!!$ !!$ !!$ MLD2P4 !!$ MultiLevel Domain Decomposition Parallel Preconditioners Package !!$ based on PSBLAS (Parallel Sparse BLAS v.2.0) !!$ !!$ (C) Copyright 2007 Alfredo Buttari University of Rome Tor Vergata !!$ Pasqua D'Ambra ICAR-CNR, Naples !!$ Daniela di Serafino Second University of Naples !!$ Salvatore Filippone University of Rome Tor Vergata !!$ !!$ Redistribution and use in source and binary forms, with or without !!$ modification, are permitted provided that the following conditions !!$ are met: !!$ 1. Redistributions of source code must retain the above copyright !!$ notice, this list of conditions and the following disclaimer. !!$ 2. Redistributions in binary form must reproduce the above copyright !!$ notice, this list of conditions, and the following disclaimer in the !!$ documentation and/or other materials provided with the distribution. !!$ 3. The name of the MLD2P4 group or the names of its contributors may !!$ not be used to endorse or promote products derived from this !!$ software without specific written permission. !!$ !!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS !!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED !!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR !!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS !!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR !!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF !!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS !!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN !!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) !!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE !!$ POSSIBILITY OF SUCH DAMAGE. !!$ !!$ ! File: mld_zmlprec_aply.f90 ! ! Subroutine: mld_zmlprec_aply ! Version: complex ! ! This routine computes ! ! Y = beta*Y + alpha*op(M^(-1))*X, ! where ! - M is a multilevel domain decomposition (Schwarz) preconditioner associated ! to a certain matrix A and stored in the array baseprecv, ! - op(M^(-1)) is M^(-1) or its transpose, according to the value of trans, ! - X and Y are vectors, ! - alpha and beta are scalars. ! ! For each level we have as many subdomains as processes (except for the coarsest ! level where we might have a replicated index space) and each process takes care ! of one subdomain. ! ! The multilevel preconditioner M is regarded as an array of 'base preconditioners', ! each representing the part of the preconditioner associated to a certain level. ! For each level ilev, the base preconditioner K(ilev) is stored in baseprecv(ilev) ! and is associated to a matrix A(ilev), obtained by 'tranferring' the original ! matrix A (i.e. the matrix to be preconditioned) to level ilev, through smoothed ! aggregation. ! ! The levels are numbered in increasing order starting from the finest one, i.e. ! level 1 is the finest level and A(1) is the matrix A. ! ! For a general description of (parallel) multilevel preconditioners see ! 1. B.F. Smith, P.E. Bjorstad & W.D. Gropp, ! Domain decomposition: parallel multilevel methods for elliptic partial ! differential equations, ! Cambridge University Press, 1996. ! 