pass(sv) :: sizeof => z_umf_solver_sizeof #if defined(HAVE_FINAL) final :: z_umf_solver_finalize #endif end type mld_z_umf_solver_type private :: z_umf_solver_bld, z_umf_solver_apply, & & z_umf_solver_free, z_umf_solver_descr, & & z_umf_solver_sizeof, z_umf_solver_apply_vect #if defined(HAVE_FINAL) private :: z_umf_solver_finalize #endif interface function mld_zumf_fact(n,nnz,values,rowind,colptr,& & symptr,numptr,ssize,nsize)& & bind(c,name='mld_zumf_fact') result(info) use iso_c_binding integer(c_int), value :: n,nnz integer(c_int) :: info integer(c_long_long) :: ssize, nsize integer(c_int) :: rowind(*),colptr(*) complex(c_double_complex) :: values(*) type(c_ptr) :: symptr, numptr end function mld_zumf_fact end interface interface function mld_zumf_solve(itrans,n,x, b, ldb, numptr)& & bind(c,name='mld_zumf_solve') result(info) use iso_c_binding integer(c_int) :: info integer(c_int), value :: itrans,n,ldb complex(c_double_complex) :: x(*), b(ldb,*) type(c_ptr), value :: numptr end function mld_zumf_solve end interface interface function mld_zumf_free(symptr, numptr)& & bind(c,name='mld_zumf_free') result(info) use iso_c_binding integer(c_int) :: info type(c_ptr), value :: symptr, numptr end function mld_zumf_free end interface contains subroutine z_umf_solver_apply(alpha,sv,x,beta,y,desc_data,trans,work,info) use psb_base_mod implicit none type(psb_desc_type), intent(in) :: desc_data class(mld_z_umf_solver_type), intent(inout) :: sv complex(psb_dpk_),intent(inout) :: x(:) complex(psb_dpk_),intent(inout) :: y(:) complex(psb_dpk_),intent(in) :: alpha,beta character(len=1),intent(in) :: trans complex(psb_dpk_),target, intent(inout) :: work(:) integer, intent(out) :: info integer :: n_row,n_col complex(psb_dpk_), pointer :: ww(:) integer :: ictxt,np,me,i, err_act character :: trans_ character(len=20) :: name='z_umf_solver_apply' call psb_erractionsave(err_act) info = psb_success_ trans_ = psb_toupper(trans) select case(trans_) case('N') case('T','C') case default call psb_errpush(psb_err_iarg_invalid_i_,name) goto 9999 end select n_row = desc_data%get_local_rows() n_col = desc_data%get_local_cols() if (n_col <= size(work)) then ww => work(1:n_col) else allocate(ww(n_col),stat=info) if (info /= psb_success_) then info=psb_err_alloc_request_ call psb_errpush(info,name,i_err=(/n_col,0,0,0,0/),& & a_err='complex(psb_dpk_)') goto 9999 end if endif select case(trans_) case('N') info = mld_zumf_solve(0,n_row,ww,x,n_row,sv%numeric) case('T') ! ! Note: with UMF, 1 meand Ctranspose, 2 means transpose ! even for complex data. ! if (psb_z_is_complex_) then info = mld_zumf_solve(2,n_row,ww,x,n_row,sv%numeric) else info = mld_zumf_solve(1,n_row,ww,x,n_row,sv%numeric) end if case('C') info = mld_zumf_solve(1,n_row,ww,x,n_row,sv%numeric) case default call psb_errpush(psb_err_internal_error_,name,a_err='Invalid TRANS in ILU subsolve') goto 9999 end select if (info == psb_success_) call psb_geaxpby(alpha,ww,beta,y,desc_data,info) if (info /= psb_success_) then call psb_errpush(psb_err_internal_error_,name,a_err='Error in subsolve') goto 9999 endif if (n_col > size(work)) then deallocate(ww) endif call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine z_umf_solver_apply subroutine z_umf_solver_apply_vect(alpha,sv,x,beta,y,desc_data,trans,work,info) use psb_base_mod implicit none type(psb_desc_type), intent(in) :: desc_data class(mld_z_umf_solver_type), intent(inout) :: sv type(psb_z_vect_type),intent(inout) :: x type(psb_z_vect_type),intent(inout) :: y complex(psb_dpk_),intent(in) :: alpha,beta character(len=1),intent(in) :: trans complex(psb_dpk_),target, intent(inout) :: work(:) integer, intent(out) :: info integer :: err_act character(len=20) :: name='z_umf_solver_apply_vect' call psb_erractionsave(err_act) info = psb_success_ call x%v%sync() call y%v%sync() call sv%apply(alpha,x%v%v,beta,y%v%v,desc_data,trans,work,info) call