2. K. Stuben, ! Algebraic Multigrid (AMG): An Introduction with Applications, ! GMD Report N. 70, 1999. ! ! ! Arguments: ! alpha - complex(kind(0.d0)), input. ! The scalar alpha. ! baseprecv - type(mld_zbaseprc_type), dimension(:), input. ! The array of base preconditioner data structures containing the ! local parts of the preconditioners to be applied at each level. ! Note that nlev = size(baseprecv) = number of levels. ! baseprecv(ilev)%av - type(psb_zspmat_type), dimension(:), allocatable(:). ! The sparse matrices needed to apply the preconditioner ! at level ilev. ! baseprecv(ilev)%av(mld_l_pr_) - The L factor of the ILU factorization of the ! local diagonal block of A(ilev). ! baseprecv(ilev)%av(mld_u_pr_) - The U factor of the ILU factorization of the ! local diagonal block of A(ilev), except its ! diagonal entries (stored in baseprecv(ilev)%d). ! baseprecv(ilev)%av(mld_ap_nd_) - The entries of the local part of A(ilev) ! outside the diagonal block, for block-Jacobi ! sweeps. ! baseprecv(ilev)%av(mld_ac_) - The local part of the matrix A(ilev). ! baseprecv(ilev)%av(mld_sm_pr_) - The smoother prolongator. ! It maps vectors (ilev) ---> (ilev-1). ! baseprecv(ilev)%av(mld_sm_pr_t_) - The smoother prolongator transpose. ! It maps vectors (ilev-1) ---> (ilev). ! baseprecv(ilev)%d - complex(kind(1.d0)), dimension(:), allocatable. ! The diagonal entries of the U factor in the ILU ! factorization of A(ilev). ! baseprecv(ilev)%desc_data - type(psb_desc_type). ! The communication descriptor associated to the base ! preconditioner, i.e. to the sparse matrices needed ! to apply the base preconditioner at the current level. ! baseprecv(ilev)%desc_ac - type(psb_desc_type). ! The communication descriptor associated to the sparse ! matrix A(ilev), stored in baseprecv(ilev)%av(mld_ac_). ! baseprecv(ilev)%iprcparm - integer, dimension(:), allocatable. ! The integer parameters defining the base preconditioner ! K(ilev). ! baseprecv(ilev)%dprcparm - complex(kind(1.d0)), dimension(:), allocatable. ! The real parameters defining the base preconditioner ! K(ilev). ! baseprecv(ilev)%perm - integer, dimension(:), allocatable. ! The row and column permutations applied to the local ! part of A(ilev) (defined only if baseprecv(ilev)% ! iprcparm(mld_sub_ren_)>0). ! baseprecv(ilev)%invperm - integer, dimension(:), allocatable. ! The inverse of the permutation stored in ! baseprecv(ilev)%perm. ! baseprecv(ilev)%mlia - integer, dimension(:), allocatable. ! The aggregation map (ilev-1) --> (ilev). ! In case of non-smoothed aggregation, it is used ! instead of mld_sm_pr_. ! baseprecv(ilev)%nlaggr - integer, dimension(:), allocatable. ! The number of aggregates (rows of A(ilev)) on the ! various processes. ! baseprecv(ilev)%base_a - type(psb_zspmat_type), pointer. ! Pointer (really a pointer!) to the base matrix of ! the current level, i.e. the local part of A(ilev); ! so we have a unified treatment of residuals. We ! need this to avoid passing explicitly the matrix ! A(ilev) to the routine which applies the ! preconditioner. ! baseprecv(ilev)%base_desc - type(psb_desc_type), pointer. ! Pointer to the communication descriptor associated ! to the sparse matrix pointed by base_a. ! baseprecv(ilev)%dorig - complex(kind(1.d0)), dimension(:), allocatable. ! Diagonal entries of the matrix pointed by base_a. ! ! x - complex(kind(0.d0)), dimension(:), input. ! The local part of the vector X. ! beta - complex(kind(0.d0)), input. ! The scalar beta. ! y - complex(kind(0.d0)), dimension(:), input/output. ! The local part of the vector Y. ! desc_data - type(psb_desc_type), input. ! The communication descriptor associated to the matrix to be ! preconditioned. ! trans - character, optional. ! If trans='N','n' then op(M^(-1)) = M^(-1); ! if trans='T','t' then op(M^(-1)) = M^(-T) (transpose of M^(-1)). ! work - complex(kind(0.d0)), dimension (:), optional, target. ! Workspace. Its size must be at least 4*psb_cd_get_local_cols(desc_data). ! info - integer, output. ! Error code. ! ! Note that when the LU factorization of the matrix A(ilev) is computed instead of ! the ILU one, by using UMFPACK or SuperLU_dist, the corresponding L and U factors ! are stored in data structures provided by UMFPACK or SuperLU_dist and pointed by ! baseprecv(ilev)%iprcparm(mld_umf_ptr) or baseprecv(ilev)%iprcparm(mld_slu_ptr), ! respectively. ! subroutine mld_zmlprec_aply(alpha,baseprecv,x,beta,y,desc_data,trans,work,info) use psb_base_mod use mld_prec_mod, mld_protect_name => mld_zmlprec_aply implicit none ! Arguments type(psb_desc_type),intent(in) :: desc_data type(mld_zbaseprc_type), intent(in) :: baseprecv(:) complex(kind(1.d0)),intent(in) :: alpha,beta complex(kind(1.d0)),intent(in) :: x(:) complex(kind(1.d0)),intent(inout) :: y(:) character :: trans complex(kind(1.d0)),target :: work(:) integer, intent(out) :: info ! Local variables integer :: n_row,n_col integer :: ictxt,np,me,i, nr2l,nc2l,err_act logical, parameter :: debug=.false., debugprt=.false. integer :: ismth, nlev, ilev, icm character(len=20) :: name type psb_mlprec_wrk_type complex(kind(1.d0)), allocatable :: tx(:),ty(:),x2l(:),y2l(:) end type psb_mlprec_wrk_type type(psb_mlprec_wrk_type), allocatable :: mlprec_wrk(:) name='mld_zmlprec_aply' info = 0 call psb_erractionsave(err_act) ictxt = psb_cd_get_context(desc_data) call psb_info(ictxt, me, np) if (debug) write(0,*) me,'Entry to mlprec_aply ',& & size(baseprecv) nlev = size(baseprecv) allocate(mlprec_wrk(nlev),stat=info) if (info /= 0) then call psb_errpush(4010,name,a_err='Allocate') goto 9999 end if select case(baseprecv(2)%iprcparm(mld_ml_type_)) case(mld_no_ml_) ! ! No preconditioning, should not really get here ! call psb_errpush(4010,name,a_err='mld_no_ml_ in mlprc_aply?') goto 9999 case(mld_add_ml_) ! ! Additive multilevel ! ! 1. ! Apply the base preconditioner at level 1. ! ! The sum over the subdomains is carried out in the ! ! application of K(1). ! X(1) = Xest ! Y(1) = (K(1)^(-1))*X(1) ! ! 2. DO ilev=2,nlev ! ! ! Transfer X(ilev-1) to the next coarser level. ! X(ilev) = AV(ilev; sm_pr_t_)*X(ilev-1) ! ! ! Apply the base preconditioner at the current level. ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev). ! Y(ilev) = (K(ilev)^(-1))*X(ilev) ! ! ENDDO ! ! 3. DO ilev=nlev-1,1,-1 ! ! ! Transfer Y(ilev+1) to the next finer level. ! Y(ilev) = AV(ilev+1; sm_pr_)*Y(ilev+1) ! ! ENDDO ! ! 4. Yext = beta*Yext + alpha*Y(1) ! ! ! STEP 1 ! ! Apply the base preconditioner at the finest level ! call mld_baseprec_aply(alpha,baseprecv(1),x,beta,y,& & baseprecv(1)%base_desc,trans,work,info) if(info /=0) goto 9999 allocate(mlprec_wrk(1)%x2l(size(x)),mlprec_wrk(1)%y2l(size(y)), stat=info) if (info /= 0) then info=4025 call psb_errpush(info,name,i_err=(/size(x)+size(y),0,0,0,0/),& & a_err='real(kind(1.d0))') goto 9999 end if mlprec_wrk(1)%x2l(:) = x(:) ! ! STEP 2 ! ! ! For each level except the finest one ... ! do ilev = 2, nlev n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc) n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%desc_data) nc2l = psb_cd_get_local_cols(baseprecv(ilev)%desc_data) nr2l = psb_cd_get_local_rows(baseprecv(ilev)%desc_data) allocate(mlprec_wrk(ilev)%x2l(nc2l),mlprec_wrk(ilev)%y2l(nc2l),& & mlprec_wrk(ilev)%tx(max(n_row,n_col)),& & mlprec_wrk(ilev)%ty(max(n_row,n_col)), stat=info) if (info /= 0) then info=4025 call psb_errpush(info,name,i_err=(/2*(nc2l+max(n_row,n_col)),0,0,0,0/),& & a_err='real(kind(1.d0))') goto 9999 end if mlprec_wrk(ilev)%x2l(:) = zzero mlprec_wrk(ilev)%y2l(:) = zzero mlprec_wrk(ilev)%tx(1:n_row) = mlprec_wrk(ilev-1)%x2l(1:n_row) mlprec_wrk(ilev)%tx(n_row+1:max(n_row,n_col)) = zzero mlprec_wrk(ilev)%ty(:) = zzero ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_) icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_) if (ismth /= mld_no_smooth_) then ! ! Apply the smoothed prolongator transpose ! call psb_halo(mlprec_wrk(ilev-1)%x2l,baseprecv(ilev-1)%base_desc,& & info,work=work) if(info /=0) goto 9999 call psb_csmm(zone,baseprecv(ilev)%av(mld_sm_pr_t_),mlprec_wrk(ilev-1)%x2l,& & zzero,mlprec_wrk(ilev)%x2l,info) if(info /=0) goto 9999 else ! ! Apply the raw aggregation map transpose (take a shortcut) ! do i=1,n_row mlprec_wrk(ilev)%x2l(baseprecv(ilev)%mlia(i)) = & & mlprec_wrk(ilev)%x2l(baseprecv(ilev)%mlia(i)) + & & mlprec_wrk(ilev-1)%x2l(i) end do end if if (icm == mld_repl_mat_) then call psb_sum(ictxt,mlprec_wrk(ilev)%x2l(1:nr2l)) else if (icm /= mld_distr_mat_) then write(0,*) 'Unknown value for baseprecv(2)%iprcparm(mld_coarse_mat_) ',icm endif ! ! Apply the base preconditioner ! call mld_baseprec_aply(zone,baseprecv(ilev),& & mlprec_wrk(ilev)%x2l,zzero,mlprec_wrk(ilev)%y2l,& & baseprecv(ilev)%desc_data, 'N',work,info) enddo ! ! STEP 3 ! ! ! For each level except the finest one ... ! do ilev =nlev,2,-1 n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc) n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%desc_data) nc2l = psb_cd_get_local_cols(baseprecv(ilev)%desc_data) nr2l = psb_cd_get_local_rows(baseprecv(ilev)%desc_data) ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_) icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_) if (ismth /= mld_no_smooth_) then ! ! Apply the smoothed prolongator ! call psb_csmm(zone,baseprecv(ilev)%av(mld_sm_pr_),mlprec_wrk(ilev)%y2l,& & zone,mlprec_wrk(ilev-1)%y2l,info) if(info /=0) goto 9999 else ! ! Apply the raw aggregation map (take a shortcut) ! do i=1, n_row mlprec_wrk(ilev-1)%y2l(i) = mlprec_wrk(ilev-1)%y2l(i) + & & mlprec_wrk(ilev)%y2l(baseprecv(ilev)%mlia(i)) enddo end if end do ! ! STEP 4 ! ! Compute the output vector Y ! call psb_geaxpby(alpha,mlprec_wrk(1)%y2l,zone,y,baseprecv(1)%base_desc,info) if(info /=0) goto 9999 case(mld_mult_ml_) ! ! Multiplicative multilevel (multiplicative among the levels, additive inside ! each level) ! ! Pre/post-smoothing versions ! select case(baseprecv(2)%iprcparm(mld_smooth_pos_)) case(mld_post_smooth_) ! ! Post-smoothing ! ! 1. X(1) = Xext ! ! 2. DO ilev=2, nlev ! ! ! Transfer X(ilev-1) to the next coarser level. ! X(ilev) = AV(ilev; sm_pr_t_)*X(ilev-1) ! ! ENDDO ! ! 3.! Apply the preconditioner at the coarsest level. ! Y(nlev) = (K(nlev)^(-1))*X(nlev) ! ! 4. DO ilev=nlev-1,1,-1 ! ! ! Transfer Y(ilev+1) to the next finer level. ! Y(ilev) = AV(ilev+1; sm_pr_)*Y(ilev+1) ! ! ! Compute the residual at the current level and apply to it the ! ! base preconditioner. The sum over the subdomains is carried out ! ! in the application of K(ilev). ! Y(ilev) = Y(ilev) + (K(ilev)^(-1))*(X(ilev)-A(ilev)*Y(ilev)) ! ! ENDDO ! ! 5. Yext = beta*Yext + alpha*Y(1) ! ! ! STEP 1 ! ! Copy the input vector X ! if (debug) write(0,*) me, 'mlprec_aply desc_data',& & allocated(desc_data%matrix_data) n_col = psb_cd_get_local_cols(desc_data) nc2l = psb_cd_get_local_cols(baseprecv(1)%desc_data) allocate(mlprec_wrk(1)%x2l(nc2l),mlprec_wrk(1)%y2l(nc2l), & & mlprec_wrk(1)%tx(nc2l), stat=info) mlprec_wrk(1)%x2l(:) = zzero mlprec_wrk(1)%y2l(:) = zzero mlprec_wrk(1)%tx(:) = zzero call psb_geaxpby(zone,x,zzero,mlprec_wrk(1)%tx,& & baseprecv(1)%base_desc,info) call psb_geaxpby(zone,x,zzero,mlprec_wrk(1)%x2l,& & baseprecv(1)%base_desc,info) ! ! STEP 2 ! ! For each level but the finest one ... ! do ilev=2, nlev n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc) n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%desc_data) nc2l = psb_cd_get_local_cols(baseprecv(ilev)%desc_data) nr2l = psb_cd_get_local_rows(baseprecv(ilev)%desc_data) ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_) icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_) if (debug) write(0,*) me, 'mlprec_aply starting up sweep ',& & ilev,allocated(baseprecv(ilev)%iprcparm),n_row,n_col,& & nc2l, nr2l,ismth allocate(mlprec_wrk(ilev)%tx(nc2l),mlprec_wrk(ilev)%y2l(nc2l),& & mlprec_wrk(ilev)%x2l(nc2l), stat=info) if (info /= 0) then info=4025 call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),& & a_err='real(kind(1.d0))') goto 9999 end if mlprec_wrk(ilev)%x2l(:) = zzero mlprec_wrk(ilev)%y2l(:) = zzero mlprec_wrk(ilev)%tx(:) = zzero if (ismth /= mld_no_smooth_) then ! ! Apply the smoothed prolongator transpose ! if (debug) write(0,*) me, 'mlprec_aply halo in up sweep ', ilev call psb_halo(mlprec_wrk(ilev-1)%x2l,& & baseprecv(ilev-1)%base_desc,info,work=work) if(info /=0) goto 9999 if (debug) write(0,*) me, 'mlprec_aply csmm in up sweep ', ilev call psb_csmm(zone,baseprecv(ilev)%av(mld_sm_pr_t_),mlprec_wrk(ilev-1)%x2l, & & zzero,mlprec_wrk(ilev)%x2l,info) if(info /=0) goto 9999 else ! ! Apply the raw aggregation map transpose (take a shortcut) ! do i=1,n_row mlprec_wrk(ilev)%x2l(baseprecv(ilev)%mlia(i)) = & & mlprec_wrk(ilev)%x2l(baseprecv(ilev)%mlia(i)) + & & mlprec_wrk(ilev-1)%x2l(i) end do end if if (debug) write(0,*) me, 'mlprec_aply possible sum in up sweep ', & & ilev,icm,associated(baseprecv(ilev)%base_desc),mld_repl_mat_ if (debug) write(0,*) me, 'mlprec_aply geaxpby in up sweep X', & & ilev,associated(baseprecv(ilev)%base_desc),& & baseprecv(ilev)%base_desc%matrix_data(psb_n_row_),& & baseprecv(ilev)%base_desc%matrix_data(psb_n_col_),& & size(mlprec_wrk(ilev)%tx),size(mlprec_wrk(ilev)%x2l) if (icm == mld_repl_mat_) Then if (debug) write(0,*) 'Entering psb_sum ',nr2l call psb_sum(ictxt,mlprec_wrk(ilev)%x2l(1:nr2l)) else if (icm /= mld_distr_mat_) Then write(0,*) 'Unknown value for baseprecv(2)%iprcparm(mld_coarse_mat_) ', icm endif ! ! update x2l ! call psb_geaxpby(zone,mlprec_wrk(ilev)%x2l,zzero,mlprec_wrk(ilev)%tx,& & baseprecv(ilev)%base_desc,info) if(info /=0) goto 9999 if (debug) write(0,*) me, 'mlprec_aply done up sweep ',& & ilev enddo ! ! STEP 3 ! ! Apply the base preconditioner at the coarsest level ! call mld_baseprec_aply(zone,baseprecv(nlev),mlprec_wrk(nlev)%x2l, & & zzero, mlprec_wrk(nlev)%y2l,baseprecv(nlev)%desc_data,'N',work,info) if(info /=0) goto 9999 if (debug) write(0,*) me, 'mlprec_aply done prc_apl ',& & nlev ! ! STEP 4 ! ! For each level but the coarsest one ... ! do ilev=nlev-1, 1, -1 if (debug) write(0,*) me, 'mlprec_aply starting down sweep',ilev ismth = baseprecv(ilev+1)%iprcparm(mld_aggr_kind_) n_row = psb_cd_get_local_rows(baseprecv(ilev)%base_desc) if (ismth /= mld_no_smooth_) then ! ! Apply the smoothed prolongator ! if (ismth == mld_smooth_prol_) & & call psb_halo(mlprec_wrk(ilev+1)%y2l,baseprecv(ilev+1)%desc_data,& & info,work=work) call psb_csmm(zone,baseprecv(ilev+1)%av(mld_sm_pr_),mlprec_wrk(ilev+1)%y2l,& & zzero,mlprec_wrk(ilev)%y2l,info) if(info /=0) goto 9999 else ! ! Apply the raw aggregation map (take a shortcut) ! mlprec_wrk(ilev)%y2l(:) = zzero do i=1, n_row mlprec_wrk(ilev)%y2l(i) = mlprec_wrk(ilev)%y2l(i) + & & mlprec_wrk(ilev+1)%y2l(baseprecv(ilev+1)%mlia(i)) enddo end if ! ! Compute the residual ! call psb_spmm(-zone,baseprecv(ilev)%base_a,mlprec_wrk(ilev)%y2l,& & zone,mlprec_wrk(ilev)%tx,baseprecv(ilev)%base_desc,info,work=work) if(info /=0) goto 9999 ! ! Apply the base preconditioner ! call mld_baseprec_aply(zone,baseprecv(ilev),mlprec_wrk(ilev)%tx,& & zone,mlprec_wrk(ilev)%y2l,baseprecv(ilev)%base_desc, trans, work,info) if(info /=0) goto 9999 if (debug) write(0,*) me, 'mlprec_aply done down sweep',ilev enddo ! ! STEP 5 ! ! Compute the output vector Y ! call psb_geaxpby(alpha,mlprec_wrk(1)%y2l,beta,y,baseprecv(1)%base_desc,info) if(info /=0) goto 9999 case(mld_pre_smooth_) ! ! Pre-smoothing ! ! 