y%v%set_host() if (info /= 0) goto 9999 call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine z_umf_solver_apply_vect subroutine z_umf_solver_bld(a,desc_a,sv,upd,info,b,amold,vmold,imold) use psb_base_mod Implicit None ! Arguments type(psb_zspmat_type), intent(in), target :: a Type(psb_desc_type), Intent(in) :: desc_a class(mld_z_umf_solver_type), intent(inout) :: sv character, intent(in) :: upd integer, intent(out) :: info type(psb_zspmat_type), intent(in), target, optional :: b class(psb_z_base_sparse_mat), intent(in), optional :: amold class(psb_z_base_vect_type), intent(in), optional :: vmold class(psb_i_base_vect_type), intent(in), optional :: imold ! Local variables type(psb_zspmat_type) :: atmp type(psb_z_csc_sparse_mat) :: acsc integer :: n_row,n_col, nrow_a, nztota integer :: ictxt,np,me,i, err_act, debug_unit, debug_level character(len=20) :: name='z_umf_solver_bld', ch_err info=psb_success_ call psb_erractionsave(err_act) debug_unit = psb_get_debug_unit() debug_level = psb_get_debug_level() ictxt = desc_a%get_context() call psb_info(ictxt, me, np) if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),' start' n_row = desc_a%get_local_rows() n_col = desc_a%get_local_cols() if (psb_toupper(upd) == 'F') then call a%cscnv(atmp,info,type='coo') call psb_rwextd(n_row,atmp,info,b=b) call atmp%cscnv(info,type='csc',dupl=psb_dupl_add_) call atmp%mv_to(acsc) nrow_a = acsc%get_nrows() nztota = acsc%get_nzeros() ! Fix the entres to call C-base UMFPACK. acsc%ia(:) = acsc%ia(:) - 1 acsc%icp(:) = acsc%icp(:) - 1 info = mld_zumf_fact(nrow_a,nztota,acsc%val,& & acsc%ia,acsc%icp,sv%symbolic,sv%numeric,& & sv%symbsize,sv%numsize) if (info /= psb_success_) then info=psb_err_from_subroutine_ ch_err='mld_zumf_fact' call psb_errpush(info,name,a_err=ch_err) goto 9999 end if call acsc%free() call atmp%free() else ! ? info=psb_err_internal_error_ call psb_errpush(info,name) goto 9999 end if if (debug_level >= psb_debug_outer_) & & write(debug_unit,*) me,' ',trim(name),' end' call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine z_umf_solver_bld subroutine z_umf_solver_free(sv,info) Implicit None ! Arguments class(mld_z_umf_solver_type), intent(inout) :: sv integer, intent(out) :: info Integer :: err_act character(len=20) :: name='z_umf_solver_free' call psb_erractionsave(err_act) info = mld_zumf_free(sv%symbolic,sv%numeric) if (info /= psb_success_) goto 9999 sv%symbolic = c_null_ptr sv%numeric = c_null_ptr sv%symbsize = 0 sv%numsize = 0 call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine z_umf_solver_free #if defined(HAVE_FINAL) subroutine z_umf_solver_finalize(sv) Implicit None ! Arguments type(mld_z_umf_solver_type), intent(inout) :: sv integer :: info Integer :: err_act character(len=20) :: name='z_umf_solver_finalize' call sv%free(info) return end subroutine z_umf_solver_finalize #endif subroutine z_umf_solver_descr(sv,info,iout,coarse) Implicit None ! Arguments class(mld_z_umf_solver_type), intent(in) :: sv integer, intent(out) :: info integer, intent(in), optional :: iout logical, intent(in), optional :: coarse ! Local variables integer :: err_act integer :: ictxt, me, np character(len=20), parameter :: name='mld_z_umf_solver_descr' integer :: iout_ call psb_erractionsave(err_act) info = psb_success_ if (present(iout)) then iout_ = iout else iout_ = 6 endif write(iout_,*) ' UMFPACK Sparse Factorization Solver. ' call psb_erractionrestore(err_act) return 9999 call psb_error_handler(err_act) return end subroutine z_umf_solver_descr function z_umf_solver_sizeof(sv) result(val) implicit none ! Arguments class(mld_z_umf_solver_type), intent(in) :: sv integer(psb_long_int_k_) :: val integer :: i val = 2*psb_sizeof_long_int val = val + sv%symbsize val = val + sv%numsize return end function z_umf_solver_sizeof #endif end module mld_z_umf_solver