1. X(1) = Xext ! ! 2. ! Apply the base preconditioner at the finest level. ! Y(1) = (K(1)^(-1))*X(1) ! ! 3. ! Compute the residual at the finest level. ! TX(1) = X(1) - A(1)*Y(1) ! ! 4. DO ilev=2, nlev ! ! ! Transfer the residual to the current (coarser) level. ! X(ilev) = AV(ilev; sm_pr_t_)*TX(ilev-1) ! ! ! Apply the base preconditioner at the current level. ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev). ! Y(ilev) = (K(ilev)^(-1))*X(ilev) ! ! ! Compute the residual at the current level (except at ! ! the coarsest level). ! IF (ilev < nlev) ! TX(ilev) = (X(ilev)-A(ilev)*Y(ilev)) ! ! ENDDO ! ! 5. DO ilev=nlev-1,1,-1 ! ! ! Transfer Y(ilev+1) to the next finer level ! Y(ilev) = Y(ilev) + AV(ilev+1; sm_pr_)*Y(ilev+1) ! ! ENDDO ! ! 6. Yext = beta*Yext + alpha*Y(1) ! ! ! STEP 1 ! ! Copy the input vector X ! n_col = psb_cd_get_local_cols(desc_data) nc2l = psb_cd_get_local_cols(baseprecv(1)%desc_data) allocate(mlprec_wrk(1)%x2l(nc2l),mlprec_wrk(1)%y2l(nc2l), & & mlprec_wrk(1)%tx(nc2l), stat=info) if (info /= 0) then info=4025 call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),& & a_err='real(kind(1.d0))') goto 9999 end if mlprec_wrk(1)%y2l(:) = zzero mlprec_wrk(1)%x2l(:) = x ! ! STEP 2 ! ! Apply the base preconditioner at the finest level ! call mld_baseprec_aply(zone,baseprecv(1),mlprec_wrk(1)%x2l,& & zzero,mlprec_wrk(1)%y2l,& & baseprecv(1)%base_desc,& & trans,work,info) if(info /=0) goto 9999 ! ! STEP 3 ! ! Compute the residual at the finest level ! mlprec_wrk(1)%tx = mlprec_wrk(1)%x2l call psb_spmm(-zone,baseprecv(1)%base_a,mlprec_wrk(1)%y2l,& & zone,mlprec_wrk(1)%tx,baseprecv(1)%base_desc,info,work=work) if(info /=0) goto 9999 ! ! STEP 4 ! ! For each level but the finest one ... ! do ilev = 2, nlev n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc) n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%desc_data) nc2l = psb_cd_get_local_cols(baseprecv(ilev)%desc_data) nr2l = psb_cd_get_local_rows(baseprecv(ilev)%desc_data) ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_) icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_) allocate(mlprec_wrk(ilev)%tx(nc2l),mlprec_wrk(ilev)%y2l(nc2l),& & mlprec_wrk(ilev)%x2l(nc2l), stat=info) if (info /= 0) then info=4025 call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),& & a_err='real(kind(1.d0))') goto 9999 end if mlprec_wrk(ilev)%x2l(:) = zzero mlprec_wrk(ilev)%y2l(:) = zzero mlprec_wrk(ilev)%tx(:) = zzero if (ismth /= mld_no_smooth_) then ! ! Apply the smoothed prolongator transpose ! call psb_halo(mlprec_wrk(ilev-1)%tx,baseprecv(ilev-1)%base_desc,& & info,work=work) if(info /=0) goto 9999 call psb_csmm(zone,baseprecv(ilev)%av(mld_sm_pr_t_),mlprec_wrk(ilev-1)%tx,zzero,& & mlprec_wrk(ilev)%x2l,info) if(info /=0) goto 9999 else ! ! Apply the raw aggregation map transpose (take a shortcut) ! mlprec_wrk(ilev)%x2l = zzero do i=1,n_row mlprec_wrk(ilev)%x2l(baseprecv(ilev)%mlia(i)) = & & mlprec_wrk(ilev)%x2l(baseprecv(ilev)%mlia(i)) + & & mlprec_wrk(ilev-1)%tx(i) end do end if if (icm ==mld_repl_mat_) then call psb_sum(ictxt,mlprec_wrk(ilev)%x2l(1:nr2l)) else if (icm /= mld_distr_mat_) then write(0,*) 'Unknown value for baseprecv(2)%iprcparm(mld_coarse_mat_) ', icm endif ! ! Apply the base preconditioner ! call mld_baseprec_aply(zone,baseprecv(ilev),mlprec_wrk(ilev)%x2l,& & zzero,mlprec_wrk(ilev)%y2l,baseprecv(ilev)%desc_data, 'N',work,info) if(info /=0) goto 9999 ! ! Compute the residual (at all levels but the coarsest one) ! if (ilev < nlev) then mlprec_wrk(ilev)%tx = mlprec_wrk(ilev)%x2l call psb_spmm(-zone,baseprecv(ilev)%base_a,mlprec_wrk(ilev)%y2l,& & zone,mlprec_wrk(ilev)%tx,baseprecv(ilev)%base_desc,info,work=work) if(info /=0) goto 9999 endif enddo ! ! STEP 5 ! ! For each level but the coarsest one ... ! do ilev = nlev-1, 1, -1 ismth = baseprecv(ilev+1)%iprcparm(mld_aggr_kind_) n_row = psb_cd_get_local_rows(baseprecv(ilev)%base_desc) if (ismth /= mld_no_smooth_) then ! ! Apply the smoothed prolongator ! if (ismth == mld_smooth_prol_) & & call psb_halo(mlprec_wrk(ilev+1)%y2l,& & baseprecv(ilev+1)%desc_data,info,work=work) call psb_csmm(zone,baseprecv(ilev+1)%av(mld_sm_pr_),mlprec_wrk(ilev+1)%y2l,& & zone,mlprec_wrk(ilev)%y2l,info) if(info /=0) goto 9999 else ! ! Apply the raw aggregation map (take a shortcut) ! do i=1, n_row mlprec_wrk(ilev)%y2l(i) = mlprec_wrk(ilev)%y2l(i) + & & mlprec_wrk(ilev+1)%y2l(baseprecv(ilev+1)%mlia(i)) enddo end if enddo ! ! STEP 6 ! ! Compute the output vector Y ! call psb_geaxpby(alpha,mlprec_wrk(1)%y2l,beta,y,& & baseprecv(1)%base_desc,info) if(info /=0) goto 9999 case(mld_twoside_smooth_) ! ! Pre- and post-smoothing (symmetrized) ! ! 1. X(1) = Xext ! ! 2. ! Apply the base peconditioner at the finest level ! Y(1) = (K(1)^(-1))*X(1) ! ! 3. ! Compute the residual at the finest level ! TX(1) = X(1) - A(1)*Y(1) ! ! 4. DO ilev=2, nlev ! ! ! Transfer the residual to the current (coarser) level ! X(ilev) = AV(ilev; sm_pr_t)*TX(ilev-1) ! ! ! Apply the base preconditioner at the current level. ! ! The sum over the subdomains is carried out in the ! ! application of K(ilev) ! Y(ilev) = (K(ilev)^(-1))*X(ilev) ! ! ! Compute the residual at the current level ! TX(ilev) = (X(ilev)-A(ilev)*Y(ilev)) ! ! ENDDO ! ! 5. DO ilev=NLEV-1,1,-1 ! ! ! Transfer Y(ilev+1) to the next finer level ! Y(ilev) = Y(ilev) + AV(ilev+1; sm_pr_)*Y(ilev+1) ! ! ! Compute the residual at the current level and apply to it the ! ! base preconditioner. The sum over the subdomains is carried out ! ! in the application of K(ilev) ! Y(ilev) = Y(ilev) + (K(ilev)**(-1))*(X(ilev)-A(ilev)*Y(ilev)) ! ! ENDDO ! ! 6. Yext = beta*Yext + alpha*Y(1) ! ! ! STEP 1 ! ! Copy the input vector X ! n_col = psb_cd_get_local_cols(desc_data) nc2l = psb_cd_get_local_cols(baseprecv(1)%desc_data) allocate(mlprec_wrk(1)%x2l(nc2l),mlprec_wrk(1)%y2l(nc2l), & & mlprec_wrk(1)%ty(nc2l), mlprec_wrk(1)%tx(nc2l), stat=info) if (info /= 0) then info=4025 call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),& & a_err='real(kind(1.d0))') goto 9999 end if mlprec_wrk(1)%x2l(:) = zzero mlprec_wrk(1)%y2l(:) = zzero mlprec_wrk(1)%tx(:) = zzero mlprec_wrk(1)%ty(:) = zzero call psb_geaxpby(zone,x,zzero,mlprec_wrk(1)%x2l,& & baseprecv(1)%base_desc,info) call psb_geaxpby(zone,x,zzero,mlprec_wrk(1)%tx,& & baseprecv(1)%base_desc,info) ! ! STEP 2 ! ! Apply the base preconditioner at the finest level ! call mld_baseprec_aply(zone,baseprecv(1),mlprec_wrk(1)%x2l,& & zzero,mlprec_wrk(1)%y2l,& & baseprecv(1)%base_desc,& & trans,work,info) if(info /=0) goto 9999 ! ! STEP 3 ! ! Compute the residual at the finest level ! mlprec_wrk(1)%ty = mlprec_wrk(1)%x2l call psb_spmm(-zone,baseprecv(1)%base_a,mlprec_wrk(1)%y2l,& & zone,mlprec_wrk(1)%ty,baseprecv(1)%base_desc,info,work=work) if(info /=0) goto 9999 ! ! STEP 4 ! ! For each level but the finest one ... ! do ilev = 2, nlev n_row = psb_cd_get_local_rows(baseprecv(ilev-1)%base_desc) n_col = psb_cd_get_local_cols(baseprecv(ilev-1)%desc_data) nc2l = psb_cd_get_local_cols(baseprecv(ilev)%desc_data) nr2l = psb_cd_get_local_rows(baseprecv(ilev)%desc_data) ismth = baseprecv(ilev)%iprcparm(mld_aggr_kind_) icm = baseprecv(ilev)%iprcparm(mld_coarse_mat_) allocate(mlprec_wrk(ilev)%ty(nc2l),mlprec_wrk(ilev)%y2l(nc2l),& & mlprec_wrk(ilev)%x2l(nc2l), stat=info) if (info /= 0) then info=4025 call psb_errpush(info,name,i_err=(/4*nc2l,0,0,0,0/),& & a_err='real(kind(1.d0))') goto 9999 end if mlprec_wrk(ilev)%x2l(:) = zzero mlprec_wrk(ilev)%y2l(:) = zzero mlprec_wrk(ilev)%tx(:) = zzero mlprec_wrk(ilev)%ty(:) = zzero if (ismth /= mld_no_smooth_) then ! ! Apply the smoothed prolongator transpose ! call psb_halo(mlprec_wrk(ilev-1)%ty,baseprecv(ilev-1)%base_desc,& & info,work=work) if(info /=0) goto 9999 call psb_csmm(zone,baseprecv(ilev)%av(mld_sm_pr_t_),mlprec_wrk(ilev-1)%ty,zzero,& & mlprec_wrk(ilev)%x2l,info) if(info /=0) goto 9999 else ! ! Apply the raw aggregation map transpose (take a shortcut) ! mlprec_wrk(ilev)%x2l = zzero do i=1,n_row mlprec_wrk(ilev)%x2l(baseprecv(ilev)%mlia(i)) = & & mlprec_wrk(ilev)%x2l(baseprecv(ilev)%mlia(i)) + & & mlprec_wrk(ilev-1)%ty(i) end do end if if (icm == mld_repl_mat_) then call psb_sum(ictxt,mlprec_wrk(ilev)%x2l(1:nr2l)) else if (icm /= mld_distr_mat_) then write(0,*) 'Unknown value for baseprecv(2)%iprcparm(mld_coarse_mat_) ', icm endif call psb_geaxpby(zone,mlprec_wrk(ilev)%x2l,zzero,mlprec_wrk(ilev)%tx,& & baseprecv(ilev)%base_desc,info) if(info /=0) goto 9999 ! ! Apply the base preconditioner ! call mld_baseprec_aply(zone,baseprecv(ilev),mlprec_wrk(ilev)%x2l,& & zzero,mlprec_wrk(ilev)%y2l,baseprecv(ilev)%desc_data, 'N',work,info) if(info /=0) goto 9999 ! ! Compute the residual (at all levels but the coarsest one) ! if(ilev < nlev) then mlprec_wrk(ilev)%ty = mlprec_wrk(ilev)%x2l call psb_spmm(-zone,baseprecv(ilev)%base_a,mlprec_wrk(ilev)%y2l,& & zone,mlprec_wrk(ilev)%ty,baseprecv(ilev)%base_desc,info,work=work) if(info /=0) goto 9999 endif enddo ! ! STEP 5 ! ! For each level but the coarsest one ... ! do ilev=nlev-1, 1, -1 ismth = baseprecv(ilev+1)%iprcparm(mld_aggr_kind_) n_row = psb_cd_get_local_rows(baseprecv(ilev)%base_desc) if (ismth /= mld_no_smooth_) then ! ! Apply the smoothed prolongator ! if (ismth == mld_smooth_prol_) & & call psb_halo(mlprec_wrk(ilev+1)%y2l,baseprecv(ilev+1)%desc_data,& & info,work=work) call psb_csmm(zone,baseprecv(ilev+1)%av(mld_sm_pr_),mlprec_wrk(ilev+1)%y2l,& & zone,mlprec_wrk(ilev)%y2l,info) if(info /=0) goto 9999 else ! ! Apply the raw aggregation map (take a shortcut) ! do i=1, n_row mlprec_wrk(ilev)%y2l(i) = mlprec_wrk(ilev)%y2l(i) + & & mlprec_wrk(ilev+1)%y2l(baseprecv(ilev+1)%mlia(i)) enddo end if ! ! Compute the residual ! call psb_spmm(-zone,baseprecv(ilev)%base_a,mlprec_wrk(ilev)%y2l,& & zone,mlprec_wrk(ilev)%tx,baseprecv(ilev)%base_desc,info,work=work) if(info /=0) goto 9999 ! ! Apply the base preconditioner ! call mld_baseprec_aply(zone,baseprecv(ilev),mlprec_wrk(ilev)%tx,& & zone,mlprec_wrk(ilev)%y2l,baseprecv(ilev)%base_desc, trans, work,info) if(info /=0) goto 9999 enddo ! ! STEP 6 ! ! Compute the output vector Y ! call psb_geaxpby(alpha,mlprec_wrk(1)%y2l,beta,y,& & baseprecv(1)%base_desc,info) if(info /=0) goto 9999 case default call psb_errpush(4013,name,a_err='wrong smooth_pos',& & i_Err=(/baseprecv(2)%iprcparm(mld_smooth_pos_),0,0,0,0/)) goto 9999 end select case default call psb_errpush(4013,name,a_err='wrong mltype',& & i_Err=(/baseprecv(2)%iprcparm(mld_ml_type_),0,0,0,0/)) goto 9999 end select deallocate(mlprec_wrk) call psb_erractionrestore(err_act) return 9999 continue call psb_errpush(info,name) call psb_erractionrestore(err_act) if (err_act.eq.psb_act_abort_) then call psb_error() return end if return end subroutine mld_zmlprec_aply